
PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0001106  December 4, 2025 1 / 15

 

 OPEN ACCESS

Citation: Sorka M, Gorenshtein A, Aran D, 
Shelly S (2025) A multi-agent approach 
to neurological clinical reasoning. PLOS 
Digit Health 4(12): e0001106. https://doi.
org/10.1371/journal.pdig.0001106

Editor: Phat Kim Huynh, North Carolina A&T 
State University: North Carolina Agricultural 
and Technical State University, UNITED STATES 
OF AMERICA

Received: April 20, 2025

Accepted: November 8, 2025

Published: December 4, 2025

Peer Review History: PLOS recognizes the 
benefits of transparency in the peer review 
process; therefore, we enable the publication 
of all of the content of peer review and 
author responses alongside final, published 
articles. The editorial history of this article is 
available here: https://doi.org/10.1371/journal.
pdig.0001106

Copyright: © 2025 Sorka et al. This is an open 
access article distributed under the terms of 
the Creative Commons Attribution License, 
which permits unrestricted use, distribution, 

RESEARCH ARTICLE

A multi-agent approach to neurological clinical 
reasoning

Moran Sorka 1,2, Alon Gorenshtein1,4, Dvir Aran 2,3☯*, Shahar Shelly1,4,5☯*

1  AI Neurology Laboratory, Ruth and Bruce Rapaport Faculty of Medicine, Technion-Institute of 
Technology, Haifa, Israel, 2  Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel, 3  The 
Taub Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel, 4  Department 
of Neurology, Rambam Health Care Campus, Haifa, Israel, 5  Department of Neurology, Mayo Clinic, 
Rochester, Minnesota, United States of America 

☯ These authors contributed equally to this work.
* dviraran@technion.ac.il (DA); s_shelly@rmc.gov.il (SS)

Abstract 

Large language models (LLMs) have demonstrated impressive capabilities in medi-

cal domains, yet their ability to handle the specialized reasoning patterns required in 

clinical neurology warrants systematic evaluation. Neurological assessment pres-

ents distinctive challenges that combine anatomical localization, temporal pattern 

recognition, and nuanced symptom interpretation—cognitive processes that are 

specifically tested in board certification examinations. We developed a comprehen-

sive benchmark comprising 305 questions from Israeli Board Certification Exams 

in Neurology and classified each along three dimensions of complexity: factual 

knowledge depth, clinical concept integration, and reasoning complexity. We eval-

uated ten LLMs of varying architectures and specializations using this benchmark, 

testing base models, retrieval-augmented generation (RAG) enhancement, and a 

novel multi-agent system. Our analysis revealed significant performance variation 

across models and methodologies. The OpenAI-o1 model achieved the highest base 

performance (90.9% accuracy), while specialized medical models performed surpris-

ingly poorly (52.9% for Meditron-70B). RAG enhancement provided variable benefits 

across models; substantial improvements for mid-tier models like GPT-4o (80.5% 

to 87.3%) and smaller models, but limited effectiveness on the highest complexity 

questions regardless of model size. In contrast, our multi-agent framework—which 

decomposes neurological reasoning into specialized cognitive functions including 

question analysis, knowledge retrieval, answer synthesis, and validation—achieved 

dramatic improvements, especially for mid-range models. The LLaMA 3.3-70B-based 

agentic system reached 89.2% accuracy compared to 69.5% for its base model, 

with particularly substantial gains on level 3 complexity questions across all dimen-

sions. External validation on MedQA revealed dataset-specific RAG effects: while 

RAG improved board certification performance, it showed minimal benefit on MedQA 
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questions (LLaMA 3.3-70B: + 1.4% vs + 3.9% on board exams), reflecting alignment 

between our specialized neurology textbook and board examination content rather 

than the broader medical knowledge required for MedQA. Most notably, the multi-

agent approach transformed inconsistent subspecialty performance into remarkably 

uniform excellence, effectively addressing the neurological reasoning challenges that 

persisted even with RAG enhancement. We further validated our approach using an 

independent dataset comprising 155 neurological cases extracted from MedQA. The 

results confirm that structured multi-agent approaches designed to emulate special-

ized cognitive processes significantly enhance complex medical reasoning offering 

promising directions for AI assistance in challenging clinical contexts.

Author summary

Our research addresses a critical question in artificial intelligence for health-
care: can language models effectively handle the complex reasoning required 
in neurological diagnosis? We developed a comprehensive benchmark based 
on actual neurology board certification questions and evaluated how various 
AI models perform on these challenging cases. While base language models 
showed promising capabilities, they struggled with the most complex neurolog-
ical scenarios. Significantly, we discovered that simply providing these mod-
els with access to medical textbooks through retrieval-augmented generation 
(RAG) offers only modest improvements. The breakthrough in our work was 
the development of a novel multi-agent framework that decomposes complex 
neurological reasoning into specialized cognitive functions distributed across 
five distinct agents – mirroring how expert neurologists approach difficult cases. 
This structured approach dramatically outperformed both base models and 
RAG-enhanced systems, transforming inconsistent performance into remark-
ably uniform excellence across neurological subspecialties. Most impressively, 
our multi-agent system enabled mid-tier models to achieve near-expert level 
performance, with the open-sourced LLaMA 3.3-70B model improving from 
69.5% to 89.2% accuracy. Our framework demonstrates that structured rea-
soning architectures can significantly enhance AI systems in complex clinical 
contexts, offering a promising direction for medical AI that complements rather 
than replaces human expertise.

