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Abstract

Wearable sensors can continuously and passively detect potential respiratory infections
before or absent symptoms. However, the population-level impact of deploying these
devices during pandemics is unclear. We built a compartmental model of Canada’s second
COVID-19 wave and simulated wearable sensor deployment scenarios, systematically
varying detection algorithm accuracy, uptake, and adherence. With current detection algo-
rithms and 4% uptake, we observed a 16% reduction in the second wave burden of infec-
tion; however, 22% of this reduction was attributed to incorrectly quarantining uninfected
device users. Improving detection specificity and offering confirmatory rapid tests each mini-
mized unnecessary quarantines and lab-based tests. With a sufficiently low false positive
rate, increasing uptake and adherence became effective strategies for scaling averted infec-
tions. We concluded that wearable sensors capable of detecting presymptomatic or asymp-
tomatic infections have potential to help reduce the burden of infection during a pandemic;

in the case of COVID-19, technology improvements or supporting measures are required to
keep social and resource costs sustainable.

Author summary

Find-Test-Trace-Isolate (FTTI) systems reliant on lab-based tests are important compo-
nents of pandemic mitigation but can miss infectious individuals that do not have symp-
toms and may be limited by slow test result turnaround times. Wearable sensors show
promise in continuous, passive detection of respiratory infections, before or absent symp-
toms. Here, we used a mathematical model to study the counterfactual impact of deploy-
ing wearable sensors to detect SARS-CoV-2 infections during Canada’s second COVID-
19 wave. We observed a meaningful reduction in the burden of infection but also found
that false positive alerts resulting from imperfect detection specificity resulted in high
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social and resource costs. Improving detection specificity and offering rapid antigen tests
to confirm positive alerts both helped minimize unnecessary quarantines and lab-based
tests. We found that once the false positive rate was sufficiently reduced, increasing uptake
and adherence became effective strategies to scale the number of averted infections. Our
study demonstrates that wearable sensors capable of detecting infections before or absent
symptoms are promising pandemic mitigation tools. It also provides intuition around
how detection performance, uptake, adherence, and supporting policies might shape the
impact of broad scale wearable sensor deployment.

Introduction

Infectious disease outbreaks can have devastating health and economic consequences. Effective
public health strategies are crucial for limiting transmission and minimizing these harms. One
approach to controlling viral spread during pandemics—a “Find, Test, Trace, Isolate” (FTTT)
strategy-relies on identifying and isolating infectious individuals [1]. However, the COVID-19
pandemic has demonstrated that FTTI systems reliant on lab-based tests are often limited by
missed hidden infection chains resulting from presymptomatic and asymptomatic transmis-
sion, and by slow test result turnaround times [2,3]. Digital contact tracing and rapid testing
programs have potential to fill these gaps, but both approaches have faced numerous imple-
mentation barriers: inadequate participation levels, concerns around privacy and feasibility,
and limited test availability [4-6].

Wearable sensors have already been established as tools to detect deviations from users’
physiological baselines [7]. Recent findings suggest that wearable sensors may also be able to
detect infections caused by respiratory pathogens such as SARS-CoV-2, before or absent symp-
toms [8-10]. Alavi et al, for example, developed an algorithm that analyzes patterns in smart-
watch-captured overnight resting heart rate and provides real-time alerts of potential
presymptomatic and asymptomatic SARS-CoV-2 infection [10]. If such algorithms were
widely deployed, wearable sensors could be promising tools for pandemic mitigation; they
could help FTTI systems more rapidly identify (and subsequently isolate) infectious individu-
als, including those without symptoms. Wearable sensors would also offer the unique benefit
of passive monitoring, which minimizes required user engagement, and could operate in pri-
vacy-preserving fashion because sensor data would not need to be shared with a centralized
database. With these potential benefits in mind, several studies have focused on developing
wearable sensor-based infectious disease detection algorithms or even using these devices for
infectious disease surveillance [8-12]. However, to the best of our knowledge, the potential
population-level impact of deploying these devices for pandemic mitigation has yet to be
explored.

In this study, we investigated the potential for wearable sensors capable of detecting pre-
symptomatic and asymptomatic infections to help reduce the burden of infection during the
acute phase of a pandemic. To do so, we used COVID-19 as an example and explored counter-
factual scenarios in which these devices were deployed to combat Canada’s second wave. We
built a compartmental epidemiological model in which wearable devices notify users of poten-
tial infection and prompt them to seek a confirmatory lab-based test, quarantining while wait-
ing for the result. We aimed to (1) assess the baseline impact of deploying currently available
detection algorithms during Canada’s second COVID-19 wave, (2) investigate how detection
accuracy and behavioural parameters influence this impact, and (3) explore a complementary
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strategy wherein rapid antigen tests are used to confirm wearable-based notifications of poten-
tial infection.

