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Abstract

We performed a prospective, longitudinal investigation to determine whether mag-
netic resonance imaging (MRI)-based radiomic features from thigh intramuscular fat
(IMF) can predict future hamstring strain injury (HSI). Further, we sought to determine
if muscle imbalance or injury profile along with radiomics could increase prediction
accuracy. This study analyzed IDEAL MRI scans of 93 professional American football
players (9 injured, 84 uninjured). Radiomic features relating to textural patterns of IMF
were extracted from bilateral hamstring and quadriceps muscles. Feature selection
identified non-correlated features that were more strongly associated with future HSI.
The K-nearest neighbor classifier was employed to assess the performance of the
following models: radiomics of hamstring IMF (Mf’) and quadriceps IMF (Mf’), muscle
imbalance features (M,) and injury profile features (M), as also integrated models

for M, M, and M; (M, ), and integrated M_and M, (M ,,) where M, ¢ { Mf’ ,M?} .
Mﬁ+b+i (area under the curve (AUC)=0.79; 95%C]I:0.78-0.79) significantly outper-
formed M2, . (AUC=0.69; 95% CI: 0.68-0.70), Mﬁb (AUC=0.74; 95% CI: 0.73—

r+b-+i
0.75), M’ (AUC=0.68; 95% Cl: 0.67-0.69), M, (AUC=0.68; 95% Cl: 0.68-0.69) as
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com/Emory-Empathathetic-Al-for-Health-Inst/
Hamstring-Injury-Detection.git.
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well as M, (AUC=0.64; 95% CI: 0.63-0.65). The results indicate that future HSI can
be predicted when incorporating radiomics features from hamstrings IMF with muscle
imbalance and injury profile data. These novel findings merit further validation in a
larger population, one that includes populations of injured and uninjured participants, a
limitation acknowledged in current study. This approach could inform future strategies
to identify factors to mitigate the risk of HSI not just in elite male athletes but also in
athletes of both sexes and any level of participation.

Author summary

We explored whether MRI scans of thigh muscles, specifically looking at fat
within the muscles, known as intramuscular fat, could help us predict future
hamstring injuries in professional football players. We focused on detailed
texture features of the scans, called radiomic patterns, found in the hamstrings
and quadriceps, and combined this data with information about past injuries and
muscle imbalances. We analyzed MRI scans from 93 players and used machine
learning models to determine which combinations of data were most accurate.
We found that radiomic features from the hamstrings, when combined with
muscle imbalance and injury history, gave us the best prediction of which players
were at risk of future injury. Our findings suggest that this information could be
used to identify players at higher risk of hamstring injuries before they occur. This
may lead to more personalized injury prevention strategies, though we believe
larger studies are needed to confirm and expand on these results.

Introduction

Hamstring strain injury (HSI) is most frequently associated with sports requiring
sprinting or sudden starts and stops, including soccer, football, basketball, and tennis.
HSI constitutes 12%—15% of all injuries in different sports [1]. While a high percent-
age of players who sustain HSI can return to sport, some never achieve their prior
level of function or performance or performance level status [2]. Despite extensive
research on HSI prevention and management, HSIs continue to cause significant
time lost from athletic competition. Time lost in return to play can extend from weeks
to months and is correlated with injury severity [1,3]. Injury severity is also correlated
with reinjury rates, which range from 12%—-41% and result in negative outcomes for
both the athlete’s athletic career and quality of life [1].

HSI is common at all levels of sport, although the effects are arguably most
impactful at the professional level. In professional soccer, HSI averages 3 per
team and accounts for greater than 8 missed matches; with an economic impact of
€11,373,179 (12,433,955 USD) [4]. In the American National Football League (NFL)
alone, HSI is the second most frequent preseason injury, occurring at a rate of 1.79
per 1000 athlete exposures during practices and 4.07 per 1000 athlete exposures in
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games [5]. Between 1998-2007, the NFL reported 2.2 HSIs per 1000 athlete expo-
sures in training camps [5]. These injuries burden teams with substantial financial
and performance loss, highlighting the need for predictive modeling to help reduce
potential occurrences.

Following HSI, a combination of factors, including traumatic and chronic injuries,
often results in increased levels of intramuscular fat (IMF) [6], which encompasses
multiple types of adipose tissues present below the muscle fascia. During the com-
plex healing process of the injuries, the skeletal muscle fibers are often replaced by
fatty and fibrous tissues [7]. This replacement, known as fatty infiltration, results in
disruption of the tissue’s function, as the IMF compromises the contractile compo-
nents of skeletal muscle. Additionally, these muscular injuries can also result in tissue
scarring and fibrous tissue replacement of skeletal muscle fibers. The replacement
of these muscle fibers and infiltration of fibrous and fatty tissues causes significant
decreases in muscle flexibility and contractile function [8,9] leading to an increased
risk of subsequent injuries. However, it should be noted that musculoskeletal injuries
are not the only factors leading to increased levels of intramuscular fat (IMF), includ-
ing genetic predispositions genetic predispositions [10], hormonal imbalance [10] or
metabolic disorders like obesity [11,12] all which can alter relative IMF.