Introduction

Recent advances in large language models (LLMs) have demonstrated remarkable 
capabilities in medical reasoning tasks [1–3], with models such as GPT-4 exceed-
ing medical professionals on standardized examinations [4] and handling diagnos-
tic challenges across various medical specialties [5–9]. Recent studies assessed 
LLMs potential on neurology; Schubert et al. [7] used board-style examinations and 
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Nógrádi et al. [8] evaluated ChatGPT on neurology-specific specialist exams showing promising diagnostic augmentation 
performance. However, significant questions remain about how these models handle distinctive cognitive challenges of 
neurological reasoning, particularly complex integration tasks requiring detailed anatomical knowledge, temporal pattern 
recognition, and synthesis across multiple neural systems.

To address these questions, we focus on neurology as it presents distinctive challenges that provide an excellent 
opportunity to evaluate the advanced reasoning capabilities of current LLMs. The field requires integration of detailed ana-
tomical knowledge, temporal pattern recognition, and synthesis of diverse clinical presentations that may span multiple 
neural systems. Studies have shown that neurologists consistently see patients with higher markers of complexity com-
pared to many other medical specialties, highlighting the inherently challenging nature of the field [10]. Neurological board 
certification examinations test these multifaceted reasoning skills, requiring candidates to analyze complex clinical scenar-
ios where diagnostic and management decisions depend on recognizing subtle patterns, determining precise anatomical 
localization, and considering the temporal evolution of symptoms. Such questions demand more than factual recall - they 
require the ability to systematically evaluate competing hypotheses while managing uncertainty and integrating findings 
across different domains. This form of assessment, which mirrors the cognitive processes employed in actual clinical 
practice, provides an ideal benchmark for evaluating whether current LLMs can effectively navigate the type of structured 
reasoning tasks that characterize expert medical decision-making.

While retrieval-augmented generation (RAG) enhances LLM performance in specialized domains [11–13], neurological 
assessment may demand more sophisticated reasoning architectures. Recent advances in LLM-based agentic systems, 
including multi-agent collaboration frameworks and tool-augmented reasoning models, offer a promising approach for 
decomposing complex tasks into specialized cognitive functions that mimic clinical experts’ structured problem-solving 
approach [14,15]. These systems can reason, plan, and collaborate to complete intricate reasoning tasks [16–18]. Goodell 
et al. [19] showed that equipping LLMs with specialized medical calculation tools (an agentic approach) reduced calcula-
tion errors by >10 × compared to un-augmented models. With multi-agent systems like Med-Chain, demonstrating signifi-
cant improvements over single-agent models [20].

Multi-step reasoning is a focus beyond medicine. In finance, the FinBen benchmark [21] includes multi-step numerical 
and decision-making tasks, finding that even top LLMs excel at data extraction but “struggle with advanced reasoning and 
complex tasks” like forecasting, and Egg et al. [22] created DABstep, comprising hundreds of multi-stage financial data 
challenges requiring iterative code-based analysis. Those works illustrate the growing interest and challenges of applying 
AI agents to multi-step financial reasoning.

We address these challenges through three main contributions: (1) developing a comprehensive benchmark for eval-
uating LLM performance in neurological assessment, based on board certification questions; (2) conducting systematic 
evaluation of current LLMs on this benchmark, including testing RAG enhancement efficacy; (3) introducing a novel multi-
agent framework that decomposes complex neurological reasoning into specialized cognitive functions, demonstrating 
significant performance improvements beyond base models or standard RAG systems. This structured, agentic approach 
offers a promising direction for addressing complex medical reasoning challenges while maintain analytical rigor essential 
for neurological assessment.

Methods

Multiple-choice question dataset

We analyzed 305 multiple-choice questions (MCQs) from Israeli Board Certification Exams in Neurology (June 2023- 
September 2024). These examinations assess physician’s depth of knowledge, clinical reasoning, and decision-making 
abilities through clinical vignettes requiring integration of information from neuroanatomy, pathophysiology, imaging, 
and treatment guidelines. Questions emphasize case-based reasoning with ambiguous scenarios, forcing candidates to 
prioritize differential diagnoses, weigh risk factors, and manage decisions. Each MCQ presented a clinical scenario with 
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four answer options, with a passing score threshold of 65% required for board certification. Questions were professionally 
translated from Hebrew to English, excluding those containing visual elements to ensure compatibility with current lan-
guage model limitations.

Classifying questions into neurological subspecialties and validation

All MCQs were categorized into 13 neurological subspecialties by two authors (SS and AG) capturing the main neuro-
logical field in the question, if two fields were involved, we classified the question according to the dominant diagnostic 
domain. A panel of senior neurologists validated question-answer pairs against current clinical guidelines and classified 
them based on reasoning complexity.

Validation dataset

To validate our findings beyond the Israeli Board Certification benchmark, we utilized the MedQA dataset [23] as an 
independent validation corpus. From the original 1,273 questions in the dataset, we identified and extracted 155 questions 
(12.1%) specifically related to neurological topics and conditions. The selection of neurological questions was performed 
through an initial classification using an LLM, followed by thorough manual validation by two authors (SS and AG) to 
ensure clinical relevance and accuracy of categorization. The MedQA neurological subset provided an important comple-
mentary evaluation resource as it originated from a different source (US medical licensing examinations) and exhibited 
different question structures and emphasis compared to our primary benchmark.

Statistical analysis

We used accuracy as our primary metric, accompanied by 95% confidence intervals (Wilson score method), with F1 
scores providing a balanced precision-recall measurement. Statistical significance between implementation approaches 
was determined using Fisher’s exact test (nominal α = 0.05 threshold). Given the exploratory nature of multiple pairwise 
comparisons (13 total: 10 base-vs-RAG, 3 base-vs-agents), we report unadjusted p-values, recognizing that findings 
should be interpreted as hypothesis-generating rather than confirmatory. Pearson’s correlation analyzed relationships 
between our three complexity categories. Implementation used Python 3.11.9, with crewai (version 0.95.0) for multi-agent 
system development, chromadb (version 0.5.10) for vector database management, and ollama (version 0.4.4) for local 
model.

