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Abstract
Data for healthcare applications are typically customized for specific purposes but are
often difficult to access due to high costs and privacy concerns. Rather than prepare
separate datasets for individual applications, we propose a novel approach: building a
general-purpose generative model applicable to virtually any type of healthcare applica-
tion. This generative model encompasses a broad range of human attributes, including
age, sex, anthropometric measurements, blood components, physical performance met-
rics, and numerous healthcare-related questionnaire responses. To achieve this goal, we
integrated the results of multiple clinical studies into a unified training dataset and devel-
oped a generative model to replicate its characteristics. The model can estimate missing
attribute values from known attribute values and generate synthetic datasets for vari-
ous applications. Our analysis confirmed that the model captures key statistical proper-
ties of the training dataset, including univariate distributions and bivariate relationships.
We demonstrate the model’s practical utility through multiple real-world applications,
illustrating its potential impact on predictive, preventive, and personalized medicine.

Author summary
Digital technologies are expected to revolutionize healthcare, yet digital healthcare has
not reached its full potential. A major bottleneck is the poor data availability. Due to
concerns regarding privacy and cost, healthcare data is very difficult to access. Here, our
aim was to provide a general-purpose statistical model that can be used in place of actual
data. Recent advancements in machine-learning technology, especially in generative
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models, make this challenging goal possible. We built a model that captures complex
statistical interactions among more than 2000 human attributes and made it available
as a software service on the Internet. The model can be used for estimating unknown
attributes from known attributes and generating synthetic data. We believe that this
model significantly lowers the barrier to entry into digital healthcare and will stimulate
future innovations.
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Introduction
Advances in information technology, particularly in machine-learning and sensing technolo-
gies, are revolutionizing human healthcare by enabling continuous monitoring and analysis
of individual health status [1–5]. Digital data collected through various measurements can be
integrated to create comprehensive health profiles, allowing for early detection of health risks
and personalized interventions. This data-driven approach is crucial for realizing predictive,
preventive, and personalized medicine [6,7]. For example, by analyzing patterns in lifestyle,
diet, and physical activity data, healthcare providers can develop tailored interventions that
address individual risk factors before they lead to serious health conditions.

A major challenge in developing such healthcare solutions, however, is the limited avail-
ability of comprehensive health data. Data collection is often hindered by high costs, privacy
concerns, and the fragmented nature of health records. Traditional approaches require col-
lecting data specific for each application, making it inefficient and sometimes impractical to
develop multiple healthcare solutions.

To address these challenges, we propose the Virtual Human Generative Model (VHGM),
a novel statistical framework that can estimate missing attribute values from known attribute
values and generate synthetic but realistic human health data. Unlike conventional statistical
models, the VHGM can:

1. Capture complex relationships among over 2000 diverse health attributes
2. Estimate missing attribute values from known attribute values
3. Generate synthetic data that preserves the statistical properties of real populations
4. Support multiple healthcare applications through a single model

There are two key innovations in our approach. One is the integration of multiple inde-
pendent data sources to create a high-dimensional training dataset. While existing clinical
studies typically include fewer than 100 attributes [8], limiting their applicability, our method
combines data from many sources using statistical linking techniques, without relying on
personally identifiable information.

The other is maintaining the quality of the VHGM. Current deep learning-based machine
learning is stochastic and there is no guarantee of the “correctness” of the model outputs.
Among several ongoing technical discussions related to improving the trustworthiness of a
model, some focus on augmenting the training datasets [9] and others focus on the character-
istics of the deep neural network [10]. We take a practical approach to the VHGM, combin-
ing a robust set of quality metrics to objectively measure the model quality with a transparent
governing process with multiple stakeholders.

The primary contributions of this paper are:

1. Development of a novel method for combining data from multiple clinical studies while
preserving their statistical relationships
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2. Implementation of the VHGM, a generative model with more than 2000 heterogeneous
health attributes across diverse categories, together with a practical quality assurance
process

3. Demonstration of the VHGM’s practical utility through multiple real-world healthcare
applications

Materials and methods
Design of the VHGM
The VHGM is produced and operated by three data-processing steps and one governing pro-
cess (see Fig 1). Step 1 is to prepare the data. We used three data sources, each of which con-
sists of one or more table-structured datasets. Data Source A was specifically prepared for the
VHGM to obtain diverse health attributes simultaneously from approximately 1000 partici-
pants. Data Source B was commercially available data on annual health checkups and health
insurance receipts of over one million individuals. Re-purposing of these data conforms to the
Japanese Privacy Law and was approved by the Information Security Committee of Kao Cor-
poration. Data Source C was a collection of previously reported studies to supplement spe-
cific health attributes. These studies were conducted internally by Kao Corporation (Tokyo,
Japan), each of which was individually approved for that particular study. Re-purposing these
datasets for the VHGM is covered by an umbrella approval in April 2021 by the IRB of the
Kao Corporation and the Preferred Networks, Inc (Tokyo, Japan).