Methods
Counterfactual scenarios

We simulated Canada’s second COVID-19 wave (September 1, 2020 to February 20, 2021).
This time window allowed us to capture the dynamics of wearable sensor deployment during
an acute phase of the pandemic and at a time when the technology would have been ready and
deployable. Further, it allowed us to consider scenarios prior to broad vaccine availability and
before then-emerging variants of concern (VOCs) were dominant [13]. Potential reinfections
were also likely to be negligible in this timeframe [14]. Although we do not explicitly model
vaccines, VOCs, and reinfections, we later consider various hypotheses concerning their
potential impact on wearable sensor deployment in the Discussion section.

We first explored a baseline scenario in which wearable device users can download an
application with currently available detection algorithms [10]. We then investigated the impact
of technology and behavioural parameters: detection sensitivity and specificity; uptake, defined
as the proportion of the population that has downloaded the application and uses their wear-
able device often enough; and adherence, defined as the proportion of users who comply with
all reccommended next steps after a positive notification. Finally, we considered a complemen-
tary intervention wherein users with a positive notification are offered a confirmatory rapid
antigen test before they are prompted to seek a lab-based test and quarantine.

Model description

We built a compartmental model based on a Susceptible, Exposed, Infectious, Removed (SEIR)
framework (Fig 1). We split the Infectious state into three sub-states: Presymptomatic, Asymp-
tomatic, and Symptomatic. All infected individuals enter the Presymptomatic infectious state
after a latent period following exposure; some go on to develop symptoms (Symptomatic)
while others do not (Asymptomatic).

A
Compartment Symbol
Susceptible S
Exposed E

Infectious (presymptomatic) |

Infectious (asymptomatic) |

Infectious (symptomatic) |

Saw Removed R
Quarantined (correctly) Q.
Quarantined (incorrectly) Q

Fig 1. Compartmental model structure. Subscript “W” denotes a wearable user and “NW” denotes otherwise. Two
core model equations are presented below; remaining parameters, equations, and assumptions are outlined in Section
1in S1 Text.

https:/doi.org/10.1371/journal.pdig.0000100.g001
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To incorporate wearable sensor deployment, we stratified Susceptible, Exposed, and Infec-
tious states by whether individuals are device users or not. Wearable device users can enter
Quarantined states if they are notified of potential infection, and if they adhere to this notifica-
tion by seeking a confirmatory lab-based test and quarantining while awaiting the result. We
modelled adherence as the fraction of notified users notified who comply with all recom-
mended next steps; accordingly non-adherent users ignore the notification entirely in this
framework. We captured adherence in one parameter to preserve model parsimony and con-
sidered all values of this parameter (i.e., from 0% to 100%) recognizing the reality there will be
great variation in the extent to which notified users are adherent. To explore the notion that
adherence may not be “all or nothing” in practice, we separately considered the possibility that
non-adherent users who do not take any recommended next steps still act more cautiously
(e.g., limiting contacts, wearing a more protective mask) due to the notification (Fig C in
S1 Text).

We set the nominal lab-based test turnaround time to 2 days, assumed perfect lab-based
test accuracy, and separately explored faster and slower turnaround times (Fig G in SI Text)
[15]. Susceptible wearable device users could be Incorrectly Quarantined due to a false positive
notification and would re-enter the Susceptible state after receiving their lab-based test result.
Exposed and Infectious device users would be Correctly Quarantined and would enter the
Removed state (a longer period of isolation until recovery) after their lab-based test confirms
infection.

Multiple studies have established the potential for wearable sensors to detect presymptom-
atic, asymptomatic, and symptomatic SARS-CoV-2 infections [16-19]. With this said, a mean-
ingful yet unknown fraction of Symptomatic individuals would have already undergone some
degree of quarantining-behaviour already accounted for in the historical transmission rate
(B). For this reason, we did not include a pathway for Symptomatic device users to enter Quar-
antined states. We separately explored the impact of smaller and larger values for the preva-
lence of infected individuals that remain asymptomatic (Fig D in S1 Text).

In some scenarios, we also included a step where compliant users take a confirmatory rapid
antigen test. If positive, we assumed they then take a lab-based test, quarantining while await-
ing the result; if negative, we assumed they return to historical behaviour. In Section 4 in S1
Text, we investigated the impact of rapid antigen test sensitivity (Fig F in S1 Text).