Multi-agent framework

We developed an agentic system using the CrewAI framework to simulate clinical neurological reasoning through five 
specialized agents (Fig 1). The Question Complexity Classifier initiates the process by analyzing the clinical scenario and 
categorizing it based on reasoning complexity, distinguishing between questions requiring simple fact recall versus those 
demanding integration of multiple clinical concepts and diagnostic reasoning. This initial classification guides subsequent 
processing strategies.

The Question Interpreter systematically decomposes questions into key medical concepts, identifying critical diagnostic 
elements, relevant symptoms, patient history, and other clinical factors. This agent generates optimized search queries 
for each identified concept to ensure comprehensive knowledge retrieval, effectively transforming clinical scenarios into 
structured data representations.

The Research Retrieval Agent interfaces with our RAG system to gather relevant neurological knowledge. Due to 
inherent token limitations of LLMs (Table A in S1 File), we implemented a file-based information persistence strategy. For 
each generated query, the agent searches through the knowledge base and systematically stores retrained passages 
using a SaveFile tool. This approach preserves the full context and relationships between multiple retrieved passages that 
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would otherwise be lost due to token constraints. The agent performs multiple retrieval rounds based on the decomposed 
queries, accumulating comprehensive context for the clinical scenario.

The Answer Synthesis Agent processes multiple sources through sequential reading operations: the original MCQ, 
retrieved knowledge chunks, and the decomposed clinical concepts. While the file-based storage preserves all retrieved 
information, the agent works within model context limitations by accessing stored knowledge incrementally via a ReadFile 
tool, processing information in manageable chunks while maintaining reasoning coherence. The agent employs structured 
reasoning to evaluate each potential answer option, synthesizing evidence from processed knowledge chunks to con-
struct justified responses.

The Validator Agent serves as the final quality assurance checkpoint, evaluating synthesized answers against estab-
lished medical criteria and knowledge base consistency. If responses meet validation thresholds, they proceed as final 
output. When discrepancies are identified, the Validator initiates a feedback loop to the Question Interpreter, triggering a 
refined analysis cycle to ensure diagnosis. The entire framework maintains JSON-structured data flow through a central-
ized controller, ensuring proper sequential execution and data integrity – enabling comprehensive knowledge integration 
while managing model token limitations through efficient file handling.

Experiments evaluation

We evaluated multiple commercial and open-source LLMs using standardized prompts (temperature 0.7, top-p 0.9). 
We selected temperature 0.7 to balance factual accuracy with response naturalness, following established practices 
in medical question answering [24,25], where temperatures ≤0.7 minimize hallucinations while maintaining response 
quality. Top-p 0.9 further constrains sampling to high-probability tokens, enhancing output coherence. No model-specific 
hyperparameter tuning was performed to ensure fair cross-model comparison. Models spanned three categories: 
general-purpose (OpenAI GPT-4 family, LLaMA), reasoning-specialized (OpenAI-o1, DeepSeek R1), and medical-domain 
(OpenBioLLM, MedLLaMA3, Meditron), with parameter scales from 8B to 70B. Model versions were: OpenAI o1-preview 
(2024-12-01-preview), GPT-4o and GPT-4o-mini (2024-08-01-preview), LLaMA 3.3-70B-Instruct (December 6, 2024), 

Fig 1.  A Multi-agent system workflow for neurology question answering. This figure illustrates a comprehensive multi-agent system architecture 
designed for processing and answering multi-choice Neurology questions (MCQs). The system comprises five specialized agents: Question Complexity 
Classifier (1), Question Interpreter (2), Research Retrieval agent (3), Answer Synthesis agent (4) and Validator agent (5). Icons were generated with 
OpenAI’s ChatGPT image generation tool. Under the OpenAI Terms of Use, users own the generated content.

https://doi.org/10.1371/journal.pdig.0001106.g001

https://doi.org/10.1371/journal.pdig.0001106.g001
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LLaMA 3.1-8B-Instruct (July 23, 2024), DeepSeek-R1-Distill-Llama-70B and DeepSeek-R1-Distill-Llama-8B (January 
2025), Meditron-70B, OpenBioLLM-70B, and MedLLaMA3 v20. Models spanned three categories: general-purpose 
(OpenAI GPT-4 family, LLaMA), reasoning-specialized (OpenAI-o1, DeepSeek R1), and medical-domain (OpenBioLLM, 
MedLLaMA3, Meditron), with parameter scales from 8B to 70B.

Our RAG framework used Bradley and Daroff’s Neurology in Clinical Practice (8th edition, 2022) [26] as the knowledge 
base, processed through semantic chunking (512 tokens with 128 overlap) and embedded using BAAI’s bge-large-en-v1.5 
model (normalized embeddings, batch size 32). The vector database (ChromaDB version 0.5.10) retrieved the top 60 
most similar passages per query using cosine similarity. After RAG evaluation, we selected top-performing models (o1, 
GPT-4o, LLaMA-70B) for testing within our agentic framework.