Decreased contractile function of the hamstrings following injury creates an
imbalance in hamstring muscle strength, a significant risk factor in HSI injury [13].
This imbalance has traditionally been measured in two ways: bilateral hamstring
strength asymmetry and hamstring-to-quadriceps (HQ) strength ratio. However,
hamstring muscle strength imbalance does not require traumatic injury to be present
and increases the risk of HSI. While several studies have aimed to support ham-
string strength imbalance as a risk factor for HSI, not all studies agree, indicating that
measuring this imbalance is only a partial contributor to future HSI [14—16]. Another
potential muscle imbalance that increases the risk of HSI is the difference in muscle
size between the hamstrings and quadricep muscles, due to its correlation with mus-
cle strength [17].

The clinical Hamstring Outcome Score (HaOS) [18] is a tool to identify prior
hamstring injuries and quantify a qualitative assessment of the perceived severity of
previous hamstring injuries. HaOS characterizes soreness, pain, activities (sports),
and quality of life, and is analogous to commonly used scores such as Hip And Groin
Outcome Score (HAGOS) [19], Foot and Ankle Outcome Scores (FAOS) [20], and
Knee Osteoarthritis Outcome Score (KOOS) [21]. A prior study suggested that HaOS
outcomes are associated with previous and future HSI and can stratify players at
risk of new injuries when combined with HSI history [18]. Prior lower extremity injury
symptoms may provide additive information potentially vital to identify risk for future
injury or even assess HSI severity that would inform safe return to sport.

The imaging modalities, such as ultrasound and MRI, are often used to evaluate
the nature and severity of the injury. Ultrasound has high sensitivity to diagnose these
injuries, but only when the assessment is performed immediately following injury and

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0001144 December 23, 2025

3/19




PLON. Digital Health

conducted by a skilled technician [22]. Thus, MRI is traditionally the preferred diagnostic tool to evaluate deeper muscle
injuries while also discriminating between new injuries or scars from prior injury [3,23]. However, quantitative-based MR
techniques (T2-weighted imaging, diffusion-weighted imaging) have shown promise for differentiating muscle microstruc-
ture differences in athletes acutely following HSI [24], and have the unique potential to estimate timelines for return-to-
sport following HSI [25]. However, current approaches have not robustly identified MR-derived signatures at the time of
first injury or upon return to play that predict re-injury risk. Thus, its use in predicting the risk of future HSI remains uncer-
tain. Research is still underway to predict the risk of future HSI. An exhaustive review [26] concluded that there is a lack of
available evidence about the association of MRI-derived signatures at the time of injury or return-to-play to predict re-
injury risk. However, moderate evidence suggests that intratendinous injuries found in MRI scans at the time of injury are
associated with a high re-injury risk [26]. High levels of IMF are indicative of serious injury [27]. During HSI, high levels of
IMF are retained in muscles [6] due to fatty infiltration, resulting in disruption of muscle tissue function [28].

MRI radiomics provides the potential to provide further insights into these MRI-derived signatures. Radiomics is a term
that refers to the computational extraction of multiple quantitative features from medical images (computed tomography
[29], MRI [30]). These features could describe texture, shape, intensity, statistical distribution, and other attributes of
diseased regions, offering valuable insights to inform diagnosis, treatment planning, prognosis, and personalized medi-
cine [31]. A recent study used radiomics of multiparametric MRI to identify HSI and return-to-play duration using machine
learning [25]. However, the study used MRI scans at the time of injury (s 7 days from injury) on a relatively small cohort of
32 players. Furthermore, only one radiomics-based study exists in the literature, and its feature analysis was limited to the
hamstring muscles alone. This narrow focus may not adequately capture the comprehensive functional status of the lower
extremity that is relevant to future hamstring strain injury (HSI) risk [25].

In summary, previous studies [18,25] have not included prospective scans and limited the inclusion of radiomics of
quadriceps muscles as well as other variables to predict future HSI. In this study, we performed a prospective longitudinal
investigation to determine whether machine learning informed MRI-based radiomic features from hamstring and quadri-
ceps IMF can predict future HSI. In addition, we sought to determine if muscle imbalance (HQ ratio of cross-sectional area
(CSA) of muscles and torque generation) or injury profile (self-reported symptoms and injury history) could predict future
HSI. Finally, we sought to isolate the top-performing model (s) via the exploration of different combinations of radiomics
features, muscle imbalance, and injury profiles. To the best of our knowledge, this study is novel in its attempt to integrate
radiomics with muscle imbalance and injury profile information.

The objectives of this study were to (a) evaluate the association of radiomics from hamstring and quadriceps muscle’s
intramuscular fat with the occurrence of future HSI using prospective MRI-derived metrics; (b) to investigate whether the
integration of injury profile variables, namely HaOS and prior HSI, muscle morphology and strength imbalance, with radio-
mics, increased the ability to predict future HSI.

Materials and methods

The radiomics methodology included data acquisition, preprocessing, formation of a region of interest, radiomics feature
extraction, feature selection, and cross-validation using the KNN classifier (Fig 1).

