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Abstract

Objectives

Federated learning (FL) allows multiple institutions to collaboratively develop a machine

learning algorithm without sharing their data. Organizations instead share model parame-

ters only, allowing them to benefit from a model built with a larger dataset while maintaining

the privacy of their own data. We conducted a systematic review to evaluate the current

state of FL in healthcare and discuss the limitations and promise of this technology.

Methods

We conducted a literature search using PRISMA guidelines. At least two reviewers

assessed each study for eligibility and extracted a predetermined set of data. The quality of

each study was determined using the TRIPOD guideline and PROBAST tool.

Results

13 studies were included in the full systematic review. Most were in the field of oncology (6

of 13; 46.1%), followed by radiology (5 of 13; 38.5%). The majority evaluated imaging

results, performed a binary classification prediction task via offline learning (n = 12; 92.3%),

and used a centralized topology, aggregation server workflow (n = 10; 76.9%). Most studies

were compliant with the major reporting requirements of the TRIPOD guidelines. In all, 6 of

13 (46.2%) of studies were judged at high risk of bias using the PROBAST tool and only 5

studies used publicly available data.
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Conclusion

Federated learning is a growing field in machine learning with many promising uses in

healthcare. Few studies have been published to date. Our evaluation found that investiga-

tors can do more to address the risk of bias and increase transparency by adding steps for

data homogeneity or sharing required metadata and code.

Author summary

Interest in machine learning as applied to challenges in medicine has seen an exponential

rise over the past decade. A key issue in developing machine learning models is the avail-

ability of sufficient high-quality data. Another related issue is a requirement to validate a

locally trained model on data from external sources. However, sharing sensitive biomedi-

cal and clinical data across different hospitals and research teams can be challenging due

to concerns with data privacy and data stewardship. These issues have led to innovative

new approaches for collaboratively training machine learning models without sharing raw

data. One such method, termed ‘federated learning,’ enables investigators from different

institutions to combine efforts by training a model locally on their own data, and sharing

the parameters of the model with others to generate a central model. Here, we systemati-

cally review reports of successful deployments of federated learning applied to research

problems involving biomedical data. We found that federated learning links research

teams around the world and has been applied to modelling in such as oncology and radi-

ology. Based on the trends we observed in the studies reviewed in our paper, we observe

there are opportunities to expand and improve this innovative approach so global teams

can continue to produce and validate high quality machine learning models.

Introduction

Machine learning (ML) requires high quality datasets to produce unbiased and generalizable

models. While there have been collaborative initiatives to create large data repositories (e.g.

Observational Health Data Sciences and Informatics, IBM Merge Healthcare, Health Data

Research UK), these are challenging to implement and maintain because of technical and regu-

latory barriers.[1] Another key challenge for the development of robust ML models is the

requirement to validate the model on data from external sources. However, sharing sensitive

biomedical and clinical data across separate institutions can be challenging due to concerns

with data privacy and stewardship. Federated learning (FL) offers a promising solution to

these challenges, particularly in healthcare where patient data privacy is paramount.

First developed in the mobile telecommunications industry, FL allows multiple separate

institutions to collaboratively develop a ML algorithm by sharing the model and its parameters

rather than the training data.[2] In this development paradigm, institutions maintain control

over their data while realizing the benefit of a model that has been trained and validated using

diverse data across multiple institutions. This collaborative approach is important not only for

increasing the scope of academic research partnerships, but also for the development and

implementation of robust ML models trained on disparate data. In addition to producing

robust ML models, FL may enable more equitable precision medicine. Combining data from

regional, national, or international institutions could benefit patients from underrepresented
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groups, patients with orphan diseases, and hospitals with fewer resources by providing access

to point-of-care ML algorithms.

The potential for FL to accelerate robust ML model development and precision medicine has

led to an increasing volume of scholarly reports on FL system proof-of-concept and validation in

the past several years. The power of these collaborative models was demonstrated during the

COVID-19 pandemic, when multiple groups used FL models to improve quality of care and out-

comes. [3] Larger initiatives to bring FL to the bedside, such as the Federated Tumor Segmenta-

tion Initiative, are also underway. [4] Despite the tremendous potential of FL, there are still

concerns around data quality and standardization as well as barriers to adoption. [5]

In this systematic review, our objective was to evaluate the current state of FL in medicine

by evaluating ML algorithms that were developed and validated using a FL framework. We

explored and compared the types of FL architectures deployed, clinical applicability and value,

predictive performance, and the quality of the scholarly reports in terms of best practices for

ML model development. We also discuss the overall strengths and limitations of FL in medi-

cine at present with a forecast on opportunities and barriers for the future of FL.