Simulation approach

To perform simulations, we first extracted the historical transmission rate () from the inci-
dence of infection () according to Eq (1). In Eq (1), N represents the size of the entire popula-
tion and A represents the transmission potential of infected individuals without symptoms
relative to those with symptoms. Using the true incidence of infection, rather than a time series
of incompletely-ascertained cases, is crucial to appropriately capture the extent of historical
viral spread [20]. Because estimating 7 is challenging and was not itself an objective of the pres-
ent work, we drew from the Institute for Health Metrics and Evaluation (IHME) infection
model, a time series nowcasting model that is widely used to understand the historical extent
of infection [21-23]. The IHME model estimates 7 from confirmed cases, hospitalizations, and
deaths, and validates results against seroprevalence data. We downloaded these data from the
IHME website on December 7, 2021. To ensure our findings were robust to the underlying
infection model, we replicated core analyses using estimates of m from the Imperial College
London (ICL) infection model (Fig B in S1 Text) [24].

N
ﬁ*s

TR T Al (1)
(AL, + AL, + 1)
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Next, we applied B according to Eq (2) to simulate counterfactual scenarios. The time series
for B that results from Eq (1) incorporates all historical policy measures (e.g., restrictions, busi-
ness closures, testing availability) and behaviour (e.g., adherence to restrictions, quarantines)
that occurred. However, because some Susceptible, Exposed, and Infectious device users now
quarantine in simulations, the counterfactual incidence of infection-the 7 obtained from Eq
(2)-decreases relative to historical levels. In Section 4 in S1 Text, we investigated the possibility
that device users who are not notified of potential infection act in a riskier fashion (e.g.,
increasing contacts) relative to historical behaviour (Fig C in S1 Text) [25]. a is a coefficient
used to study this possibility and is nominally set to 1. When a is above 1, the average device
user in the Susceptible, Presymptomatic Infectious, and Asymptomatic Infectious compartments
acts in a riskier fashion relative to historical behaviour; when a is below 1, the average user in
these groups acts more cautiously.

We modeled asymptomatic prevalence (p), detection algorithm sensitivity (o) and speci-
ficity (vy), and adherence (y) as beta-distributed random variables because these parameters
were important sources of variance in our assessment of wearable sensors as pandemic mitiga-
tion tools. We sampled these variables and used the resulting values to generate an epidemic
trajectory. We repeated this process 5,000 times, using these Monte Carlo simulations to
model uncertainty in our estimates.

Further details about our model and simulation approach including parameters, equations,
assumptions, and additional sensitivity analyses are presented in Sections 1 and 4 in S1 Text.

Outcome measures

Prior to vaccine availability—and also in scenarios where vaccines are available but immune-
evasive variants are circulating-reducing viral transmission is an important public health pol-
icy objective. We calculated the number of averted infections and the percent reduction in the
burden of infection to quantify the health impact of wearable sensor deployment. We defined
the number of averted infections as the difference between the historical number of infections
and the number of infections in a counterfactual scenario. We calculated the percent reduction
in the burden of infection by dividing the number of averted infections by the historical num-
ber of infections. We also measured the number of days incorrectly spent in quarantine per
month per device user (a consequence of false positive notifications) as the primary indicator
of the strategy’s social burden [26]. Finally, to assess resource consumption, we quantified the
number of additional lab-based tests (and rapid antigen tests, where applicable) required each
day, on average.

Results
Baseline impact of wearable sensor deployment

We first investigated the baseline scenario in which detection algorithms that currently exist
are made publicly available for device users to download and use (Fig 2) [10]. Upon notifica-
tion of potential presymptomatic or asymptomatic infection, users are prompted to seek a con-
firmatory lab-based test, quarantine while awaiting the result (nominally, for 2 days), and self-
isolate until recovery if positive. We used the nominal values outlined in Table B in S1 Text,
setting uptake, adherence, detection sensitivity, and detection specificity to 4%, 50%, 80%, and
92%, respectively.
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A Incidence of Infection B Wearable Device Users in Q, C Lab-Based Tests Performed
(thousands) (thousands) per Day (thousands)
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—— |HME Model —— Wearable Sensor Deployment Baseline Scenario

Fig 2. Baseline scenario for wearable sensor deployment. Time series depiction of (A) the incidence of infection, (B) the number of wearable device
users incorrectly in quarantine, and (C) the daily demand for lab-based tests. Uptake, adherence, detection sensitivity, and detection specificity are set to
4%, 50%, 80%, and 92%, respectively.