Study population

The current investigation included a prospective cohort of professional American football players. The investigation was
approved by the Institutional Review Board at Emory University (STUDY00003840), with data collection taking place at
Emory Sports Performance and Research Center (SPARC)and all participants provided written informed consent prior to
participation. All procedures were performed in accordance with the Declaration of Helsinki and relevant guidelines. Clin-
ical trial number: not applicable. A total of 112 athletes enrolled in this study (mean age: 25.35+2.37 years; mean height:
183.16+£7.21cm; mean mass: 96.58 + 19.31kg). Inclusion criteria were male professional athletes actively engaged in
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Fig 1. Block diagram for the system workflow. A) IDEAL MRI scans of right and left thighs, scanned from the knee. B) Scans were normalized

by removing the bias field using low-pass filtering. C) The quadriceps muscle and hamstring muscle’s region of interest (ROI) was delineated using a
semi-automated algorithm. D) Radiomics features from the ROIs were extracted at the voxel level. Muscle imbalance variables, the HQ ratio for CSA
and the HQ ratio for torque, were computed. Injury profile variables, namely prior injury history and total Hamstring Outcome Score (HaOS) score, were
used for model construction. E) Feature selection was performed to identify non-correlated features that were more strongly associated with future HSI.
F) Model training and evaluation using 250 iterations of three-fold cross-validation on K-nearest neighbor classifier. Results were computed using area
under the curve (AUC), its confidence interval, sensitivity, specificity, and accuracy.

https://doi.org/10.1371/journal.pdig.0001144.9g001

the competitive season, 18 years or older, able to provide written consent, and no contraindications to MRI. Athletes not
medically cleared to participate in sport, were unable to provide written consent, or had contraindications to MRI were
excluded. Of the 112 total enrolled athletes, 19 were excluded from the present analyses for the following reasons: did not
complete MR testing (n=7), muscle masks not quality checked prior to data query (n=6; data query performed in Decem-
ber of 2023), poor muscle mask data quality (n=3), missing one stack of IDEAL sequence data (see below for MR acqui-
sition/stacking; n=2), and HaOS data not collected (n=1), resulting in 93 participants with complete datasets (i.e., had
useable MRI/masks, muscle imbalance outcomes, and injury profiling data). Three stacks of IDEAL scans were collected,
starting approximately from the iliac crest, and ending mid-patella. The three stacks shared overlapping slices and were
bound into one image. Imaging parameters for individual IDEAL scans were: field of view =450 x 450 x 200 mm; resolu-
tion=1.76 x1.76 m; slice thickness =5mm; spacing=0mm; acquisition matrix =256 x 256; reconstructed matrix=512x512;
slices=40; TR/TE=8.54ms/3.94 ms. The IDEAL sequence of MRI was used because it separates the water and fat
signals within the body, better facilitating visualization and differentiation of tissue’s fat levels from tissue water in muscles
and, organs. Of the 93 athletes included in the final analysis, nine participants (prior HSI=5) developed an in-season HSI
[referred to as injured (HS")], and 84 participants (prior HSI=17) had no in-season HSI [referred to as uninjured (HS)].
Table 1 presents summary statistics of both groups.

Preprocessing

MRI images are often prone to nonuniformity in intensities that vary with pulse sequence, field strength, and body tis-
sues [32]. These intensity nonuniformities can affect image interpretation and radiomic feature extraction [33]. Data were
preprocessed by an established bias field correction method [32] which involves performing a low-pass Gaussian filtering.
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Table 1. Sample characteristics.

Uninjured (HS") Injured (HS*) p-value
Count (n) 84 9
Age (u*0), years 25.34+2.38 23.77+2.16 0.0739
Weight (u*0), kg 95.44+18.00 89.10+13.41 0.3390
Height (M£c), cm 183.4%7.3 182.2+6.9 0.5986
Prior injury, yes | no 17 yes | 67 no 5yes |4 no
Injured limb side -- 3 left | 6 right
HaOos, (p*o) 94.12+6.70 95.78+2.43 0.7403
CSA HM (u*o), 16229.01+2384.29 15392.88 +2545.90 0.1317
CSA QM (pto), 23696.66 +3165.11 23721.55+4047.23 0.9480
Ao (Hto), 0.68+0.07 0.65+0.04 0.4056
T.q(uto), 0.49+0.10 0.39+0.09 0.0060
Right Quad Torque (p o) 142.24+27.95 145.50+26.21 0.8250
Left Quad Torque(uto) 137.47+27.21 144.25+28.40 0.5200
Right Hamstring Torque (u * o) 69.49+19.02 54.07+16.09 0.0214
Left Hamstring Torque(u * o) 66.93+18.45 56.64+11.67 0.0419

Note: HM-Hamstring muscle, QM-Quadriceps muscle, p-mean, o-standard deviation, HaOS-Hamstring Outcome Score, CSA- Cross section area, T, , —
torque. P-value stated using Wilcoxon ranksum test.

https://doi.org/10.1371/journal.pdig.0001144.t001

The Gaussian filter provides an estimation of the bias field, which is then subtracted from the original MRI scans, resulting
in more uniform image intensity distributions [33].

Region of interest (ROI)

Hamstrings and quadriceps muscle ROIs were delineated by a semi-automated segmentation technique using the IDEAL
water-contrast images [34]. This method requires manual segmentation of at least two slices for each muscle (most
proximal and most distal ends) which are propagated using a combination of diffeomorphic registrations to create a full 3D
muscle mask. Though two slices are required, adding more slices improves the propagation robustness and reduces the
volume error with 9 slices showing robust segmentation [35]. Nine slices were manually segmented throughout the four
hamstring muscles (biceps femoris short and long heads, semitendinosus, and semimembranosus) and three quadriceps
muscles (vastus lateralis, vastus medialis, and rectus femoris) to inform semi-automated segmentation resulting in a full
muscle mask for each muscle. Resultant muscle masks were checked for accuracy and edited if needed by an expert
(D.R.S). The 3D volume mask of the hamstring and quadriceps muscles are illustrated in the S1 and S2 Files.