Methods

The review was conducted in accordance with the Cochrane Handbook for Systematic

Reviews of Interventions and reporting requirements outlined by Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (S1 Table). [6]

Search strategy & selection criteria

In this systematic review, we searched for published studies that developed or validated a FL

framework for predictive modeling of diagnoses, treatment outcomes or prognostication for

any disease entity using biomedical data. Methods of analysis and inclusion criteria were speci-

fied in advance. The systematic review of the literature used a controlled vocabulary and key-

word terms relating to the collaborative use of artificial intelligence in medicine such as

"machine learning," "federated learning," "distributed learning," "electronic medical record,"

"health data," and "data exchange" (S2 Table). We searched Ovid MEDLINE (1946-), Embase.

com (1947-), Web of Science Core Collection (1900-), CINAHL (1937-), and ACM Digital

Library (1908-). The PRISMA guidelines were used to document the search.[6] All of the

searches were designed and conducted by a reference librarian (DG). The search was reviewed

by a second librarian. No language or date limitations were used. The final searches were run

on October 29, 2020.

Each study eligibility was assessed by at least two reviewers (two of M.C., L.C., B.L., A.A., S.

M., A.R., D.M.) who independently screened titles and abstracts of the search results. Non-

consensus cases were resolved by a third reviewer. We excluded studies that used simulated

distributed learning (not ‘actual’ geographically separate nodes), data that were not biomedical

in nature, non-English language writing, review-style or editorial papers, papers with no full-

text available, and papers that did not report clinical outcomes or applicability.

Data extraction

Data extraction was completed using a predefined data extraction tool. The tool addressed sev-

eral domains including study design (number of participating sites/nodes, countries, medical/

biomedical subspeciality, ML model prediction task), study data (data type, dataset size, num-

ber of features/variables, missing data imputation approach), ML modeling approach (ML

algorithm used, model justification, performance metrics, hyperparameter tuning, model cali-

bration, model validation strategy, model interpretability, potential for ML model bias), FL
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system approach (FL architecture chosen, FL topology, computing plan for nodes), and

research reproducibility (source code availability, container availability).

Quality assessment

To assess the quality of the reporting of the ML approach in each included study, we used the

Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis

(TRIPOD) guideline. [7] The TRIPOD guideline was developed as a consensus framework to

appraise the reporting of studies developing or validating a diagnostic or prognostic prediction

model. To assess the risk-of-bias of the included studies, we utilized the Prediction model Risk Of

Bias ASsessment Tool (PROBAST).[8] PROBAST was developed as a tool for systematic reviews

to assess the risk-of-bias and applicability of studies describing diagnostic and prognostic predic-

tion models. We chose PROBAST over other commonly used systematic review risk-of-bias tools

as the scope of our review is limited to predictive (i.e., machine learning) models.

Results

Our search strategy identified 2173 records and 2171 were screened after removal of duplicates

(Fig 1). Of the screened articles, 99 full-text articles were assessed for eligibility based on our

criteria. Thirteen studies were included in the full systematic review.

General study characteristics

All included studies involved at least two participating institutions (i.e., ‘nodes’), with the larg-

est collaborative effort comprising data from 50 different hospitals/institutions [9] (Table 1).

Fig 1. Study inclusion and exclusion flow.

https://doi.org/10.1371/journal.pdig.0000033.g001
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All the studies were performed with interdisciplinary teams composed of clinicians and techni-

cal experts (i.e., data scientists, data engineers). All studies were completed in developed coun-

tries, with most studies completed in an international collaborative setting (n = 7, 53.9%),

followed by studies performed exclusively in the United States (n = 5, 38.5%). The most com-

mon clinical subspeciality represented was medical and radiation oncology (n = 6, 46.1%) fol-

lowed by radiology (n = 5, 38.5%). Cancer prognostication was the most common use case

(n = 5, 38.5%), followed by pathology identification using imaging (n = 4, 30.8%).