Results

Characteristics of the neurological assessment benchmark

Our benchmark comprises 305 board-level questions derived from Israeli Board Certification Exams in Neurology [27] 
across three recent examination periods (Fig 2a and S2 File). Questions span 13 neurological subspecialties, with Neu-
romuscular disorders (22%), Behavioral & Cognitive Neurology (15%) and Movement Disorders (10%) most represented 

Fig 2.  Neurological Assessment Benchmark Composition and Complexity Framework. This figure illustrates (a) Distribution of the 305 neurolog-
ical board certification questions across 13 subspecialties. (b) Distribution of complexity levels across the three dimensions: factual knowledge depth 
(FKD), clinical concept integration (CCI), and reasoning complexity (RC). (c) An example question from the benchmark illustrating the multidimensional 
reasoning required in neurological assessment.

https://doi.org/10.1371/journal.pdig.0001106.g002

https://doi.org/10.1371/journal.pdig.0001106.g002
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(Table B in S1 File). We classified each question by reasoning type: 263 questions (86%) required diagnostic reasoning 
such as syndrome identification, localization, and differential diagnosis, while 42 questions (14%) required therapeutic rea-
soning including treatment selection and management approaches (S2 File).

We developed a three-dimensional classification framework (Fig 2b), with each question categorized according to three 
distinct dimensions of complexity: factual knowledge depth (FKD), assessing the specialization level of medical knowledge 
required, from basic medical education to subspecialty expertise; clinical concept integration (CCI), measuring the number 
of clinical concepts that must be simultaneously considered, from single concept application to integration of three or more 
concepts with numerous variables; and reasoning complexity (RC), evaluating the sophistication of reasoning required, 
ranging from straightforward “if-then” logic to advanced temporal, probabilistic, or multi-step reasoning with management 
of contradictions and uncertainties. Correlation analysis between dimensions revealed moderate relationships (FKD-CCI: 
0.56, FKD-RC: 0.51, CCI-RC: 0.67), confirming they capture distinct aspects of question complexity.

A representative example of question complexity is illustrated in Fig 2c, which demonstrates a case involving a 60-year-
old woman with metastatic melanoma who develops severe speech and swallowing disorders after brain and neck radiation. 
This question exemplifies high complexity across our measurement framework, scoring level 3 (L3) for FKD - requiring spe-
cialized knowledge of neurological complications of cancer treatment and antibody-mediated disorders, L3 for CCI - requiring 
integration of multiple clinical concepts including radiation effects, autoimmune mechanisms, and neuromuscular junction 
pathophysiology, and L3 for RC - demanding sophisticated reasoning to differentiate between treatment side effects and 
paraneoplastic syndromes. With a composite complexity score of 9, this question falls in the highest category of overall com-
plexity within our benchmark. The question demonstrates the multi-dimensional reasoning required in neurological diagnosis, 
particularly the need to recognize patterns suggesting myasthenia gravis or Lambert-Eaton syndrome in cancer patients with 
characteristic symptoms that fluctuate during the day and respond poorly to specific treatments.

Base model performance

We evaluated ten large language models of varying architectures and parameter scales (Table A in S1 File). The per-
formance revealed a clear hierarchy (Fig 3a and Table 1): the reasoning-specialized OpenAI-o1 model emerged as the 
strongest performer, achieving 90.9% accuracy (95% CI: 87.1-93.6%) across the full benchmark, significantly exceeding 
the threshold typically required for board certification. The general-purpose GPT-4o followed with 80.5% accuracy (95% 
CI: 75.9-84.7%), while DeepSeek-R1-70B achieved 87.7% accuracy (95% CI: 83.4-90.8%). LLaMA 3.3-70B performed 
in the mid-range with 69.5% accuracy (95% CI: 64.1-74.4%). Notably, the medical domain-specialized models performed 
below expectations, with OpenBioLLM-70B reaching 65.9% accuracy (95% CI: 60.4-71.0%) and Meditron-70B achieving 
only 52.9% accuracy (95% CI: 47.2-58.3%), suggesting that domain specialization alone does not confer advantages in 
complex reasoning. Performance remained relatively consistent across the three examination periods, with minor varia-
tions that did not alter the overall ranking pattern (Table B in S1 File).

When analyzed through our three-dimensional complexity framework, base model performance showed clear deg-
radation patterns with increasing complexity levels. For the top-performing o1 model, performance remained generally 
strong but showed relative weaknesses in CCI L3 (86.5%) and FCD L3 (87.5%) while maintaining higher performance 
on RC tasks. The mid-range GPT-4o showed more pronounced degradation, particularly for FCD L3 (70.0%) and CCI L3 
(75.7%). The pattern was most evident in the LLaMA 3.3-70B model, where accuracy for L3 complexity dropped substan-
tially: 57.5% for FKD L3, 66.3% for CCI L3, and 61.0% for RC L3 (Fig 3b).

To validate our findings beyond the Israeli Board Certification benchmark, we evaluated our top-performing models on 
neurological questions extracted from the MedQA dataset. Among 1,273 total MedQA questions, we identified 155 neuro-
logical questions, providing a complementary evaluation dataset. Consistent with our board certification results, base model 
performance followed similar patterns, with o1 achieving the highest accuracy (96.8%) (96.8%, 95% CI: 92.7-98.6%), 
followed by GPT-4o (85.2%, 95% CI: 78.7-89.9%) and LLaMA 3.3-70B (76.8%, 95% CI: 69.5-82.7%) (Table D in S1 File).
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RAG framework enhancement

Building on our base model findings, we implemented a specialized RAG framework to address identified limitations in 
model performance to support fine-grained retrieval of relevant clinical information (Methods). This approach allowed 
models to access current clinical guidelines, detailed pathophysiological explanations, and standardized treatment proto-
cols during their reasoning process.