Step 2 is to integrate all the data sources into a single training dataset. The attributes to be
extracted from each data source were determined by themodel schema. The model schema
also determines the data type of each attribute.

Step 3 is to train the generative model [11]. The resulting VHGMmodel was deployed as a
commercial Application Programming Interface (API) service.

During the whole process, the governing committee oversaw the quality control of the
VHGM.

Fig 1. Schematic diagram of the VHGM development and operation. Data obtained from Data Sources A, B, and
C are combined into a single training dataset to build a general-purpose statistical model called the VHGM, which is
accessible via the API.

https://doi.org/10.1371/journal.pdig.0001059.g001
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Data Source A
Data Source A is from a single-center cross-sectional observational study that was conducted
with adult men and women living in narrowly defined metropolitan areas of Japan (i.e.,
Tokyo, Kanagawa, Chiba, Saitama, Ibaraki, Tochigi, and Gunma prefectures). All measure-
ments were performed by trained research coordinators and medical doctors using standard
operating procedures during two outpatient visits to the Ueno Asagao Clinic (Tokyo, Japan),
one week apart. The Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines were applied according to the study objectives [12]. The study protocol
is available online [13].

Ethics approval, informed consent, and participation. The study was approved in Octo-
ber 2021 by the IRB of Kao Corporation (Tokyo, Japan; approval #K0023-2108) and Preferred
Networks, Inc (Tokyo, Japan; approval #ET22110047). Eligibility was evaluated by asking
potential participants a few questions. All participants provided written informed consent to
participate in the study. The consent form explained in detail which data would be used in
the study and obtained consent for the use of anonymized data. It also stated that statistical
models developed through the use of participants’ anonymized data may be used in the future
by Kao Corporation or its commissioned contractors. The study in Data Source A was regis-
tered at the University Hospital Medical Information Network (UMIN; UMIN000045746) on
October 14, 2021. Recruitment started on October 19, 2021, and ended on February 25, 2022.

Participants and eligibility. Eligible participants were consecutively recruited over a 5-
month period from October 2021 through February 2022. The participants were recruited
via a website administered by TES Holdings (Tokyo, Japan). Participants were stratified into
age groups by decade (20-29, 30-39, 40-49, 50-59, 60-69, and ≥ 70 years) to match the decade
ratio of the typical adult Japanese population. The major inclusion criteria were as follows:
(1) Japanese men and women aged ≥ 20 years and (2) individuals able to complete the ques-
tionnaires and surveys. Major exclusion criteria were as follows: (1) individuals undergoing
hospitalization for serious diseases (e.g., diabetes, hypertension, arteriosclerosis, heart disease,
malignancy, Alzheimer’s disease, etc.), (2) individuals who could not come to the outpatient
unit by themselves, and (3) individuals with dementia or suspected dementia. The detailed
inclusion and exclusion criteria are available in the protocol [13].

Measurements and data processing. Numerous health attributes across diverse cate-
gories were collected. The parameters were grouped into the following 16 measurement cat-
egories: blood pressure and arterial stiffness, lifestyle investigation and questionnaire, cogni-
tive function analysis, laboratory analysis, oral glucose tolerance test, anthropometric mea-
surements, skin surface spectroscopy, physical performance tests, hand surface analysis, liq-
uid chromatography-tandem mass spectrometry, body odor analysis, lipids in the stratum
corneum and sebum analysis, hair loss determination, lipid mediator analysis, skin surface
lipids (SSL)-RNA analysis, and microbiota analysis, based on the measurement methods
described in the protocol [13]. Details on the SSL-RNA, intestinal microbiota, and saliva
microbiota are described in S1 Text. The data management details are also described in the
protocol paper [13].

Data analysis. We reviewed basic statistical characteristics of the data and compared
them with recent official statistics in Japan. A correlation matrix using the Spearman rank
correlation was generated to examine relationships between attributes and data sparseness.
To create the correlation matrix, only real, positive, ordered categorical, and binary attributes
(i.e., categorical attributes with only two possible values) were used.
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Data Source B
In Japan, all employers are required to provide healthcare insurance coverage for their
employees through company-specific insurance associations. Under legislation enacted by the
Japanese government, healthcare-related records can be utilized for research and development
purposes without individual consent, provided they undergo an approved anonymization
process [14]. Several private-sector data aggregators make such anonymized data commer-
cially available. Data Source B consists of two comprehensive datasets covering the same set
of approximately one million individuals, including both employees and their dependents in
Japan in 2019:

1. Annual health examination records, including:
• Physical measurements (height, weight, etc.)
• Blood test results
• Responses to questionnaires about health-related lifestyle factors

2. Medical and dental consultation records, including:
• Diagnosed conditions
• Diagnostic tests and treatments performed
• Drug prescriptions administered
• Insurance points (used for calculating reimbursement amounts)

We preprocessed the purchased data, selecting 56 attributes from the annual health exami-
nation records and extracting 199 attributes for major disease diagnosed, major test and treat-
ment procedures performed, or major drugs administered, each of which represents how
many times the individual visited the doctor for that particular disease, procedure, or pre-
scription drug during the year. In addition, we also added three quantitative attributes: one
for the total insurance points of the year (roughly representing how much money the indi-
vidual spent on medical services in the year), one for the insurance points related to medical
(non-dental) services, and one for the insurance points related to dental services. Further-
more, we introduced three binary flag attributes representing service utilization: one indicat-
ing whether the individual ever visited a medical (non-dental) doctor in the year, one indicat-
ing whether the individual ever visited a dentist in the year, and one indicating whether the
individual used both medical and dental services in the year.

Data Source C
The collection criteria of previous studies in Kao Corporation were as follows: 1. an adequate
number of participants for modeling (≥ 100 participants in each clinical study), 2. inclu-
sion of common attributes (age, sex, height, weight, etc.), and 3. gender balance (i.e., exclu-
sion of datasets containing only male or only female participants). Under these criteria, we
selected one cross-sectional study on visceral fat accumulation [15] as Data Source C-1 and
12 intervention clinical trials on drinks including green tea catechins and coffee chlorogenic
acids [16–27] as Data Source C-2. The cross-sectional study of Data Source C-1 includes basic
measurements such as general blood testing and lifestyle questionnaires. The intervention
trials of Data Source C-2 include basic measurements (e.g., weight, height, and blood pres-
sure) and specialized measurements (e.g., visceral fat area, lipid profile, and gastrointestinal
hormones) to assess metabolic syndromes. Data from the first visit before interventions were
extracted, and the subsequent changes observed after exposure to the active ingredients were
added to represent participant baseline characteristics, captureing both their initial status and
responsiveness at a single reference time point.
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Design of model schema
The VHGM represents a joint probability distribution over a set of random variables
X1,X2, ...,Xk, where each random variable represents an attribute of human health data. The
model schema defines which attributes to extract from the data sources, along with their
domains and semantic interpretations. While maximizing the number of attributes could
potentially increase the model’s utility for future applications, including superfluous attributes
that are rarely used in downstream tasks or contribute minimally to the estimation of other
attributes can adversely affect both model accuracy and computational efficiency. Therefore,
we established the following criteria for attribute selection:

1. Missing rate: Attributes with high missing data rates are excluded as they lead to less
reliable estimations

2. Potential utility: Attributes with limited applicability in anticipated future applications
are omitted

3. Independence: Attributes showing minimal correlation with other variables are less
valuable for joint estimation and may be excluded

The model is designed to handle heterogeneous data types, accommodating various
attribute distributions and domains. We assume that each type has a parametric distribution,
such as the Gaussian distribution. Based on our training algorithm requirements [11], we
categorized attributes into the following types:

1. Real: Continuous variables following a normal distribution (e.g., height)
2. Positive: Strictly positive continuous variables following a log-normal distribution (e.g.,

blood glucose levels)
3. Count: Discrete variables following a Poisson distribution (e.g., number of doctor visits)
4. Categorical: Nominal variables with a finite set of unordered options (e.g., sex)
5. Ordered Categorical: Categorical variables with inherent ordering (e.g., drinking habit as

in Never, Sometimes, Everyday)

Model algorithm
Combining multiple datasets. Privacy-Preserving Record Linkage Systems are tools

designed to link records across multiple datasets while protecting individual privacy [28].
These systems typically require access to personally identifiable information prior to the
de-identification process and assume the existence of a sufficient number of common sub-
jects across datasets. The VHGM training algorithm [11] takes a fundamentally different
approach, eliminating the need for personally identifiable information or common subjects
across datasets. Instead, it employs statistical linkage, leveraging common attributes (such as
age and sex) that naturally occur across different datasets without requiring shared identifiers.

The statistical linkage in the VHGM can be conceptually expressed through transitional
conditional probability (implementation details are given in [11]). To establish an “indirect
relation” between variable X in dataset 1 and variable Y in dataset 2, one may:

1. Estimate the conditional probability distribution P(Z|X) in dataset 1
2. Estimate the conditional probability distribution P(Y|Z) in dataset 2
3. Apply the marginalization rule of conditional probability to calculate

P(Y|X) =∫ P(Y|Z,X)P(Z|X)dz
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where Z represents common variables present in both datasets. Here, we assume
P(Y|Z) = P(Y|Z,X), i.e., given Z, Y is independent of X.