Dataset characteristics

Dataset sizes of study subjects or derived data ranged from hundreds to tens of thousands

(Table 2). The majority (n = 8; 61.5%) utilized structured data. When reported, the models

comprised feature counts ranging from 5 to 1,400. Only 3 (23.1%) studies included a detailed

description of the inclusion criteria of study subjects. Publicly available data sources were used

in 2 (15.4%) studies. Most studies cited use of a non-public data source, and only a small num-

ber of teams made their data publicly available as part of their initial manuscript submission

(n = 3, 23.1%). Missing data and imputation methods were reported in the models that utilize

Table 1. Basic characteristics of included studies.

Citation Interdisciplinary

Collaboration

Participating

Sites/Institutions

Participating Countries Medical or Biomedical

Subspecialty

Predicted Outcome/

Target

Detailed Patient

Inclusion/Exclusion

Criteria

Bogowicz

et al., (2020)

[10]

Yes 5 (4) Canada,

Netherlands,

Switzerland, United

States

(4) Radiology, Radiation

Oncology, Medical Oncology,

Otolaryngology

(1) Survival Yes

Deist et al.,

(2020) [11]

No 8 (5) China, England,

Italy, Netherlands,

Wales

(2) Medical Oncology,

Radiation Oncology

(1) Survival Yes

Deist et al.,

(2017) [12]

No 5 (3) Belgium, Germany,

Netherlands

(1) Radiation Oncology (1) Post-radiotherapy

dyspnea grade

Yes

Huang et al.,

(2019) [9]

Yes 50 (1) United States (1) Critical Care (2) In-Hospital

Mortality, ICU Stay

Time

No

Jochems et al,

(2017) [13]

Yes 3 (3) Netherlands, United

States, United Kingdom

(1) Radiation Oncology (1) Survival No

Jochems et al.

(2016) [14]

Yes 5 (3) Belgium, Germany,

Netherlands

(1) Radiation Oncology (1) Dyspnea Yes

Li J et al.,

(2020) [15]

Yes 16 (1) United States, China (1) Medical Oncology (1) Survival Yes

Li X et al.,

(2020) [16]

Yes 4 (1) United States (2) Radiology, Psychiatry,

Radiology

(1) Autism Spectrum

Disorder

Classification

No

Remedios

et al., (2019)

[17]

Yes 2 (1) United States (1) Radiology (1) Hemorrhage or

Hematoma

Segmentation

Yes

Remedios

et al., (2020)

[18]

Yes 5 (1) United States (1) Radiology (1) Hemorrhage or

Hematoma

Segmentation

Yes

Sheller et al.,

(2020) [19]

Yes 12 (1) United States (2) Medical Oncology,

Radiology

(1) Tumor Detection Yes

Tian, et al.,

(2020) [20]

Yes 6 (2) China, United States (2) Gastroenterology, Medical

Oncology

(1) Survival Yes

Xu, et al.,

(2020) [21]

Yes 4 (1) China (3) Infectious Disease,

Radiology, Pulmonology

(1) COVID-19

Diagnosis

No

https://doi.org/10.1371/journal.pdig.0000033.t001
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structured data. For studies using computer vision techniques, image preprocessing techniques

were routinely detailed.

Modeling

Most studies performed a binary classification (n = 11; 84.6%) prediction task via offline learn-

ing (n = 12; 92.3%) (Table 3). Various model architectures were used spanning basic logistic

regression, Bayesian networks, tree-based methods, and deep learning. All studies reported on

the performance of their models with most studies reporting the area under the receiver oper-

ating characteristic (AUC-ROC) curve for a binary classification task (n = 8; 61.5%). There

was considerable heterogeneity in the studies reporting on hyperparameter optimization, vali-

dation strategies, and comparison between model architectures when multiple model types

were developed. Only one study explicitly explored the potential for bias in their data and

modeling workflow. [11]

Federated learning architecture

We categorized the studies’ workflow, topology, and node computing plan using an established

FL vocabulary. [1] Most studies used a centralized topology (n = 10; 76.9%), aggregation server

workflow (n = 10; 76.9%), and an aggregation server for their computing plan at the nodes

Table 2. Data composition and characteristics of included studies.

Citation Data Type Patient

Cohort Size

Data Publicly

Available

Number of Model

Features

Modeling

Dataset Size

Cohort Descriptive

Statistical Analysis

Missing Data

Management

Bogowicz et al.,

(2020) [10]

Non-

Structured

1,064 No 981 Not reported Yes Yes

Deist et al., (2020)

[11]

Structured 23,203 No 6 23,203 patients Yes Yes

Deist et al., (2017)

[12]

Structured 268 No 3 Not reported Yes Yes

Huang et al., (2019)

[9]

Structured 28,000 Yes 1,400 28,000 patients Yes Yes

Jochems et al,

(2017) [13]

Structured 894 Yes 9 Not reported Yes Yes

Jochems et al.