The RAG enhancement demonstrated variable effectiveness across models, with benefits inversely related to base 
model performance (Fig 3a and Table 1). LLaMA 3.3-70B saw its accuracy increase from 69.5% (95% CI: 64.1-74.4%) 
to 73.4% (95% CI: 68.2-78.1%), while GPT-4o performance improved from 80.5% (95% CI: 75.9-84.7%) to 87.3% (95% 
CI: 83.0-90.5%). Smaller models showed the most dramatic relative improvements, with DeepSeek-R1-8B increasing 

Fig 3.  Performance analysis of large language models in neurological assessments. This figure illustrates (a) Comparison of overall accuracy of 
various models. (b) Performance across three distinct dimensions of question complexity. (c) Radar charts comparing the performance accuracy across 
various neurological subspecialties.

https://doi.org/10.1371/journal.pdig.0001106.g003

https://doi.org/10.1371/journal.pdig.0001106.g003
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from (95% CI: 41.4-52.5%) to 67.9% (95% CI: 62.4-72.9%) and LLaMA 3.1-8B rising from 57.5% (95% CI: 51.8-62.8%) 
to 65.9% (95% CI: 60.4-71.0%),. In contrast, the highest-performing models showed minimal benefit; The OpenAI-o1 
model increased only from 90.9% (95% CI: 87.1-93.6%) to 92.2% (95% CI: 88.6-94.7%), reflecting ceiling effects from its 
already strong baseline performance. Notably, Meditron-70B showed a performance decline with RAG, 52.9% (95% CI: 
47.2-58.3%) to 41.2% (95% CI: 35.9-46.9%), suggesting potential conflicts between its domain-specific training and the 
retrieved information.

Domain-specific analysis revealed that RAG’s impact on LLaMA 3.3-70B was inconsistent across neurological sub-
specialties (Table C in S1 File). While significant improvements occurred in CSF circulation disorders (44% to 89%) and 
neurophthalmology (44% to 72%), many subspecialties showed only marginal gains or no improvement at all. Most nota-
bly, performance on headache and dizziness questions declined (100% to 50%, though only 4 questions), and areas like 
vascular neurology (64% to 68%) and neuroimmunology (63% to 72%) showed only modest improvements. Contrary to 
our hypothesis, simply providing access to specialized neurological knowledge through RAG was insufficient to substan-
tially enhance LLaMA’s performance across the full spectrum of neurological subspecialties.

When analyzed through our complexity framework, the RAG enhancement showed limited improvements for the most 
challenging questions (Fig 3b). For LLaMA 3.3-70B, RAG provided some improvements across complexity dimensions but 
fell short on level 3 complexities: FKD L3 improved from 57.5% to 70.0%, CCI L3 from 66.3% to 70.2%, and RC L3 from 
61.0% to 73.2% – still leaving substantial room for improvement. The o1 model showed minimal gains across complex-
ity levels, with improvements primarily in CCI L3 (86.5% to 89.4%) while showing no improvement in FKD L3 (87.5%). 
GPT-4o showed some improvements in FKD L3 (70.0% to 85.0%) and RC L3 (80.5% to 87.8%).

These complexity-based results reveal a key insight: while RAG provides some benefit for questions requiring spe-
cialized knowledge (FKD L3) and advanced reasoning (RC L3), the improvements are inconsistent and often insufficient 
for the most challenging neurological questions. The varying efficacy of RAG across models also indicates that even 

Table 1.  Performance comparison of base models, RAG enhancement, and agent-based approaches.

Model Base RAG Enhanced Agentic Framework

Accuracy (95% CI) F1 Accuracy (95% CI) F1 P-Value Accuracy (95% CI) F1 P-value

o1 90.9% (87.1-93.6) 0.952 92.2% (88.6-94.7) 0.959 0.664 94.6% (91.6-96.7) 0.973 0.085

GPT-4o 80.5% (75.9-84.7) 0.892 87.3% (83.0-90.5) 0.932 0.027 89.3% (85.2-92.2) 0.943 0.003

LLaMA 3.3-70B 69.5% (64.1-74.4) 0.82 73.4% (68.2-78.1) 0.846 0.326 89.2% (85.2-92.2) 0.943 0

DeepSeek-R1-70B 87.7% (83.4-90.8) 0.934 86.7% (82.3-89.9) 0.929 0.809 – – –

GPT-4o-mini 60.7% (55.1-66.0) 0.756 73.4% (68.2-78.1) 0.846 0.001 – – –

OpenBioLLM-70B 65.9% (60.4-71.0) 0.795 68.8% (63.4-73.8) 0.815 0.491 – – –

Meditron-70B 52.9% (47.2-58.3) 0.692 41.2% (35.9-46.9) 0.584 0.004 – – –

LLaMA 3.1-8B 57.5% (51.8-62.8) 0.73 65.9% (60.4-71.0) 0.795 0.038 – – –

DeepSeek-R1-8B 46.8% (41.4-52.5) 0.637 67.9% (62.4-72.9) 0.809 0 – – –

Medllama3 v20 46.8% (41.4-52.5) 0.637 54.9% (49.1-60.2) 0.709 0.053 – – –

This table presents the performance metrics of various language models across three evaluation scenarios. Performance is measured by accuracy 
with 95% confidence intervals (Wilson score method) and F1 scores. P-values (Fisher’s exact test) indicating statistical significance compared to base 
performance. P-values are unadjusted for multiple comparisons and should be interpreted as exploratory. Subspecialty analysis revealed notable vari-
ations in model performance (Table C in S1 File). The top-performing o1 model demonstrated remarkable consistency across subspecialties, achieving 
100% accuracy in several domains including headache and dizziness, neuroimmunology, cerebrospinal fluid (CSF) circulation disorders, and epilepsy. In 
contrast, LLaMA 3.3-70B showed significant performance variability across subspecialties. While it performed relatively well in headache and dizziness 
(86%) and neuro-oncology (78%), it struggled considerably with CSF circulation disorders (44%) and vascular neurology (64%). This disparity suggests 
that LLaMA 3.3-70B lacks the specialized knowledge or reasoning capabilities required for certain neurological domains. Interestingly, even the generally 
strong o1 model showed relative weakness in genetic neurology (85%) and neurophthalmology (89%), indicating that these subspecialties may present 
inherent challenges due to their requirements for detailed visual-spatial reasoning or complex pattern recognition.