The process of combining these heterogeneous datasets into a unified training dataset is
illustrated in Fig 2. We employed a row-wise concatenation approach, where:

• Each record from the source datasets becomes a separate record in the combined dataset
• Attributes not present in a particular source dataset are treated as missing values
• Common attributes across datasets (e.g., age and sex) serve as implicit linking features

Model architecture. Given the systematic nature of missing values in our combined
dataset (as opposed to random missingness), we designed a model architecture that is robust
in the presence of large-scale non-random missingness patterns [11]. The main idea is
inspired by Vision Transformer (ViT) [29] for image recognition where an input image is split
into a set of image “patches,” and a Transformer is used to capture the semantic relationships
among these patches.

Similarly, instead of treating the input as a fixed-size vector in many table-based machine
learning systems, our algorithm takes a sequence of “tokens” corresponding to observed
attributes as if it were a sequence of words. These tokens are embedded into a fixed-
dimensional space, accommodating various encoding schemes such as one-hot encoding for
categorical attributes.

Fig 3 illustrates the architecture of our model. Our transformer-based encoder leverages
attention mechanisms to capture the relationships among the observed input tokens and
transforms it into a sequence of latent representations (blue boxes in the diagram). Missing
attributes do not contribute during this encoding process. Subsequently, the latent repre-
sentation for all attributes is constructed by combining the transformed tokens for observed
attributes and a default learnable token assigned to each missing attribute (yellow boxes in the
diagram). From this unified latent representation, the decoder generates the estimated distri-
bution of every attribute. The output of each attribute is a set of estimated parameters for the
attribute, depending on its type (e.g., mean and standard deviation for real attribute modeled
as Gaussian).

Model training. We employed two techniques to train the model. The first is Masked
Modeling [30], in which certain input attributes are intentionally masked, and the model is
trained to recreate their original values. This approach is particularly effective for the missing-
value imputation task targeted by the VHGM.

Fig 2. Dataset concatenation and data generation.The diagram shows the relationship between records (rows) and
attributes (columns), with distinct datasets represented as row blocks. White areas indicate missing values and blue
areas represent estimated values. Additional rows on the right-hand side indicate synthetic records generated by the
model.

https://doi.org/10.1371/journal.pdig.0001059.g002
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Fig 3. Model architecture. Tokens for observed attributes (blue) are transformed into latent representations and
combined with a default learnable token for each missing attributes (yellow).

https://doi.org/10.1371/journal.pdig.0001059.g003

The other is a two-stage training approach: In the first stage, the model is trained separately
on individual datasets while in the second stage the model is fine-tuned by the combined
dataset. We found that this two-stage training strategy significantly reduced training time
without noticeable degradation in accuracy.

Model quality. The VHGM aims to approximate the joint probability distribution across
more than 2000 attributes. Therefore, its quality should be evaluated based on how accurately
it captures the underlying real-world distribution. This evaluation presents three significant
technical challenges:

1. The challenge of ground truth:The actual real-world distribution is unknown and
cannot be precisely estimated from observed data. To address this, we employed the
standard approach of data splitting:
• For each of the data sources, randomly select 10% of the original records as a holdout
set, maintaining the sex and age distributions

• Use the remaining 90% for model training
• Maintain strict isolation of the holdout set from model developers to prevent infor-
mation leakage and ensure unbiased evaluation

• Evaluate imputation errors using the holdout set
Using the 10% holdout sets, we calculated the imputation errors for each attribute

in each data source. The value of a target attribute in a record from the holdout set was
masked, and an imputed value was obtained using 10 attributes in the same record as
input to the VHGM.These 10 attributes were chosen based on their strong relationship
with the target attribute using the VHGM. Errors were calculated by comparing the tar-
get attribute value with the imputed value. The method details, depending on the data
type of the target attribute, are described in S2 Text.

2. The challenge of high dimensionality: Evaluating the similarity between high-
dimensional joint distributions is inherently complex. In the absence of standardized
methods for such evaluation, we developed a practical three-component assessment
framework:
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i. Univariate analysis: For each attribute, we compared the marginal distributions between
the training dataset and model output. For attributes of type real, we evaluated the over-
lapping area between the histograms of the training dataset and model output. Detailed
methods are described in S3 Text.

ii. Bivariate analysis: For 70 pre-selected attribute pairs ⟨X,Y⟩ that exhibited high cor-
relations in the training dataset, we compared the conditional distributions P(Y|X)
between the training data and model output. Detailed methods are described in S3 Text.

iii. Scenario-based analysis: In this study, “scenario-based analysis” refers to an evaluation
approach in which the VHGM is tested under predefined conditions that represent real-
istic or hypothetical use cases relevant to potential applications. In this analysis, outputs
were observed in the model response to pre-selected inputs based on anticipated use
case scenarios. Given that there may not always be sufficient records in the training data
to validate the same combinations of input values, we assessed the direction and mag-
nitude of changes in the obtained results to ensure they were intuitively consistent and
comparable to prior knowledge.