https://doi.org/10.1371/journal.pdig.0000100.g002

We observed that in a baseline scenario, 366,143 (95% CI: 333,242-396,944) infections
could have been averted during Canada’s second COVID-19 wave-a 15.6% (95% CI: 14.2-
16.9%) reduction in the burden of infection (Fig 2A). However, the social costs were high:
between ~75,000 and ~125,000 device users were incorrectly quarantining on any given day
(Fig 2B). Moreover, between ~40,000 and ~65,000 additional lab-based tests were required
each day (Fig 2C), corresponding to a 51.6% (95% CI: 41.1-63.6%) increase in demand relative
to historical volumes. Historically, ~101,000 lab-based tests were performed each day, on aver-
age, during the simulation timeframe [22,27]. The number of individuals incorrectly in quar-
antine and daily demand for lab-based tests were generally steady over time because they
largely depend on the number of Susceptible device users, adherence, and detection specificity;
the gradual decrease can be attributed to the flow of users into the Removed state. These find-
ings were robust to our use of the IHME infection model (Fig B in SI Text).

Tradeoff between detection algorithm sensitivity and specificity

After their initial release on technology platforms, health detection algorithms can be updated
and improved as more real-world data are collected. However, it is often challenging to dra-
matically raise detection sensitivity and specificity at the same time. We explored the implica-
tions of this tradeoff (Fig 3), varying detection sensitivity and specificity while keeping uptake
and adherence constant at 4% and 50%, respectively.

Increasing detection sensitivity increased the number of averted infections by prompting
more Infectious users to quarantine (Fig 3A and Fig 3B). On the other hand, increasing speci-
ficity had a two-part effect. First, as specificity approached 100%, the number of days incor-
rectly spent in quarantine approached zero (Fig 3C); sensitivity had negligible impact on
incorrect quarantines. Second, by virtue of decreasing the number of incorrect quarantines,
increasing specificity resulted in a larger pool of Susceptible individuals; in turn, fewer infec-
tions were averted. Despite this second effect, incorrect quarantines were not central to the
strategy’s public health impact. In the baseline scenario above (80% detection sensitivity, 4%
uptake, and 50% adherence), a 12.1% (95% CI: 11.0-13.1%) reduction in the burden of infec-
tion was still achievable with perfect detection specificity (and no incorrect quarantines).
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Fig 3. Tradeoff between detection sensitivity and specificity. (A) Averted infections, (B) reduction in the burden of
infection, (C) days incorrectly spent in quarantine per month per user, and (D) average daily demand for lab-based
tests, all over the simulation period, as a function of detection sensitivity and specificity. Grey boxes denote nominal
sensitivity (80%) and specificity (92%).

https://doi.org/10.1371/journal.pdig.0000100.9003

22.7% (95% CI: 13.1-32.5%) of averted infections could be attributed to incorrect quarantines
in the baseline scenario, though this proportion decreased as sensitivity improved (Fig E in
S1 Text).

In theory, increasing detection sensitivity would increase demand for lab-based tests. We
found that this effect paled in comparison to the number of lab-based tests prompted by false
positive notifications (Fig 3D). Lab-based test demand expectedly decreased as detection speci-
ficity increased.

Impact of increasing uptake

Ensuring that public health measures reach sufficient levels of uptake has been a continued
challenge through the COVID-19 pandemic. Digital contact tracing and vaccination efforts
have demonstrated that well-constructed policies—for example, incentivizing participation—
can improve uptake of measures [28,29]. Here, we explored the role of uptake to provide rele-
vant context for the design of wearable sensor deployment policies (Fig 4; Fig A in S1 Text).
We estimated that uptake would fall between 0.5% and 7.5% (Tables B-D in S1 Text) at base-
line but chose to present outcomes at all levels of uptake (i.e., from 0% to 100%) to illustrate
emergent phenomena. We also explored multiple technology scenarios, setting “high” detec-
tion sensitivity and specificity at 96.0% and 98.4%, respectively; we based these increases on
the respective goals of capturing 20% more infections and reducing the false positive rate by
80% relative to nominal values. We kept adherence constant at 50%.
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Fig 4. Impact of increasing uptake under different technology assumptions. (A) Averted infections, (B) reduction
in the burden of infection, (C) days incorrectly spent in quarantine per month per user, and (D) average daily demand
for lab-based tests, all over the simulation period, as a function of increasing uptake. Grey dashed lines denote nominal
uptake (4%). In the “High Sensitivity” and “High Specificity” scenarios, detection specificity and sensitivity are kept at
their nominal values, respectively. Symbol markers are added in (C) and (D) to distinguish overlapping curves: in these
charts, the “Nominal Sensitivity and Specificity” and “High Sensitivity” curves overlap, and the “High Specificity” and
“High Sensitivity and Specificity” curves overlap.