https://doi.org/10.1371/journal.pdig.0001106.t001

https://doi.org/10.1371/journal.pdig.0001106.t001
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models with stronger reasoning capabilities cannot fully overcome fundamental limitations by simply accessing external 
knowledge.

When evaluated on the MedQA neurological questions subset, RAG enhancement showed a more varied pattern of 
performance changes (Table D in S1 File). GPT-4o saw a notable increase from 85.2% (95% CI: 78.7-89.9%) to 89.7% 
(95% CI: 83.9-93.5%), while LLaMA 3.3-70B showed a slight decline from 76.8% (95% CI: 69.5-82.7%) to 74.8% (95% CI: 
66.8-80.4%). The o1 model also demonstrated a slight decrease in performance(96.8% (95% CI: 92.7-98.6%) to 94.8% 
(95% CI: 89.3-96.9%)).

Multi-agent framework results

To address the limitations of both base models and standard RAG approaches, we developed a multi-agent frame-
work specifically designed for complex neurological question-answering (Fig 1). Our multi-agent framework achieved 
remarkable performance improvements, particularly for models that had shown more modest gains with standard RAG. 
The LLaMA 3.3-70B-based agentic system reached 89.2% accuracy (95% CI: 85.2-92.2%, p < 0.001 compared to base 
model), representing a dramatic 19.7 percentage point improvement over its base performance and a substantial 15.8 
percentage point gain over its RAG-enhanced version. The GPT-4o implementation achieved 89.3% accuracy (95% 
CI: 85.2-92.2%, p = 0.003 vs base), while the OpenAI-o1-based system reached 94.6% (95% CI: 91.6-96.7%) accuracy 
(p = 0.085 vs base) (Fig 3c and Table 1).

Most striking was the effectiveness in addressing the highest complexity neurological questions that had remained 
challenging even after RAG enhancement. For LLaMA 3.3-70B, the multi-agent approach dramatically improved perfor-
mance on Level 3 complexity questions across all dimensions: FKD L3 increased from 70.0% (RAG) to 87.5% (agent), 
CCI L3 from 70.2% to 90.3%, and RC L3 from 73.2% to 92.6% (Fig 3b). This pattern of improvement on the most complex 
questions was consistent across models, though less dramatic for o1 given its already strong performance.

The multi-agent approach also addressed LLaMA 3.3-70B’s inconsistent subspecialty performance that persisted even 
with RAG enhancement. With the agentic framework, performance became remarkably consistent across neurological 
subspecialties, with substantial improvements in previously challenging areas like headache and dizziness (50% with 
RAG to 100% with agent), neuromuscular disorders (74% to 100%), and neuroimmunology (67% to 86%). The improve-
ment in neurophthalmology (72% to 93%) and movement disorders (81% to 94%) was also substantial. This consistent 
cross-specialty performance suggests that the multi-agent architecture effectively overcomes the domain knowledge 
limitations inherent in the base model (Fig 3c).

Box 1.  Step-by-step analysis of multi-agent framework performance on a complex clinical question.

Question: A 70-year-old man undergoing peritoneal dialysis for end-stage diabetic kidney failure develops progres-
sive limb weakness over two weeks, accompanied by paresthesias in all four limbs. There is no history of fever or 
vaccination preceding the illness. Nerve conduction studies show significant prolongation of motor and sensory laten-
cies, unevenly distributed, without conduction blocks or dispersion. CSF analysis reveals no cells, protein 55 mg/dL, 
and normal glucose. There is no significant improvement after two full courses of IVIG. Which of the following could 
lead to the patient’s recovery?

Choices: a. Kidney transplantation | b. Another course of IVIG | c. Hemodialysis | d. Steroids

Correct Answer: a | Framework Answer: a

Agent 1 - Question Complexity Classifier: Classified as “complex,” requiring integration of clinical findings, treat-
ment history, comorbid conditions, and therapeutic options rather than simple factual recall.
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Agent 2 - Question Interpreter: Extracted key concepts: progressive weakness, IVIG failure, end-stage renal dis-
ease on dialysis, albuminocytologic dissociation. Generated five retrieval queries targeting treatment effectiveness:

•	 “uremic neuropathy in end-stage diabetic kidney failure progressive weakness no response to IVIG role of kidney 
transplant for recovery”

•	 “progressive demyelinating neuropathy diabetic ESRD peritoneal dialysis improving nerve conduction after kidney 
transplant”

•	 “CIDP versus uremic neuropathy in diabetic renal failure and potential role of kidney transplant”

Agent 3 - Research Retrieval: Retrieved key evidence: “Successful renal transplantation results in significant clini-
cal, EDX, and morphological recovery over a period of 3-12 months” but “renal transplantation may have little effect 
on the course of the polyneuropathy in diabetic patients with end-stage renal disease.” Additional passages: “Chron-
ic peritoneal dialysis provides no advantage over hemodialysis” and IVIG-nonresponsive cases rarely benefit from 
repeated courses.