3. The challenge of validation with external datasets: Validating a generative model
against external datasets poses substantial challenges due to variations in data collec-
tion protocols and population demographics. To assess the model’s generalizability, we
conducted a comparative analysis using two well-established, independent datasets: the
National Health and Nutrition Survey, available via the Portal Site of Official Statistics
of Japan (e-Stat) [31], and the U.S. National Health and Nutrition Examination Survey
(NHANES) [32].

The validation focused on 24 nutritional intake attributes (e.g., calories, protein) that
were derived from diet record or recall methods and determined to exhibit high seman-
tic equivalence across all three datasets (see S4 Text). For each attribute, we statistically
compared the distributions to evaluate concordance. Specifically, we treated the mean
value from the VHGM output as a sample mean and calculated its z-score relative to
the corresponding distribution in each external dataset (e-Stat or NHANES). Assuming
normality, we further computed the overlapping area between the VHGM distribution
and each external dataset, providing a quantitative measure of distributional similarity.

In addition to these evaluation components, we also conducted a benchmark comparison
with widely used tabular generative models, including TVAE, CTGAN [33], and Gaussian
Copula. As a common performance metric for this comparison, we adoptedMachine Learning
Efficiency, which evaluates whether synthetic data can give rise to a machine learning model
with performance comparable to that trained on the original data. Because not all baseline
models can handle discrete variables, we employed a regression task.

This evaluation approach aligns with similar metrics used in recent synthetic healthcare
data generation efforts [8]. Previous studies similarly emphasized the importance of measur-
ing the fidelity of synthetic data across multiple dimensions of analysis.

Governance process
In this study, the term “governance process” refers to the structured set of policies, decision-
making mechanisms, and oversight activities that define stakeholder roles, guide schema
updates and new model releases, and manage risks to ensure the secure, ethical, and effective
operation of the VHGM. Our governance framework addresses the needs and concerns of
four key stakeholder groups:
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1. Data subjects: Individuals whose health data contribute to the model. Their pri-
mary concerns are data privacy and protection, which are mitigated through robust
anonymization protocols.

2. Data owners: Organizations providing source datasets. Their primary concerns are data
security and protection of intellectual property, which are mitigated through contrac-
tual agreements, system security, and usage monitoring.

3. Application owners: Organizations providing healthcare solutions using the VHGM.
Their primary concerns are model reliability, availability, and performance, which are
supported by technical documentation and service-level agreements.

4. End users: Consumers of VHGM-based applications. Their primary concerns are trust-
worthiness and validity of the VHGM outputs, which are addressed through transpar-
ent validation processes and a clear limitations disclosure.

To ensure effective oversight, we established a multi-stakeholder governance committee
that (1) conducts monthly meetings to review operations, (2) makes final decisions on the
model schema, (3) approves new model releases, and (4) evaluates potential risks and deter-
mines mitigation strategies. Additionally, the committee members are carefully nominated to
cover diverse backgrounds, including life science researchers, clinical study experts, data sci-
entists, and marketers with expertise in healthcare applications, thereby ensuring that users’
perspectives, healthcare demands, and ethical and privacy matters are appropriately con-
sidered. The terms and conditions of the VHGM API service are also carefully designed to
ensure governance in providing healthcare solutions using the VHGM.

During this whole process, we maintained transparency through open communication
with multiple channels as follows:

• Publication of technical papers on study planning [13], outcomes (this paper), and training
algorithms [11]

• Monthly newsletters [35]
• Clear documentation of model capabilities and limitations

Machine learning models can never be perfect and require continuous refinement. As
such, we periodically release newer versions of the VHGMmodel. This process is often
referred to as “MLOps” [9], and is known to be complex because improvements in certain
aspects may affect others. Through the transparent governance process described above, the
VHGM allows stakeholders to make informed decisions about which model version best suits
their specific needs.

Results
This section describes the results for the latest model of the VHGM as of August 2025, named
pollux (see Table 11).