Radiomic feature extraction

Radiomic features were extracted in 3D from the IDEAL fat-contrast images using the masks of corresponding muscle
groups generated from the IDEAL water-contrast images with the Pyradiomics library [36]. Features derived corresponded
to shape, first-order statistics, gray-level co-occurrence matrix, gray-level size zone matrix, gray-level run length matrix,
and neighboring gray-tone difference matrix descriptors. For each ROl we obtained a 107-dimensional feature vector.
Detailed descriptions of radiomics features are summarized in S3 File.

Computation of muscle imbalance variables

Each muscle’s CSA was calculated at the widest part of the muscle for the individual hamstring and quadriceps muscles
and then combined to calculate a total CSA for the hamstring and quadricep muscle groups. CSA of the hamstring, CSA
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of the quadriceps, and the ratio of HQ CSA averaged across limbs, referred to as An.q, were used for analysis. To assess
the overall thigh muscle function and torque production, each participant completed an isokinetic dynamometer testing
protocol (Biodex System 4 Pro, Biodex Medical Systems Inc., Shirley, NY). Each participant performed one set of 10
repetitions of isokinetic knee extension and flexion (concentric/concentric) at 180°/s from a seated position at a 90° hip
angle. The torque data were low-pass filtered at 100Hz. Discrete kinetic variables were exported from the dynamometer
software. The HQ peak torque ratio, referred as Ty.qwas calculated as the absolute peak knee flexion torque across all
repetitions divided by the absolute knee extension torque across all repetitions and then averaged across limbs.

Injury profile variables

All participants completed the HaOS [37] survey, which consists of two parts. Part 1 asks about hamstring injury history
(yes/no) and if yes, time since most recent injury and duration of injury. Part 2 consists of nineteen questions clustered
within 45 dimensions relative to current levels of soreness, pain, function/activity, and quality of life assessment within the
past week. Each question is scored from 0 to 4, from no complaints to maximum complaints, with each side assessed
individually. The total HaOS composite score was used.

Feature selection and classification

Features were z-normalized [38] resulting in zero mean and unit variance throughout all training samples. Non-correlated
features were identified that were strongly associated with the future HSI using the Spearman correlation coefficient of 0.6.
Minimum redundancy and maximum relevance [39] was used to select the best five features after the removal of cor-
related features. Multiple models were constructed corresponding to a) radiomics features: hamstring IMF(Mﬁ), quadriceps
IMF (M?), combined hamstring and quadriceps IMF(M’,**Q); b) muscle imbalance features: HQ ratio of CSA (An.q), HQ
ratio of torque (Ty.q), combined muscle imbalance features (M, ); c) combined radiomics and muscle imbalance features
(Mﬁb , Mfﬂrb , Mﬂj)o); d) injury profile features: previous HSI (P), HaOS and combined previous HSI and HaOS score (M);
e) combined radiomics and injury profile features MﬁH. , MrQH , M’rj:;Q ; f) combined radiomics, muscle imbalance, and injury
profile features MQ’FH, , MSH,H , Mﬁfﬁr?. Results were computed with five classifiers, namely K-nearest neighbor (KNN),
Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM) (with radial basis function(rbf) and linear
kernel). The feature vectors were concatenated when integrating different models. Optimal features in post-classification

analysis were identified as those with a>20% maximum frequency of occurrence in 250 x three-fold cross-validation.

Statistical analysis

Classification models were trained and tested using 250 iterations of three-fold cross-validation. Holdout testing could

not be performed due to the small event rate. For each iteration, participant indices for the fold were selected randomly

in the beginning and were fixed throughout the study. Participants within a fold were not repeated in other folds. Samples
from the minority class were repeated to balance the data. Sensitivity, specificity, accuracy, area under the curve (AUC),
and 95% confidence interval (Cl) of AUC were computed to assess cross-validation performance. Sensitivity refers to the
percentage of correctly classified injured participants; specificity refers to the percentage of correctly classified uninjured
participants. Python’s Scikit library was used for implementation [40]. Wilcoxon rank-sum test was used to determine
statistically significant differences in the performance of the two models using the statannotation library [41]. Statistical
improvement was noted if the mean AUC of model A was more than model B and the AUC of cross-validation for model A
and B were significantly different using the Wilcoxon rank-sum test.

Unsupervised clustering analysis

An unsupervised analysis was performed to assess the efficacy of radiomics features before and after combination with
injury profile and muscle imbalance features. A random training set of 5 injured and 69 uninjured participants and a test
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set, comprising 4 injured and 15 uninjured participants was formed. The training set was used to find uncorrelated fea-
tures closely associated with future HSI. Uniform Manifold Approximation and Projection (UMAP) embeddings of selected
features in the test set were plotted for models M!', M’rib, M’,ib +i» respectively. In addition, we also performed a hierarchi-
cal clustering on the test set using an average linkage and Euclidean distance.

Results
Sample characteristics

This study included 84 HS™ participants (prior HSI=17) and 9 HS* participants (prior HS1=5). Table 1 presents summary
statistics of both groups. Among all the characteristics, Ty.q, left hamstring torque and right hamstring torque significantly
differed between the groups.