(2016) [14]

Structured 287 No 5 287 patients Yes Yes

Li J et al., (2020)

[15]

Structured Not reported Yes; partial 12 Not reported Not reported Not reported

Li X et al., (2020)

[16]

Structured 370 Yes; partial Not reported Not reported Yes Not reported

Remedios et al.,

(2019) [17]

Non-

Structured

27 No NA 27 CT scans Not reported Yes

Remedios et al.,

(2020) [18]

Non-

Structured

Not reported No NA 161 CT scans Not reported Yes

Sheller et al., (2020)

[19]

Non-

structured

406 Yes; partial NA 406 MRI scans Not reported Yes

Tian, et al., (2020)

[20]

Structured 70,906 No 12 70,906 patients Yes Yes

Xu, et al., (2020)

[21]

Non-

Structured

1,276 No NA 5,732 CT images Yes Not reported

CT: computed tomography

MRI: magnetic resonance imaging

https://doi.org/10.1371/journal.pdig.0000033.t002
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(n = 10; 76.9%) (Table 4). Only 7 (53.9%) studies provided access to their models or modeling

code (e.g. via Github), and only 1 (7.7%) study provided a model Docker container. [19]

Quality assessment

Most studies were compliant with the main reporting requirements of the TRIPOD guidelines,

[7] except for reporting on methods for handling missing data and reporting on the unad-

justed associations between candidate features and the outcome variable (S3 Table; S1 Fig).

The risk-of-bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PRO-

BAST). Overall, 6 (46.2%) of the studies were judged as having high risk of bias and 6 (46.2%)

were judged of high concern for applicability integrating the four PROBAST domains (S4

Table; S2 Fig).

Discussion

The potential for federated learning to accelerate machine learning model development and

validation has led to great interest in this area and a growing volume of published works

reporting proof-of-concept and early implementations. Prior narrative and systematic reviews

on FL as applied to healthcare have elaborated on the technical nuances of FL architectures,

models, and datasets as well as higher order issues such as legal contexts, privacy, and ethical

considerations. [Zerka 2020; Pfitzner 2021; Shyu 2021]. In our systematic review, we add to

this existing knowledge by evaluating the current state of FL in biomedical contexts through a

search of studies reporting on ML algorithms developed and validated using a FL framework

specifically for biomedical data. Several major themes emerged. First, computer vision applica-

tions were the predominant use case. Second, most were international collaborations exclu-

sively in developed countries. Third, there was overall a lack of discussion or consideration for

actual or potential bias in the study data. Fourth, only approximately half the studies included

or referenced code and/or a tool for externally validating their results. Fifth, only one study

reported the use of an interoperability framework with respect to data curation. [15] Nonethe-

less, this approach has great potential, as it allows development of models at multiple sites and

protects privacy.

Computer vision

Early adoption of FL approaches has been led by Radiology, Radiation Oncology, and Medical

Oncology (n = 7, 53.8%). These clinical specialties share a common data medium in the form

of medical imagery (e.g., medical imaging, pathology slides) which are readily analyzed

through computer vision techniques. [22] The propensity for use of computer vision in FL

might be influenced by the ease and standardization of image data pre-processing techniques

that can be uniformly deployed across participating nodes. Data pre-processing techniques

applied to images (e.g., resizing, rescaling, flipping, normalization) before modeling do not

require exploration of the whole image data lake, though different modalities or medical device

brands still require thoughtful protocol design. For example, bias in image data might arise

with the use of different capturing devices.