https://doi.org/10.1371/journal.pdig.0000100.9004

In all technology scenarios, increasing uptake averted more infections, though with even-
tual diminishing returns (Fig 4A and Fig 4B). Within our estimated range of uptake (0.5% to
7.5%), and with nominal detection sensitivity and specificity, each percent increase in uptake
resulted in an additional 3.4% (95% CI: 2.8-4.0%) reduction in the burden of infection (Fig
4B). As expected, improving detection specificity resulted in fewer averted infections when
uptake was held constant; this effect was most pronounced between ~30% and ~60% uptake.
The number of days incorrectly spent in quarantine per month per device user remained con-
stant as a function of uptake but decreased from ~2.15 to ~0.45 when detection specificity was
increased (Fig 4C). This ~80% decrease was consistent with our definition of “high specificity”
underscoring that detection specificity directly influences the burden of incorrect quarantines
on device users. The average daily demand for lab-based tests scaled linearly with uptake, but
at a slower rate with improved detection specificity (Fig 4D).

Impact of increasing adherence

Adherence to public health guidelines also impacts the success of pandemic control measures.
Targeted policies—for example, compensating individuals in self-isolation-could help improve
compliance with public health recommendations [30]. Here, we explored the role of adherence
in wearable sensor deployment strategies (Fig 5; Fig A in S1 Text). We captured adherence in
one parameter to preserve model parsimony but recognize that there is likely to be great varia-
tion in the extent to which notified users adhere to recommended next steps in practice

(Table B in S1 Text). For this reason, we chose to explore outcomes at all values of adherence-
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Fig 5. Impact of increasing adherence under different technology assumptions. (A) Averted infections, (B) reduction in the burden of infection, (C)
days incorrectly spent in quarantine per month per user, and (D) average daily demand for lab-based tests, all over the simulation period, as a function
of increasing adherence. Grey dashed lines denote nominal adherence (50%). In the “High Sensitivity” and “High Specificity” scenarios, detection
specificity and sensitivity are kept at their nominal values, respectively. Symbol markers are added in (C) and (D) to distinguish overlapping curves: in

these charts, the “Nominal Sensitivity and Specificity” and “High Sensitivity” curves overlap, and the “High Specificity” and “High Sensitivity and
Specificity” curves overlap.

https://doi.org/10.1371/journal.pdig.0000100.9005

from 0% adherence, where no users comply with any recommended next steps, to 100% adher-
ence, where all users comply with all recommended next steps. We kept uptake constant at 4%
and assessed multiple technology scenarios using the same definitions of “high” detection sen-
sitivity and specificity as before. Separately, we also considered the case of partial adherence
where non-adherent users act more cautiously due to the notification (Fig C in S1 Text).

Adherence meaningfully impacted the achievable reduction in the burden of infection (Fig
5B). With nominal detection sensitivity and specificity, increasing adherence among partici-
pating wearable device users from 20% to 80% tripled the achieved reduction in the burden of
infection, raising it from 7.2% (95% CI: 6.3-8.1%) to 22.1% (95% CI: 20.4-23.6%). However,
increasing the proportion of users who comply with notifications also magnified the conse-
quences of false positive notifications: the number of days incorrectly spent in quarantine per
month per user (Fig 5C) and the demand for lab-based tests (Fig 5D) grew proportionally with
adherence. These social and resource costs grew at a slower rate with improved detection
specificity.
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Fig 6. Wearable sensor deployment with confirmatory rapid antigen tests. Time series depiction of (A) the
incidence of infection, (B) the number of wearable device users incorrectly in quarantine, and (C) the daily demand for
lab-based tests. Detection sensitivity and specificity are set to their nominal values of 80% and 92%, respectively.

https://doi.org/10.1371/journal.pdig.0000100.9006

Impact of offering confirmatory rapid antigen tests

Our earlier findings suggested that false positive notifications of potential infection were the

primary cause of unnecessary quarantines and lab-based tests. Improving detection specificity
was one way to decrease false positive notifications. Here, we investigated whether offering
confirmatory rapid antigen tests to users with a positive notification could also contribute to
reducing unnecessary quarantines and lab-based tests (Fig 6; Table 1; Table E in S1 Text). We
considered multiple scenarios, each with either low levels of uptake (0.5%) or adherence

Table 1. Impact of offering confirmatory rapid antigen tests under different technology and behavioural assumptions. 95% confidence intervals are listed in paren-
theses. Table E in S1 Text depicts outcomes in analogous scenarios without rapid antigen tests.