Future injury prediction using radiomics features

We first assessed the contribution of radiomics features from M{and M@ models to predict future injury. Mean results are
shown in Table 2. The highest AUC of 0.67 (0.67—0.69) was obtained for M!, with sensitivity of 63.87% and specificity of
65.54%. Results for MH were significantly better than for M@ (Fig 2A). In the MH+Q model, the resulting AUC significantly
differ from M@ and M (Fig 2A). Fig 3A shows the ROC curve for the individual muscles radiomics model and the different
integrated models presented later. Fig 3B shows violin plots of optimal features in M!. The features selected were dominant
from shape class, including flatness, maximum 2D diameter column, maximum 2D diameter row, maximum 3D diame-

ter, minor axis length and sphericity. Other optimal features were 10" percentile from first-order features, gray-level non-
uniformity from the gray-level dependence matrix and small area emphasis from gray level size zone matrix. Fig 4 shows
MRI volume, hamstring mask, and corresponding feature map overlaid on MRI volume for two uninjured and two injured
participants. The Injured participants had a low scale of feature values on the upper regions of hamstring muscles compared
to uninjured participants. The 3D volume of the feature map for the uninjured and injured participants is shown in the S4 and
S5 Files, respectively. In addition, we performed an uninjured vs injured limb identification using M? and M models. Out of
9 injured participants, there were 3 with left limb injured and 6 with right limb injured. A similar cross validation paradigm was
followed with 250 % 3 fold. The results using both the models are illustrated below in Table 3. Sensitivity refers to percentage
of correctly identified left leg injured and specificity refers to percentage of correctly identified right leg injured subjects.

Table 2. Performance evaluation of radiomics, muscle imbalance, and injury profile variables, as well as their integration in terms of accuracy,
sensitivity, specificity, AUC, and 95% CI.

Model Group Model Sensitivity (%) | Specificity (%) | Accuracy (%) AUC 95% CI (AUC)
Radiomics features m 63.87 65.54 64.72 0.6789 0.67-0.69
MQ 48.00 59.47 53.84 0.5523 0.54-0.56
Injury profile features M; 66.31 56.31 61.22 0.6702 0.66-0.68
Radiomics and injury profile features MZ,- 68.13 68.03 68.08 0.7186 0.71-0.72
MC, 54.71 63.06 58.96 0.5987 0.59-0.61
Muscle imbalance features Mp 60.58 60.38 60.48 0.6419 0.63-0.65
Radiomics and M¢’+b 71.1 64.61 67.8 0.7358 0.73-0.75
muscle imbalance features M, 66.13 64.84 65.47 0.6981 0.69-0.71
Radiomics, muscle imbalance, and injury profile M7+b+i 78.44 67.89 73.07 0.7879 0.78-0.80
features M, 63.60 67.61 65.64 0.6932 0.68-0.70

Note: Highest performing model within each model group has been highlighted in bold.

https://doi.org/10.1371/journal.pdig.0001144.t002
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*hEX: p <= 1.00e-04

Fig 2. Box plot of the performance metrics (sensitivity, specificity and AUC) and their pairwise statistical comparison for different model

using Wilcoxon test. A) M2, MY, M9 B) M2, MF M2, MF, . M2, C) M2, M, M. M3, D) M, . M2, .. MO, ML, EYMEL, . M2, . MO, ME .

https://doi.org/10.1371/journal.pdig.0001144.9002
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https://doi.org/10.1371/journal.pdig.0001144.9g003

Future injury prediction using prospective muscle imbalance features

An.qand Ty.qwere both associated with HSI prediction (AUC=0.65, 95% CI: 0.64-0.66; AUC=0.79, 95% CI: 0.79-0.81;
respectively). Although Th.q performed better than Ax.q when combining the variables into M,  the model obtained
(AUC=0.64; 95% CI: 0.63-0.65). Results for individual variables are listed in the S6 File (Table 1). The confusion matrix
for the best performing model in Table 2 are shown in Fig A in S6 File. The results of top performing model with other clas-
sifiers, LR, RF, and SVM (rbf) and SVM (linear) are listed in Table 2 in Appendix S6 File under section A. It was observed
that performance of linear classifiers like KNN, LR and SVM (linear) was better than RF and SVM (rbf kernel). Among
other radiomics based studies using MRI, study in [42] also used multiple classifier, but SVM stood out. Authors in [25]
also used SVM classifier to predict return-to-sport and perform uninjured vs injured limb identification. Upon analysis with
different classifiers, we observed KNN consistently provided a better balance between sensitivity and specificity in most of
the models. Hence, we preferred it as the final classifier.

Future injury prediction using combined radiomics and muscle imbalance features

The M"’ ", , model yielded an AUC of 0.74 (0.73-0.75) while M , improved the AUC to 0.70 (0.69-0.71) (Table 2). These
improvements were significant compared to the individual radlomics model associated with each muscle (Fig 2B). The
Mﬁ:g@ model (S6 File) failed to perform on par with respect to M” ", » @lone. The commonly selected radiomics feature in
M, and M}’ were the same, as shown in Fig 3B.
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Fig 4. Visualization of one of the frequently selected features fromM!, gray-level non-uniformity computed from the gray-level dependence matrix.
First row represents MRI images, second row shows hamstring mask overlaid on MRI images, and third row shows feature map. Fourth row represents
zoomed representation of feature map for bounded regions in black square. Columns A and B represent two injured participants; columns C and D rep-
resent two uninjured participants. Regions outlined in black box show differences in texture feature intensity between uninjured and injured participants.
Intensity is lower in injured compared to uninjured participants.

https://doi.org/10.1371/journal.pdig.0001144.9004

Table 3. Performance evaluation of radiomics model for identification of injured vs uninjured limb.