Agent 4 - Answer Synthesis: Evaluated each option systematically. Selected kidney transplantation (a) reasoning: 
“the primary factor aggravating the patient’s neuropathy is likely his inadequate clearance of toxins and metabolic 
derangements from end-stage renal disease; kidney transplantation can often reverse or markedly improve such 
neuropathies.” Rejected other options: “Repeating IVIG, changing dialysis modality, or adding steroids is less likely to 
be effective unless the underlying renal failure is corrected.”

Agent 5 - Validator: Confirmed clinical features matched uremic neuropathy rather than inflammatory conditions 
(no conduction blocks, IVIG failure, elevated CSF protein without pleocytosis). Validated that kidney transplantation 
“addresses the underlying metabolic derangements causing neuropathy” while “repeated immunotherapy or dialysis 
changes alone are unlikely to result in full recovery.” Approved answer.

This box illustrates how the five specialized agents collaborate to analyze a complex clinical question, tracing the 
systematic process from initial complexity classification and concept extraction, through knowledge retrieval and answer 
synthesis, to final validation of the reasoning. To illustrate how the multi-agent architecture handles therapeutic reasoning, 
Box 1 presents a representative example involving treatment selection for uremic neuropathy in a dialysis patient unre-
sponsive to IVIG. The Question Interpreter generated queries targeting treatment effectiveness rather than diagnostic 
patterns (e.g., “role of kidney transplant for recovery in IVIG-nonresponsive uremic neuropathy”). The Research Retrieval 
agent gathered evidence on transplantation outcomes, including the critical distinction that “renal transplantation results 
in significant clinical recovery” in uremic neuropathy but “may have little effect in diabetic patients with end-stage renal 
disease.” The Answer Synthesis agent systematically evaluated each option, selecting kidney transplantation based on its 
potential to correct the underlying metabolic derangements rather than providing symptomatic management. The Validator 
confirmed this reasoning by verifying that clinical features matched uremic rather than inflammatory neuropathy, approving 
kidney transplantation as addressing the root cause.

The multi-agent framework effectiveness was further validated on the MedQA neurological question subset (Table 
E in S1 File). The LLaMA 3.3-70B-based agentic system achieved 81.3% accuracy (95% CI: 74.4-86.6%) on MedQA 
questions, representing a 4.5 percentage point improvement over its base performance (76.8%, 95% CI: 69.5-82.7%). 
GPT-4o’s agentic implementation reached 94.8% (95% CI: 89.3-96.9%) on the MedQA questions, a 9.6 percentage point 
increase from its base performance (85.2%, 95% CI: 78.7-89.9%), with o1 maintaining excellent performance at 94.8% 
(95% CI: 89.3-96.9%).
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Error analysis of multi-agent framework

To understand the limitations of our multi-agent framework, we conducted a systematic analysis of the remaining errors made 
by the top-performing model. The framework’s errors fall into two primary categories: retrieval failures (RAG gaps where rele-
vant information was not retrieved from the knowledge base) and reasoning failures (where retrieved information was present 
but misused or ignored). Within reasoning failures, we identified four distinct patterns: (1) ignored explicit evidence - correct 
answers existed in retrieved text but were disregarded in favor of alternative reasoning; (2) narrative distraction - construction 
of sophisticated but incorrect explanations instead of matching straightforward clinical patterns; (3) over-integration - forcing 
disparate clinical findings into a single diagnosis when they belonged to different conditions; and (4) pattern mismatching - 
failure to connect clinical descriptions in questions to corresponding descriptions in retrieved passages.

Critically, validation loops failed differently across error types. For retrieval gaps, validation agents had no mechanism 
to detect missing information, as they could only assess the coherence of reasoning based on available evidence. For 
reasoning failures, validation loops often reinforced initial errors rather than catching them, suggesting the quality assur-
ance agent shared the same reasoning blind spots as the synthesis agent—both prioritizing internal narrative coherence 
over strict textual fidelity to retrieved evidence. Representative examples demonstrating each error pattern with detailed 
analysis are provided in S3 File.

Discussion

This study makes three key contributions to the field of AI in clinical neurology: creating a comprehensive neurological 
assessment benchmark derived from board certification examinations, systematically evaluating current LLM capabilities, 
and developing a novel multi-agent framework specifically designed for complex neurological reasoning.

Our benchmark provides a valuable addition to the landscape of AI evaluation frameworks by focusing specifically on 
the advanced reasoning patterns required in neurological practice. Board certification questions across 13 neurological 
subspecialties capture the intricate reasoning patterns that characterize expert practice, offering a pragmatic measure of 
whether AI systems can approach board-certified specialists’ reasoning levels. Our three-dimensional complexity frame-
work - factual knowledge depth, clinical concept integration, and reasoning complexity - revealed a moderate correlation 
between these dimensions (0.51-0.67), confirming they measure distinct aspects of neurological reasoning. The complex-
ity classification framework reveals the distinctive cognitive demands of neurological assessment. Questions requiring the 
integration of multiple clinical concepts and sophisticated reasoning were prevalent throughout the benchmark, reflecting 
the reality that neurological diagnosis frequently relies on synthesizing seemingly disparate symptoms and signs into 
coherent clinical syndromes.