Structured vs. unstructured data

Structured data is generally defined as organized or searchable data consisting of numbers and

values. Unstructured data types exist in either a native format or no pre-defined format such is

the case with images, video, or audio. Studies comprising structured data were relatively lim-

ited in this review. Structured data in a biomedical context, such as the fields found in
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electronic health records (EHRs), require exploratory data analysis and careful coordination

between the participating institutions prior to beginning model training. The crux of this issue

is that different organizations may capture information in different ways or may have varying

definitions for the same term. For instance, in critical care medicine there exist different vali-

dation methods for categorizing and defining ‘sepsis.’ One hospital may use qSOFA to define

sepsis while another uses SIRS criteria. [23] This is a well-recognized challenge in healthcare

information technology, and efforts are underway to standardize how organizations capture

information so that we can better collaborate on a national and international scale. [24] Recent

governmental approaches such as the European Commission aims to create a ‘European Data

Space’ (recent updates available at https://ec.europa.eu/health/ehealth/dataspace_en) are

attempting to promote a better exchange and access to different types of health data (EHRs,

genomics data, etc.) for Europe-wide healthcare delivery, research, and health policy develop-

ment. This represents an enormous effort that requires technical and semantic interoperability

Table 4. Federated learning approach, topologies, and reproducibility of included studies. Workflow, topologies

and computing plan classification adapted from Rieke et al. [1].

Citation Federated

Learning

Workflow[1]

Federated

Learning

Topology[1]

Computing Plan

for Nodes[1]

Code

Provided

(e.g., GitHub

repository)

Containers or

Interface/Platform

Available for External

Validation (e.g.,

Docker container)

Bogowicz

et al., (2020)

[10]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Not Reported Not Reported

Deist et al.,

(2020) [11]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Yes Not Reported

Timo M.

Deist et al.,

(2017) [12]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Not Reported Not Reported

Huang et al.,

(2019) [9]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Not Reported Not Reported

Jochems

et al, (2017)

[13]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Yes Not Reported

Jochems

et al. (2016)

[14]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Not Reported Not Reported

Li J et al.,

(2020) [15]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Not Reported Not Reported

Li X et al.,

(2020) [16]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Yes Not Reported

Remedios

et al., (2019)

[17]

(1) Peer-to-Peer

(Cyclical Weight

Transfer)

(1) Decentralized

(Cyclical Weight

Transfer)

(1) Sequential

(Cyclical Weight

Transfer)

Yes Not Reported

Remedios

et al., (2020)

[18]

(1) Peer-to-Peer

(Cyclical Weight

Transfer)

(1) Decentralized

(Cyclical Weight

Transfer)

(1) Sequential

(Cyclical Weight

Transfer)

Yes Not Reported

Sheller et al.,

(2020) [19]

(2) Peer-to-peer,

Aggregation

server

(2) Decentralized,

Centralized

(1) Sequential

(Cyclical Weight

Transfer),

Aggregation server

Yes Yes

Tian, et al.,

(2020) [20]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Not Reported Not Reported

Xu, et al.,

(2020) [21]

(1) Aggregation

Server

(1) Centralized (1) Aggregation

Server

Yes Not Reported

https://doi.org/10.1371/journal.pdig.0000033.t004
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between the different infrastructures and IT systems among their member states. Even with

standardized fields and definitions, researchers will still need to contend with the accuracy of

the data captured. Discrete fields may encourage more standardized responses, but oftentimes

the richest EHR data is found in free-text fields that are prone to error and addenda.

Bias–potential or actual

Success of FL is predicated on assumptions of consistent data curation across the participating

nodes. Given that the data is not pooled, FL loses the opportunity to expand the number of

rare events if the modeling is performed in siloes and only the meta-model is shared across

institutions. Algorithmic bias may be harder to detect if each team only sees its own data.

Given how challenging it is to detect and fix algorithmic bias in models trained on pooled

data, it would likely be even more difficult to perform this crucial step when learning is distrib-

uted and de-centralized. This is not to say that FL has little role in healthcare. For certain

machine learning projects, namely those that involve medical imaging, FL has demonstrated

valuable contribution because of standard data formats and relative ease of the requisite data

curation prior to modeling. However, modeling that involves the use of electronic health rec-

ords from institutions with different information systems and with heterogeneous clinical

practice patterns will pose a considerable challenge in data curation, especially if done in siloes.

The collaboration established by the investigators behind the proposal, and their expertise, is

best leveraged by creating a de-identified multi-institution dataset from a diverse population

that is shared with the research community.