Sensitivity (%) Specificity (%) Accuracy (%) AUC 95% CI
M:'l 97.2 25 61.1 0.611 0.60-0.62
M? 100 20 60 0.603 0.59-0.61

https://doi.org/10.1371/journal.pdig.0001144.t003

Future injury prediction using injury profile features

M. was evaluated in terms of its association with future HSI, resulting in an AUC of 0.67 (0.66-0.68) with a sensitivity of
66.31% and specificity of 56.31%. However, the classification performance of HaOS alone resulted in an AUC of 0.49
(0.48-0.50), suggesting that HaOS by itself was not associated with HSI, but was bolstered by prior HSI information. The
performance of individual injury profile features is shown in the S6 File, Table 1.

Future injury prediction using combined radiomics and injury profile features

We assessed the contribution of Mfand MQindividually with M; to predict future injury. Table 2 shows the combined results

for each muscle. The highest AUC of 0.72 (0.71-0.72) was obtained for Mﬁr, and it lead to significant increase in both sen-

sitivity and specificity (Fig 2C). ijr,. performed significantly better than M@ with an AUC of 0.60 (0.59-0.61). Frequently

selected radiomics features in M, ; and M! were the same, as shown in Fig 3B.
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Future hamstring strain injury prediction using fusion of radiomics, muscle imbalance, and injury profile features

The M’;_’FbJr, model improved significantly yielding an AUC of 0.79 (0.78—0.80) while the MSerr,. model improved the AUC to
0.69 (0.68-0.70) (Table 2). The improvements were significant for MﬁHW. over previous joint models but Mﬁiw could see

significant improvement only over Mf_’H (Fig 2D, 2E). Fig 3C shows the UMAP embeddings of the complete data for the
three models, namely Mﬂrb, Mﬂerﬂ- and M. The improvement in integrated models, namely Mf_’HJ and Mﬁi-b-‘ri over M is
also observed visually, wherein the injured subjects occupy more clustered space as we add M. and M, to M.

Unsupervised clustering analysis

Fig 5A shows UMAP embeddings of selected features on the test set for each of M/, M. |, Mf, ... The integrated models
(Mﬁb and Mﬁ+b+i) show better separability between 4 injured and 15 uninjured subjects compared to M. Radiomics fea-
tures selected from M corresponded to the shape-based features including elongation, maximum 2D diameter row, minor
axis length, surface volume ratio and texture features such as informational measure of correlation and Inverse Difference
Normalized from the gray-level co-occurrence matrix. Fig 5B shows clustering results for Mﬁ+b+i' In Euclidian space, data

formed two groups corresponding to the uninjured and injured participants.

Discussion

In this study, we established the utility of combining radiomics features along with injury profile features and muscle imbalance
features to predict future HSI. We examined the potential of radiomics features individually, as well as in association with
injury profile and muscle imbalance features, to predict HSI. Model M!' had a higher performance relative to M2 (Fig 3A). The
features selected in M’ (Fig 3B) were used to quantify shape, texture, complexity, and homogeneity. The difference in distri-
bution of these features in the fat-contrast IDEAL images suggests that these prospective MRI scans have discriminative IMF
signatures associated with future injury and are therefore indicative of changes in IMF levels, suggesting that this change is

a potential risk factor for future HSI. We also visualized the the heatmap of gray-level non-uniformity feature computed from
the gray-level dependence matrix in the IMF distribution of hamstring muscle in Fig 4. Gray-level non uniformity captures the

A. B. Average Linkage Clustering

a . & = »
% & A @& o
4. . I
1 . .
zZrrrzzZzZZZPZZZZZZZZZ
Patients

Features

Fig 5. Unsupervised classification performance. A) UMAP embeddings of selected features in holdout test set for the three types of models, M¥,

Mﬁb, Mﬁbﬂ.. Features were selected using a training set. B) Clustermap of same test data using features selected from the training set of Mﬁrbﬂ'

https://doi.org/10.1371/journal.pdig.0001144.9005

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0001144 December 23, 2025 12/19



https://doi.org/10.1371/journal.pdig.0001144.g005

PLON. Digital Health

complexity and variability in the texture of fat distribution of the hamstring muscle. The source for the increased IMF levels in
the hamstring muscles could vary between individuals, as IMF contains multiple types of adipose and fatty tissues including
intramuscular adipose tissue, or fat that has infiltrated in and between muscle fibers, intramyocellular lipids (IMCL), or lig-

uid droplets which are used as a metabolic fuel source during exercise stored within muscle cells, and fatty tissue between
muscle fascicles [43]. As previously discussed, this increase in IMF could be indicative of alteration in tissue composition
and fatty infiltration due to prior traumatic or chronic injury, either direct or indirect. This fatty infiltration results in muscles with
significantly higher stiffness, decreased muscle fiber contractile length, and decreased force production [8] leading to muscle
strength imbalance. These increases are seen further when the IMF is distributed throughout the muscle.