Data Source A
A total of 997 participants were included in the study and their data were obtained. Three of
the participants placed restrictions on the use of their data and did not consent to secondary
use of their data. Thus, the data from 994 participants were used for data characterization,
model development, and model applications. Fig 4 summarizes the participants’ flow process.
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Fig 4. The participants’ flow of Data Source A.The number of participants in the entire recruitment process.

https://doi.org/10.1371/journal.pdig.0001059.g004

Participants. The sex and age ratios of participants in these visits closely mirror those
of the adult Japanese population (see the details in S1 Table and S2 Table). Table 1 shows the
characteristics of the participants. These values are consistent with recent official statistics
provided by the Japanese government [36]. Thus, this dataset may approximately represent the
statistical characteristics of the Japanese population.

Data analysis. The preprocessed data under the latest model schema includes a total of
1868 attributes that came from the 16 measurement categories. This number is comparable
to a large cross-sectional study [37]. Attribute number, missing rate, and outlier rate of each
measurement category are shown in S4 Table. Except for Hair Loss Determination and Lipid
Mediator Detection, which were relatively difficult to measure, the missing data rate in the
other measurement categories was less than 20%, indicating a sufficiently low rate of missing

Table 1. Data Source A participant characteristics.
Characteristics Male Female Male (Ref.) Female (Ref.)
Age (y), mean (SD) 51.36 (16.27) 51.16 (16.51) n/a n/a
Height (cm), mean (SD) 169.80 (5.83) 157.19 (5.74) 167.7 (6.9) 154.3 (6.7)
Weight (kg), mean (SD) 68.88 (12.42) 52.79 (9.76) 67.4 (12.0) 53.6 (9.2)
BMI (kg/m2), mean (SD) 23.87 (3.96) 21.35 (3.69) 23.9 (3.6) 22.5(3.7)
Mean (standard deviation [SD]) of height, weight, and BMI were calculated using only adults (≥ 20 years old). The
Male (Ref.) and Female (Ref.) data are available at e-Stat [36].

https://doi.org/10.1371/journal.pdig.0001059.t001
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data. Some measurement categories exhibited higher outlier rates than others. Most of these
abnormal values were thought to be caused by diseases such as diabetes rather than by noise
or other factors, and therefore the data quality was considered to be high. Fig 5 shows the cor-
relation matrix for Data Source A. Many strong relationships existed between variables in the
same measurement category, but there were some weak relationships between variables in
different measurement categories. This dataset had a sparse data structure, as many pairs of
variables had no or weak relationships (see S1 Fig). Many strong relationships between pairs
of variables were observed not only within the same measurement category but also across
different measurement categories (see several examples in S2 Fig).

Data Source B
The record and attribute numbers of the preprocessed data were 1,245,807 and 261, respec-
tively, under the latest model schema. The record number corresponds to approximately 1%
of adults living in Japan. This dataset is expected to adequately reflect the statistical charac-
teristics of the annual health checkup and the medical and dental receipts, although the older
adult population (≥ 60) was lower due to their retirement and the ratio of males to females
was slightly higher due to several possible reasons (e.g., employment, income, lifestyle,
etc.) [38]. The missing rates were considerably low. Almost all these outliers were thought to
be caused by diseases, and thus the data quality was considered to be sufficient.

Data Source C
The record and attribute numbers of the data of Data Source C-1 were 11,646 and 61, respec-
tively, under the latest model schema. The missing rate was considerably low due to the high
quality control of the study. Because the study was conducted mainly at workplaces, the ratio

Fig 5. Correlation matrix using the Spearman rank correlation.The color represents the correlation coefficient
between real, positive, ordered categorical, and binary categorical attributes.

https://doi.org/10.1371/journal.pdig.0001059.g005
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of males to females was high. The record and attribute numbers of the aggregated data of Data
Source C-2 were 1745 and 162, respectively. The distributions of age, sex, and BMI were not
perfectly matched with the overall population in Japan due to the inclusion and exclusion
criteria of the intervention studies.

Model schema and training dataset
Table 2 shows the numbers of the preprocessed dataset records. The original datasets were
split into 90% for the training dataset and 10% for the holdout dataset; the training dataset
was then selected and augmented to incorporate four imbalanced records from various data
sources, as illustrated in Table 2. The attribute overlaps from the Data Sources A, B, C-1, and
C-2 are described in Fig 6. Table 3 shows attribute occurrence percentages in Data Sources A,
B, C-1, and C-2. As shown in Table 3, common attributes (age, sex, weight, height, BMI, etc.)
were used to connect all the Data Sources. The number of each type of attribute for each of
the data sources is provided in Table 4. As clearly shown in Table 5, this dataset encompasses a
range of field categories, defined by the authors based on application fields, from “Vital signs”
to “Lifestyle” enabled by multiple data sources. This diversity is attributed to the multiple
data sources, particularly Data Source A, which includes various health attributes. Not only
“Demographic”, but also “General blood testing” functioned as “common” attributes.