Uptake |Adherence |Averted Infections |Reductionin Burden |Days/Monthin Q;per |Additional Lab-Based Tests | Additional Rapid Tests
(%) (%) (thousands) of Infection (%) User (thousands) Performed per Day Performed per Day (thousands)
Nominal Detection Sensitivity (80%) and Specificity (92%) Scenario

0.5 14 11.0 (9.4-12.6) 0.5 (0.4-0.5) 1.92 (1.47-2.46) 11 (9-13) 1.9 (1.5-2.5)

0.5 50 34.4 (30.9-37.6) 1.5 (1.3-1.6) 6.85 (5.29-8.55) 37 (32-43) 6.9 (5.4-8.7)

0.5 86 52.6 (47.9-56.5) 2.2 (2.0-2.4) 11.81 (9.23-14.68) 60 (52-69) 11.9 (9.3-14.8)

4.0 14 86.5(73.5-99.5) 3.7 (3.1-4.2) 1.92 (1.46-2.45) 88 (73-103) 15.5(11.8-19.8)

4.0 50 263.4 (237.1-286.6) 11.2 (10.1-12.2) 6.87 (5.34-8.53) 284 (244-326) 55.6 (43.2-69.0)

4.0 86 393.5 (362.2-420.3) 16.8 (15.5-17.9) 11.84 (9.29-14.79) 454 (391-527) 95.8 (75.2-119.6)

75 14 160.0 (136.9-183.9) | 6.8 (5.8-7.8) 1.92 (1.46-2.46) 162 (135-191) 29.2 (22.2-37.3)

75 50 4724 (427.8-511.5) | 20.2 (18.3-21.8) 6.87 (5.32-8.60) 510 (438-592) 104.1 (80.7-130.3)

7.5 86 687.0 (636.8-728.4) | 29.3 (27.2-31.1) 11.88 (9.24-14.79) 805 (686-936) 180.1 (140.2-224.2)

High Detection Sensitivity

(96.0%) and Specificity (98.4%) Scenario

0.5 14 13.0 (11.5-14.6) 0.6 (0.5-0.6) 0.38 (0.21-0.63) 7 (6-9) 0.4 (0.2-0.6)
0.5 50 39.9 (37.6-41.9) 1.7 (1.6-1.8) 1.37 (0.73-2.18) 23 (21-26) 1.4 (0.8-2.2)
0.5 86 59.9 (57.6-61.7) 2.6 (2.5-2.6) 2.35 (1.26-3.74) 35 (31-39) 2.4 (1.3-3.8)
4.0 14 102.6 (91.1-114.6) | 4.4 (3.9-4.9) 0.39 (0.21-0.63) 58 (50-67) 3.2(1.7-5.2)
40 50 303.0 (286.6-317.5) | 12.9 (12.2-13.5) 1.37 (0.72-2.20) 167 (149-188) 11.2 (5.9-17.9)
40 86 443.2 (426.2-455.3) | 18.9 (18.2-19.4) 2.35 (1.26-3.73) 241 (215-276) 19.2 (10.4-30.4)
7.5 14 188.8 (167.3-210.9) | 8.1 (7.1-9.0) 0.38 (0.20-0.62) 105 (91-121) 5.9 (3.2-9.5)
7.5 50 539.4 (511.4-562.9) | 23.0 (21.8-24.0) 1.38 (0.74-2.23) 284 (253-324) 21.1 (11.5-34.0)
7.5 86 767.3 (741.7-785.9) | 32.7 (31.6-33.5) 2.37 (1.24-3.82) 395 (343-461) 36.2 (19.1-58.1)

https://doi.org/10.1371/journal.pdig.0000100.1001
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(14%), nominal levels of uptake (4%) or adherence (50%), or high levels of uptake (12.5%) or
adherence (86%). We examined these scenarios in the cases of nominal detection sensitivity
and specificity, and of “high” detection sensitivity and specificity (using the same definitions of
“high” as above).

The use of antigen tests reduced the number of days incorrectly spent in quarantine by
~300-fold by increasing the “effective specificity” of the strategy (Fig 6B). That is, with antigen
tests, the likelihood of a Susceptible user being incorrectly prompted to quarantine on a given
day fell from (1 -v,,) to the product of (1 -v,,) and (1 -v,), where v,, and v, are detection algo-
rithm specificity and antigen test specificity, respectively. In earlier scenarios (Fig 4A and 5A),
the number of averted infections was decreased by improving detection specificity more than
it was increased by improving detection sensitivity; fewer infections were averted in scenarios
with “high” as opposed to nominal detection sensitivity and specificity. Here, the specificity
contributed by the antigen tests diminished the relative impact of improving detection speci-
ficity on the number of averted infections: the “effective specificity” of the strategy was
99.976% with nominal detection specificity and 99.995% with high detection specificity
(Table B in S1 Text) [31]. Instead, improving detection sensitivity was what increased the
number of averted infections. Importantly, antigen tests had the secondary effect of decreasing
the strategy’s “effective sensitivity”-the product of antigen test sensitivity (91.1%) and detec-
tion algorithm sensitivity [31].