Study by Torres-Velazquez M et al. is the only study to date which used radiomics features from MRI scans of ham-
string muscles to predict return-to-play and identify the injured vs uninjured limb from multiple modalities of MRI [25]. The
combination of radiomics features from all diffusion tensor imaging and T2-weighted images provided the differentiation
between involved and uninvolved limbs with AUC (u+0) of 0.84+0.16 with 14 subjects as left limb injured and 18 subjects
with right limb injured. In our study, we have already computed the performance of radiomics features from hamstring
muscle to identify injured subjects, yielding an AUC of 0.68 (0.67-0.69). The results for identifying the injured limb (Table
3) show that none of the models adequately identify the right leg injured. A higher count of subjects may boost the predic-
tive power of these models.

The confusion matrices shown Fig Aiin S6 File highlight that the number of injured participants misclassified as unin-
jured (referred to here as a false negative (FN) error) consistently decreased when injury profile and muscle imbalance
was added to M. However, only in Mﬁrb, the participants who were uninjured but misclassified as injured (referred to here
as false positive (FP) error) were more than those in M/

However, there are other factors that could affect the predictive effects of the fat signal from the IDEAL MRI scans,
particularly in those who have not suffered HSI or other significant injury to the lower limbs. Two of these factors include
muscle fiber type and activity level, both of which could correct IMF levels, particularly due to IMCL. For instance, IMCL
levels are also subject to change due to activity level, with higher IMCL levels often associated with lower activity, except
when accounting for highly trained athletes, particularly those who participate in anaerobic exercise, due to the athlete’s
paradox [44]. Alternatively, type |, or slow twitch, muscle fibers, of which quadriceps, in particular, have a broad range of
fiber type distribution, ranging from 20% in sprinting athletes to 95% in marathon runners, store significantly higher levels
of IMCL than type I, or fast twitch fibers [45]. However, type Il fibers are believed to be more at risk for traumatic injuries,
such as HSI, due to their explosive nature [46]. It has further been established in the literature that the fat composition of
thigh muscles changes due to pathological conditions such as musculoskeletal disorders and metabolic diseases [47].

Type Il muscle fibers also play a vital role in explosive movements, such as those measured by the dynamometer
and peak torque production measures. Following HSI, within the injured leg, there is muscle loss of both hamstring and
quadriceps muscles, whereas in the uninjured leg only the quadriceps significantly atrophy. From a biomechanical muscle
structure perspective, prior HSI can alter muscle CSA, indicating muscle atrophy, scar tissue formation, or other alter-
ations due to injury and the healing process. Studies using MRI scans show significant muscle volume loss in the quad-
riceps and hamstring muscles after injury [48]. In our study, dominance of shape features from hamstring muscles aligns
with the aforementioned findings.

Another crucial biomechanical muscle parameter is an individual's capacity to generate high peak torques using the
lower extremity musculature. Excessive dynamic lengthening of an activated muscle beyond its optimum has shown a sig-
nificant correlation with future injury risk [16]. The muscle fibers tear upon exceeding maximum length, particularly when
placed under tension. Additionally, poor muscle balance between the quadriceps and hamstrings can result in abnormal
loading mechanics on the muscle fibers and exceed the mechanical limits for the hamstring muscles [49]. The role of the
quadriceps muscles with respect to HSI is debatable. Studies [14,16] have previously demonstrated that a low HQ ratio
of peak torque was significantly associated with the history of HSI while others stated otherwise [16,50]. Misclassification
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analysis of injured participants using M highlighted that participants with prior HSI were relatively less frequently misclas-
sified compared to those with no prior HSI. This suggests that subjects with prior HSI appear at a higher risk of future HSI.
Subjects with prior HSI might have residual scars or signatures captured by the radiomics features. Study in [51] demon-
strated that after injury the muscle goes through a regenerative process with initial scar formation. Further, surrounding
muscle undergoes significant atrophy, with an alteration in the viscoelastic properties of the muscle that increases the risk
for reinjury [51]. Thus, prior HSI combined with the tendency for the uninjured hamstring muscles to experience atrophy
may partially explain the predictive power of our hamstring model.

The potential of MRl measurements to predict the occurrence/recurrence of HSI has demonstrated mixed results in
previous studies. Parameters such as maximal percentage transverse area of injury and volume of injury (measures the
injury size) correlate with time to return to play and provide the foundation to investigate whether HSI size is related to
injury recurrence [51]. Anthropometric measurements, convalescent interval, clinical features, and MRl measurement of
an initial HSI also have been evaluated to identify parameters predictive of injury recurrence [51]. Among these, only MRI
measurements predict injury recurrence in the subsequent season. Prospective muscle functional MRI scans in con-
junction with post-exercise scans have been used to predict HSI and injury recurrence [52]. Changes in signal intensity
between scans can detect differences in metabolic characteristics of participants with and without recurrent injuries as well
as participants experiencing their first HSI. Our study is unique in that it is the first to identify future HSI using pre-injury
MRI scans with a machine learning-informed radiomics approach.

A prior study suggested that HaOS is associated with previous and future HSI and can stratify players at risk of new
injuries when combined with HSI history [18]. Our findings using HaOS alone as an associative factor are not in line with
other reports [11] (also confirmed by statistical test in Table 1), yet both studies agree that consolidation of prior HSI with
HaOS is a better associative factor. Misclassification analysis of injured participants using M; highlighted that participants
without a history of prior HSI were more frequently misclassified for their in-season injury risk.