VHGM quality
Missing value imputation. The imputation performance was evaluated using the hold-

out set, which corresponds to 10% of the original datasets. Since the model output for each
attribute is a distribution, we calculated the errors by treating themode of the estimated dis-
tribution as if it is the point estimation. The means (standard deviations) of standardized

Table 2. Numbers of records of each data source.
Data Source Original records 90% Records Adjusted records
A 994 897 18,000 (up sampling)
B 1,245,807 1,121,227 100,000 (down sampling)
C-1 11,646 10,483 18,000 (up sampling)
C-2 1745 1584 18,000 (down sampling)
This table shows the number of records in Data Sources A, B, C-1, and C-2. 90% Records corresponds to the dataset
without the holdout set. Adjusted records correspond to the dataset that was selected and augmented for training the
model.

https://doi.org/10.1371/journal.pdig.0001059.t002

Fig 6. Overlap of attributes across datasets.This image shows attribute overlaps across the Data Sources A, B, C-1,
and C-2.

https://doi.org/10.1371/journal.pdig.0001059.g006
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Table 3. Attribute occurrence across Data Sources.
Occurrence Attribute number (%)
1 1977 (92.2)
2 138 (6.4)
3 9 (0.4)
4 18 (0.8)
This table shows the attribute occurrence percentages in Data Sources A, B, C-1, and C-2.

https://doi.org/10.1371/journal.pdig.0001059.t003

Table 4. Number of attributes of each data type for the data sources.
Attribute Type Data Source A Data Source B Data Source C-1 Data Source C-2
Real 1134 15 11 145
Positive 15 10 6 7
Count 0 199 0 0
Categorical 485 27 5 2
Ordered Categorical 234 10 39 8
Total 1868 261 61 162
The data type definition is described in Design of model schema.

https://doi.org/10.1371/journal.pdig.0001059.t004

Table 5.The field categories of the attributes in each data source.
Field Source A Source B Source C-1 Source C-2
Vascular function 53 n/a n/a 4
Nutrient 243 n/a n/a 63
Cognitive function 69 n/a n/a n/a
Liver function 16 3 3 11
Renal function 17 3 1 14
General blood testing 20 7 4 18
Sugar metabolism function 61 7 3 10
Hormone 10 n/a n/a n/a
Stress / Fatigue 49 n/a n/a n/a
Body composition / Physique 77 7 5 15
Vital signs 4 2 2 6
Women’s health 213 n/a n/a 1
Skin care / Hair care 193 n/a n/a n/a
Motor function 20 2 n/a n/a
Immunity / Hygiene habit 108 n/a n/a n/a
Lifestyle 57 10 38 n/a
Sleep 25 n/a n/a n/a
Constitutional classification / Personality 9 n/a n/a n/a
Body odor 28 n/a n/a n/a
Excretion function 27 n/a n/a n/a
Health awareness 76 n/a n/a n/a
Oral cavity 33 1 n/a n/a
Productivity / Presentism 36 n/a n/a n/a
Demographic 4 2 2 2
Medical history / Medication (questionnaire,
number of receipts issued)

55 189 3 n/a

Nursing care 1 n/a n/a n/a
Biomarker 181 n/a n/a n/a
Walking characteristics 183 1 n/a 1
Medical procedure (number of receipts issued) n/a 27 n/a n/a
Other fields n/a n/a n/a 17
Total 1868 261 61 162
The field categories were defined and each attribute was grouped into a single field category by the authors the same
way as for the measurement categories in Data Source A.

https://doi.org/10.1371/journal.pdig.0001059.t005
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errors for real, positive, and count-type attributes were 0.527 (0.550), 0.566 (0.545), and 0.129
(0.589), respectively (Table 6). The means of accuracies for ordered categorical type attributes
were lower than those for categorical type attributes (Table 7). This discrepancy is likely due
to the greater number of selections for ordered categorical type attributes compared to cate-
gorical type attributes. These errors were better than those obtained using the mode imputa-
tion for the categorical type, the ordered categorical type, and the count type and the mean
imputation for the real type and the positive type, following the same trend observed with
the training dataset [11]. Thus, this method is practically acceptable for applications involving
missing value imputations in setting comparable to our data.

Univariate and bivariate analyses. Fig 7 shows the result examples of univariate and
bivariate analyses. With these metrics, we ensured that the model captured important statis-
tical properties of the training dataset. Note that in Fig 7(b), non-linear relationships between
attributes are properly captured, which would not be possible with a simple linear model such
as the covariance matrix.