Another potential source of bias lies in the source of the data. For example, bias due to sam-

ple size for sensitive attributes such as age or race. Dataset biases in the form of prejudice,

underestimation, and negative legacy, which have been studied and identified in centralized

federated learning. FL has been lauded for its potential to create larger datasets of underrepre-

sented diseases and bring algorithms to hospitals with fewer resources. [1,25] However, all the

studies included in this review sourced data from institutions within developed countries. As

the data for the studies were not made available, it is unknown if these datasets incorporate

underrepresented cases or patients. Most FL frameworks use some form of fusion algorithms

to aggregate algorithm weights from the models of partner institutions which may induce bias

depending on whether the aggregation function performs an equal or weighted average. In

such scenarios FL algorithms may weigh higher the contributions from populations with more

data which in turn amplifies effects of over-/under-representing specific groups in a dataset.

Deploying ML algorithms without a bias mitigation strategy risks perpetuating equity in

healthcare delivery. [26,27]

Reproducibility

Prior work has shown that data or code accessibility for healthcare has been limited compared

to other industries. [28] Our review observed that about only half of the included studies fol-

lowed the principles of reproducibility in either making their data publicly accessible and/or

providing access to code or containers at time of publication. Limited access to data and/or

code prevents external validation. Consequently, innovative, and potentially transformative

models are less likely to be adopted. As of the writing of this review, there are several venues to

facilitate external validation sharing through code repositories (e.g., ‘GitHub’) or operating

system virtualization solutions (e.g., containers) to test models on local data. There is some

irony in the observation that some of the reviewed FL implementations lack reproducibility.

Going forward, it will be important for author teams to consider making metadata, code, and

models available, although there are issues with making healthcare data publicly available.
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Fairness

As the quality and quantity of the data, as well as the local resources vary among the FL partici-

pating institutions, their contributions to the final FL model can also vary. This leads to unde-

sirable risks and biases which strongly affect FL outcomes. In cases where FL incentive

mechanisms deployed, this may also affect the benefits that participating institution acquire

from the data federations they join. For example, the final federated model should not favor

institutions that respond more expeditiously during the training process. In such situations,

fairness evaluation at different stages of these FL models such as selection of participating insti-

tutions, model optimization and incentive distribution, becomes important. Fairness is a more

recent research direction in FL and is still in its early stages. Some popular fairness metrics

including statistical parity difference, equal opportunity odds, average odds difference and dis-

parate impact which can be considered by investigators while adopting the FL mechanism.

Interoperability

Interoperability is particularly relevant to FL. Inhomogeneous data distribution poses a chal-

lenge to FL efforts as similarly structured and distributed data are often assumed. Despite the

use of diverse datasets and the use of parameter in the majority of the papers reviewed, only

one publication explicitly identified the use of an interoperability standard, the Observational

Medical Outcomes Partnership (OMOP) Common Data Model (CDM), as part of their

approach. [15] There are several existing initiatives aiming to make data curation and aggrega-

tion as efficient as possible including Fast Healthcare Interoperability Resources (FHIR1),

Health Level Seven (HL71) standards which serve to facilitate movement of healthcare data.

FL using data from different institutions will be catalyzed by adopting such interoperability

standards.

Federated learning & privacy

While FL allows ML model building without raw data collection from multiple institutions,

the possibility for an adversary to learn about or memorize sensitive user data by simply tweak-

ing the input datasets and probing the output of the algorithm exists [29,30]. Differential pri-

vacy (DP) is a new notion that is tailored to such federated settings capable of providing a

quantifiable measure of data anonymization [31]. Several techniques are being explored such

as distributed stochastic gradient descent, local and meta differential privacy methods [32,33];

which essentially adds noise to preserve the user-data privacy during the federated training.

While there is much focus on privacy in FL, note that there is a crucial tradeoff between the

convergence of the ML models during training and privacy protection levels as better conver-

gence comes with lower privacy. Further research on privacy-preserving FL architectures with

different tradeoff requirements on convergence performance and privacy levels is therefore

much desirable.

Review limitations

There are several limitations to our study. Our search strategy includes papers that were pub-

lished up through 2020. Since that time new additions to the published literature that would

have otherwise been included in the review. We also concede that we were unable to compare

all possible features and characteristics between papers in part owing to the complexity of the

content as well as space limitations of the publication. To this end, part of our critique was on

the reproducibility of the published studies. This was assessed at the time of publication, and it
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is possible that the investigators published data, code and/or a repository in the period after

publication.

Conclusion

In summary, we found that federated learning has been successfully piloted using international

teams spanning a variety of use cases within clinical domains relevant to computer vision and

oncology as forerunners. Based on the trends in reported studies, there are opportunities to

improve and build upon reproducibility and the potential for bias.
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