Although review studies [53,54] have yielded inconsistent findings on the influence of HQ torque ratios on the occurrence
of future HSI, our findings suggest that Ty.q can be a potential marker of future HSI, with an AUC of 0.79. Previous review
studies indicated limited capacity to distinguish between injured and uninjured legs or individuals affected by hamstring
strains. However, they did not examine the association between HQ torque ratio and future injury. The recent extensive
review study in [55] concluded that there is moderate to strong evidence that the conventional and functional hamstrings
to quadriceps strength ratio are not an independent risk factor for hamstring injury. For future injury prediction, the HQ ratio
has limited scope. Analysis of strength measures along with other modifiable factors, may better help to understand the
association between HQ torque ratio and injury [55]. In our study, the frequently misclassified injured participants using Th.q
had no common trait concerning prior injury. As such, Ty.q may explain additional variance aside from prior HSI, strength-
ening our model. Our findings suggest that Ty.q can be a potential marker of future HSI, irrespective of prior HSI.

From an additional clinical application perspective, the authors acknowledge that MRI is traditionally considered the
gold standard for diagnosing deeper muscle injuries and for distinguishing new injuries from residual scarring of prior
injuries [3,23]. However, MRI has rarely been used prospectively, as in the current study, to predict future injury risk.

The novel modeling approach presented here represents a key advancement, offering the potential to identify athletes

at heightened risk before an injury occurs. This proactive capability opens the door to early intervention strategies that
could prevent injuries with profound consequences for an athlete’s season and career. Additionally, the prospective design
enhances the utility of MRI by providing a baseline reference that can be compared to post-injury scans, improving the
accuracy of determining injury severity. Pre-season baseline scans are already routinely performed in high level athletes,
which allows for potential quick application of these modeling approaches to already standard practices. Together, these
innovations offer a comprehensive framework: predicting the likelihood of future injuries while guiding clinical decisions
when injuries do occur. This dual capability has the potential to transform hamstring injury management, addressing a
common challenge that affects athletes at all levels, from youth to elite competition.
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We acknowledge that this investigation, despite being one of the largest prospective longitudinal studies involving MR
imaging prior to monitored hamstring injury, a limitation to consider with the modeling approach is the limited number of
incident injuries in our cohort. Using the robust prospective design, we had limited control over the incident cases of injury.
Another prospective study [56] also observed limited HSI in their cohort, 18 HSI and 78 uninjured. While another study
[57] indicated an incidence proportion of 5.6%(95%ClI: 4.0-7.7) This shows that number of injured subjects on a football
team is consistent with prior report. Similar report [25] based on MRI radiomics used only 32 injured participants to exam-
ine the association of MRI radiomics with HSI and to predict return-to-play duration. Future studies that have the ability to
include more participants in a similar study design would help further validate the reported results.

The best model in our study, MﬁbH has False Negative Rate (FNR=21.55%) and False Positive Rate (FPR=32.11%).
While these values are not negligible, both metrics represent substantial improvements compared to the other models
evaluated. Misclassifying injured subjects as uninjured (false negatives) poses a significant risk, as these athletes miss
the opportunity for early intervention, increasing their likelihood of sustaining a serious injury. Conversely, uninjured
subjects misclassified as injured (false positives) may undergo additional interventions unnecessarily. However, these
interventions, such as enhanced neuromuscular training or more comprehensive pre-season preparation carry minimal
downside and can offer secondary benefits, including reducing the risk of other injuries and improving overall perfor-
mance. Given this balance, a more sensitive model is preferred, even at the expense of a higher false positive rate, to
maximize the opportunity for early detection and prevention of injuries. For reference, Table C in S6 File summarizes the
FNR and FPR of the top-performing models.

Nonetheless, future studies should include higher numbers of participants to validate our results. Other dataset-related
limitations are the lack of an independent test set and single-site data. Further, we only examined HSI. It would be inter-
esting to determine if we can predict other kinds of sports injuries, such as anterior cruciate ligament injury, using a
similar strategy of Al with MRI, muscle imbalance and injury profile fusion modeling. Further, other MRI modalities could
be acquired to gain additional information from scans such as DTI, and DWI sequence for their sensitivity to changes in
tissue and perform a multimodal study integrated with functional performance parameters (e.g., sprinting biomechanical
analyses) that could further increase model accuracy to identify athletes at high risk of HSI. Lastly, the study is limited to
elite male athletes. However, we believe that the framework presented in this study could be extended to a more general
population irrespective of gender or gender specific (male/ female). This in turn will enable the study of the model differ-
ences with respect to gender and different groups (professional vs college athletes).

Conclusion

In summary, this study investigated radiomics features from prospective MRI scans, prospective strength measures,

and injury profile features to predict HSI in professional American football players, some with a prior history of hamstring
injuries. The results from this study indicate that Al-derived radiomics features from the hamstring muscles in conjunction
with injury profile, morphological characterization, and lower extremity strength variables can predict future HSI. These
novel findings merit further additional validation in a larger population and could inform future strategies to identify more
clinically meaningful and targetable risk factors to mitigate hamstring strain injury and possibly support a return to sports
decision-making following HSI.
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