Offering confirmatory rapid antigen tests also decreased the demand for lab-based tests by
~200-fold, alleviating the burden on testing infrastructure (Fig 6C). We earlier found thatin a
baseline scenario (4% uptake, 50% adherence, 80% detection sensitivity, 92% detection speci-
ficity), between ~40,000 and ~65,000 additional lab-based tests would be required each day
(Fig 2C). Here, in an analogous scenario, only 284 (95% CI: 244-326) additional lab-based
tests would be required each day, on average, and 55,600 (95% CI: 43,200-69,000) antigen tests
would be performed instead (Table 1).

Discussion

We used a counterfactual model of Canada’s second COVID-19 wave to demonstrate that
wearable sensors capable of detecting infections before or absent symptoms have meaningful
potential to help mitigate the acute phase of a pandemic. Through continuous and non-inva-
sive monitoring of physiological parameters, these devices can help FTTI systems identify hid-
den infection chains with minimal delay and without active user engagement or broad sharing
of user data. We showed that (1) deploying currently available detection algorithms could have
helped reduce the acute phase burden of infection, but with substantial social and resource
costs; (2) improving detection algorithm specificity and offering confirmatory rapid antigen
tests can help minimize unnecessary quarantines and lab-based tests; and (3) once false posi-
tive notifications are minimized, increasing uptake and adherence become effective strategies
to scale the number of averted infections.

In theory, wearable sensor deployment reduces the burden of infection by decreasing the
pool of Infectious individuals (a function of detection algorithm sensitivity). Here we found
that detection specificity played an unexpectedly large role as well, with false positive notifica-
tions of potential infection prompting unnecessary quarantines and thereby decreasing the
pool of Susceptible individuals. Thus, although prioritizing uptake and adherence as part of a
wearable sensor deployment strategy could mitigate a substantial number of infections, the
unsustainable growth of associated costs should also be considered. In a baseline scenario,
without improvements to detection specificity, every user would spend over two days a month
on average incorrectly quarantining, and ~40,000 to ~65,000 additional confirmatory lab-
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based tests would be required each day. The social and economic harm caused by solely pro-
moting uptake or adherence without improvements to detection specificity would likely
undermine public confidence in and compliance with a wearable-based pandemic mitigation
strategy [32]. Alavi et al found that many false positives were due to the detection algorithm
identifying lifestyle-driven changes in resting heart rate (e.g., after intense exercise or alcohol
consumption); accounting for these factors using more advanced algorithms may be one way
to target improved detection specificity [10].

We found that the inclusion of confirmatory antigen testing was a valuable mechanism,
beyond improving detection specificity, to increase the “effective specificity” of the strategy
and decrease the overall false positive rate. The inclusion of antigen testing decreased days
incorrectly spent in quarantine by ~300-fold and brought the additional demand on lab-based
testing infrastructure to justifiable levels. However, even with the inclusion of antigen tests,
improvements to detection specificity still had value. In scenarios with “high” nominal detec-
tion specificity, we observed a ~4-fold reduction in days incorrectly spent in quarantine per
month per user, a ~2-fold reduction in lab-based tests performed each day, and a ~5-fold
reduction in antigen tests used each day. Importantly, a strategy in which antigen tests support
the deployment of wearable sensors is notably different from one involving frequent use of
rapid antigen tests for diagnosis or screening [33]. On their own, broad antigen test-based
screening approaches require tremendous manufacturing volumes, infrastructure, and fund-
ing [34]. Conversely, wearable sensors can non-invasively detect infections without active user
engagement, reducing the effort required to participate. Further, wearable sensors may even
help improve diagnostic test allocation by directing tests toward individuals with a higher pre-
test probability of infection [35].