Our evaluation reveals a clear performance hierarchy, with the reasoning-specialized models (OpenAI-o1: 90.9%) 
outperforming general-purpose models (GPT-4o: 80.5%), while medical domain-specialized models underperformed 
(OpenBioLLM-70B: 65.9%, Meditron-70B: 52.9%). All models showed performance degradation as complexity increases, 
particularly for questions requiring level 3 complexity in clinical concept integration and factual knowledge depth. Even 
top-performing models showed relative weaknesses in certain domains, highlighting the uneven development of current 
AI systems and validating the need for specialized approaches to enhance model performance in clinical contexts. Our 
findings contribute context to recent discussions about the suitability of LLMs for clinical decision-making [28]. While base 
model performance shows promising capabilities, the significant degradation on higher complexity questions confirms that 
unmodified LLMs still face important limitations when handling the most challenging neurological cases. This validates the 
need for specialized approaches to enhance model performance in clinical contexts, particularly for subspecialties requir-
ing the integration of multiple clinical concepts and sophisticated temporal reasoning.

Our RAG implementation demonstrated improvements inversely proportional to base model strength—dramatic for 
smaller models (DeepSeek-R1-8B: 46.8% to 67.9%), substantial for mid-tier models (GPT-4o: 80.5% to 87.3%), modest 
for larger models (LLaMA 3.3-70B: 69.5% to 73.4%), and minimal for the highest-performing model (o1: 90.9% to 92.2%). 
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This pattern suggests that while RAG can effectively address knowledge gaps, simply providing specialized knowledge 
access is insufficient for overcoming the fundamental reasoning challenges in complex neurological cases. Particularly 
striking was RAG’s limited effectiveness on level 3 complexity questions across all dimensions, suggesting that the most 
challenging aspects of neurological reasoning require more sophisticated frameworks. Furthermore, the divergent RAG 
effects between board certification questions (consistent improvements) and MedQA questions (minimal or negative 
impact) highlight a critical consideration: RAG performance depends heavily on alignment between the knowledge base 
and target assessment domain. Our specialized neurology textbook enhanced reasoning on neurological board examina-
tions but provided limited value for MedQA’s broader medical questions, indicating that clinical AI systems may require 
multiple, complementary knowledge bases to handle the full spectrum of medical reasoning tasks encountered in practice.

Our multi-agent framework addresses these limitations by decomposing complex neurological reasoning into special-
ized cognitive functions distributed across five distinct agents (Fig 1). This approach yielded dramatic improvements, 
particularly for LLaMA 3.3-70B (69.5% to 89.2%), demonstrating structured reasoning’s power for complex clinical tasks. 
Most notably, the framework excelled at the highest complexity questions that had remained challenging even after RAG 
enhancement, with LLaMA 3.3-70B showing substantial improvements across all dimensions (FKD L3: 70.0% to 87.5%, 
CCI L3: 70.2% to 90.3%, RC L3: 73.2% to 92.6%). The framework also transformed previously inconsistent subspecialty 
performance into remarkably uniform excellence, effectively addressing domains that had proven difficult for both base 
models and RAG-enhanced implementations.

Across all implementations, the OpenAI-o1 model demonstrated superior capabilities, with our o1-based agentic sys-
tem achieving near-perfect performance. Upon detailed analysis of the few remaining errors, we found that many involved 
questions where the correct answer was not entirely clear-cut, with potential ambiguities in the question formulation or 
cases where multiple approaches could be justified depending on specific clinical circumstances.

External validation using 155 neurological cases from the MedQA yielded two key findings: Models performed better on MedQA 
than on board certification questions, confirming our benchmark’s higher complexity; and enhancement strategies showed dataset-
specific patterns. RAG improved performance on board questions but showed limited impact on MedQA, with smaller gains for 
GPT-and a slight decrease for LLaMA 3.3-70B. This discrepancy likely stems from our RAG system using a specialized neurology 
textbook that aligned with board questions but less with MedQA questions requiring broader medical knowledge. Commercial 
models like GPT-4o were less affected due to their broader knowledge base. These findings emphasize the importance of aligning 
knowledge resources with specific information needs when implementing RAG and agent-based systems.

Our findings extend recent work by Schubert et al. [7], who demonstrated GPT-4’s capability to exceed mean human 
performance on neurology board examinations (85.0% vs 73.8%). While they identified performance degradation with 
increasing question complexity, our multi-agent framework maintained remarkably consistent performance across all 
complexity levels. Similarly, compared to Masanneck et al. [29], who showed modest improvements through standard 
RAG approaches, our multi-agent framework achieves substantially greater performance gains, particularly for com-
plex questions requiring advanced clinical concept integration. This comparison highlights the advantage of special-
ized cognitive frameworks over simple knowledge retrieval for complex neurological reasoning tasks. Furthermore, our 
three-dimensional complexity classification provides deeper insights into specific reasoning capabilities than the binary 
knowledge-based versus case-based categorization used in their work. These complementary findings collectively sug-
gest that advancing AI applications in neurology will require both robust knowledge integration and sophisticated reason-
ing architectures that mirror the structured problem-solving approaches used by clinical experts.

Several limitations must be considered: our benchmark excludes visual elements crucial in neurological assessment; 
strong performance on board-style questions may not fully translate to real-world clinical scenarios with incomplete infor-
mation; our RAG system showed dataset-specific effectiveness; and our multi-agent framework’s computational require-
ments may challenge real-time clinical application.

Looking forward, this work suggests promising research directions: further development of specialized architec-
tural components for clinical reasoning, more sophisticated knowledge integration approaches, and extending these 
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approaches to handle multimodal inputs crucial to neurological assessment. While current models show promising capa-
bilities, their limitations in complex reasoning and management decisions suggest they are better suited for supporting 
rather than replacing clinical decision-making. The success of structured approaches like our multi-agent framework sug-
gests that future clinical AI systems might be most effective when designed to complement and enhance human clinical 
reasoning rather than replicate it entirely.
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