The COVID-19 pandemic’s evolution has been shaped by the uptake of vaccines, the emer-
gence of more transmissible and immune-evasive variants, and the potential for breakthrough
and repeat infections [36]. Although we did not consider these factors when modelling Cana-
da’s second wave, we speculate that their effects on wearable sensor-based mitigation strategies
would be driven by changes in users’ physiological responses and in SARS-CoV-2 epidemiol-
ogy. In particular, we hypothesize that wearable sensor-based mitigation would be impacted in
four major ways. First, vaccination has been found to elicit similar physiological responses to
infection (e.g., elevated resting heart rate) and these physiological responses might be captured
by wearable sensor-based detection algorithms [10,37]. We expect this to manifest as an
increase in the incidence of false positive notifications, which we have considered in depth in
our analyses related to detection specificity. However, we also speculate that vaccination-
driven false positive notifications would likely be flagged as such by the user and ignored. Sec-
ond, prior immunity from vaccination may attenuate physiological responses elicited by
breakthrough infections, altering detection sensitivity [38]. Although it might generally be
expected that the degree of attenuation would depend on the VOC causing infection, as well as
the specific infection and vaccination history of the individual, evidence of minimal differences
between physiological responses to breakthrough infections during Germany’s Delta and Omi-
cron waves has been reported [38]. From a modeling perspective, incorporating temporal
changes in detection sensitivity may be an appropriate starting point for exploring this effect.
Third, the onset of symptoms may occur earlier in the infectious period in individuals with
pre-existing immunity than in immunologically naive individuals [39,40]. In these scenarios,
the early onset of symptoms would already contribute to the detection of infections earlier in
the infectious period. However, we speculate that if detection algorithms retained their ability
to identify presymptomatic infections, wearable sensors could even further reduce the fraction
of the infectious period in which users unknowingly transmit the virus-and in turn, even fur-
ther decrease the burden of infection. Finally, increases in transmissibility—-whether due to

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000100  September 6, 2022 12/17


https://doi.org/10.1371/journal.pdig.0000100

PLOS DIGITAL HEALTH

Deploying wearable sensors for pandemic mitigation

higher viral loads or immune evasion in VOCs-would also influence the impact of wearable
sensor-based mitigation strategies by attenuating the achievable reduction in the burden of
infection (Fig H in S1 Text) [3,41-43]. Moving forward, more empirical data will be needed in
order to develop models of wearable sensor deployment in the SARS-CoV-2 vaccine and vari-
ant era, and in turn explore these hypotheses.

Our work has important limitations. First, we do not account for heterogeneities in wear-
able device use which, in reality, is influenced by age, race, level of education, and income
[44,45]. Future analyses could more precisely address how a device user being removed from
the pool of Susceptible or Infectious individuals will impact the epidemic trajectory based on
that user’s demographic and socioeconomic profile. Indeed, the COVID-19 pandemic has dis-
proportionately impacted low-income and minority groups, while younger individuals are
more likely to be super-spreaders [46-48]. Future studies could also consider policies that sub-
sidize wearable devices, reducing the participation barrier for groups underrepresented among
current device owners. Second, we made the simplifying assumption that all users without
symptoms (and that no users with symptoms) could benefit from wearable-informed prompts
to seek a confirmatory test and tentatively quarantine. We may be underestimating the effect
size because wearable sensors also show promise in detecting symptomatic SARS-CoV-2 infec-
tion and many symptomatic individuals did not historically self-isolate [16-18,49,50]. Third,
we did not consider how uptake or adherence may vary with time, detection accuracy, or other
factors [28,32,49,51]. Finally, we did not consider how detection algorithm performance varies
over the course of infection.

Using the example of COVID-19, we demonstrated the potential of wearable sensors to
support FTTI systems with real-time detection of presymptomatic and asymptomatic infec-
tions and thereby reduce the burden of infection during a pandemic. Messaging to the public
will be an important to ensure a wearable sensor-based mitigation strategy is successful: for
example, public health leaders will need to communicate the limitations of wearable sensors
with respect to detecting infections and emphasize that a lack of a notification does not rule
out potential infection (Fig C in S1 Text). Moreover, moving forward, it will also be important
to consider how wearable sensor data can be linked with other health data such as laboratory
tests to yield more impactful diagnoses, to address potential issues with data format and secure
storage with an eye to heightened challenges in resource-constrained settings, and to ensure
that device users prompted to quarantine have appropriate supports to do so [30,52,53]. Ulti-
mately, as sensor technology and detection algorithms evolve—for example, to potentially dis-
tinguish infections with SARS-CoV-2 from those with seasonal influenza-there is clear merit
to further exploring how wearable sensors can be incorporated into FTTI systems to support
pandemic mitigation [54].

Supporting information

S1 Text. The file “S1_Text.pdf” contains additional information about study methodology,

supplementary results, and sensitivity analyses.
(PDF)
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