Table 6. Imputation errors in real, positive, and count-type attributes.
Real Positive Count

Attribute number 1170 18 199
Absolute standardized error (Mean) 0.527 0.566 0.129
Absolute standardized error (Standard deviation) 0.550 0.545 0.589
The details are provided in S2 Text.

https://doi.org/10.1371/journal.pdig.0001059.t006

Table 7. Imputation errors in categorical and ordered categorical type attributes.
Categorical Ordered Categorical

Attribute number 511 244
Averaged Accuracy (Mean) 0.839 0.573
The details are provided in S2 Text.

https://doi.org/10.1371/journal.pdig.0001059.t007

Fig 7. Univariate and bivariate analyses. (a) Univariate comparison between the training dataset and model. (b) Bivariate comparison between the training dataset and
model. The blue in the graphs shows the distribution of the training dataset and the red shows the distribution of the model.

https://doi.org/10.1371/journal.pdig.0001059.g007
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Scenario-based analysis. Fig 8 shows an example of scenario-based analysis. In this case,
the input to the VHGM consists of five basic attributes (sex, age, weight, height, and BMI) and
five lifestyle attributes (e.g., “I am proactive in eating green and yellow vegetables”) for three
different personas: healthy, normal, and unhealthy. The VHGM estimates the levels of nutrient
intake for these personas.

As illustrated in the figure, a higher intake of carbohydrates was associated with unhealthy
habits, while lower levels of dietary fiber and vitamin C intake were estimated for unhealthy
personas. These results are generally consistent with common knowledge regarding the rela-
tionships between nutrient intake and lifestyle, and we interpret this as supporting evidence
that the VHGM captures real-world patterns.

Of course, scenario-based analysis is not exhaustive, and in some cases, the VHGMmay
generate counterintuitive results. We found that scenario-based analysis can serve as a quick
test for assessing model quality, without requiring computationally expensive imputation or
univariate/bivariate analyses.

External dataset validation. The results of the external validation are summarized in
Tables 8 and 9, which detail the z-scores and overlap areas from the comparison between the
VHGM output and the e-Stat and NHANES datasets, respectively. The analysis indicates a
higher degree of statistical consistency between the VHGM output and the e-Stat data (mean
overlap area = 0.82) compared to the NHANES data (mean overlap area = 0.59). This find-
ing is expected, as the model’s training data was sourced from a Japanese population, which
is more demographically similar to the population represented in e-Stat than to the US-based
population in NHANES.

Fig 8. Scenario-based analysis. (a) Three personas (healthy, normal, and unhealthy) with five common attributes and five varying attributes on lifestyles. (b) Estimated
nutrient intake per day for the personas.

https://doi.org/10.1371/journal.pdig.0001059.g008
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Table 8. Overview of the statistical difference between VHGM and e-Stats.
Metric Mean Std Max Min
Abs. z-score 0.15 0.08 0.28 0.01
Overlap area 0.82 0.05 0.90 0.70
The table shows summary statistics for the 24 common attributes. The absolute (abs.) z-score was calculated by treat-
ing the mean from the VHGM output as a sample mean relative to the distribution of the corresponding attribute in
the e-Stat dataset. The overlap area quantifies the similarity between the two distributions.

https://doi.org/10.1371/journal.pdig.0001059.t008

Table 9. Overview of the statistical difference between VHGM and NHANES.
Metric Mean Std Max Min
Abs. z-score 0.38 0.23 0.82 0.01
Overlap area 0.59 0.15 0.84 0.35
Absolute z-scores and overlap areas were evaluated using the same methodology as in Table 8, with NHANES as the
external comparison dataset.

https://doi.org/10.1371/journal.pdig.0001059.t009

Comparison with other generative models. Table 10 shows the results of a regression
task for TVAE, CTGAN [33], and Gaussian Copula along with our algorithm [11]. Our algo-
rithm outperforms the known generative models for the synthetic data (the “Individual” col-
umn in the table). Interestingly, we can obtain better performance if the synthetic data is used
for augmenting the original data (the second column in the table).

Governance process
Table 11 summarizes the models published as of August 2025, based on the decisions of
the multi-stakeholder committee. The number of attributes has generally increased with
addition of new clinical data into the data sources and introduction of new attributes in the
model schema. Model inference performance has also improved due to incremental algo-
rithm updates [11]. As shown in Fig 9, model inference performance in bivariate analysis has
improved.

Although the training dataset of the VHGM does not contain any personally identifiable
information, the improvement of model inference performance may increase potential pri-
vacy concerns regardingmembership inference attacks, which aim to determine if a particu-
lar individual was included in the training dataset. As recommended by the committee, we
conducted a preliminary assessment of vulnerability to membership inference attacks and

Table 10. Comparison with other algorithms on a regression task.
Dataset Individual (R2) Combined with original (R2)
Original 0.531 -
TVAE 0.225 0.525
CTGAN -0.130 0.506
Gaussian Copula 0.476 0.531
Ours 0.501 0.553
Machine Learning Efficiency: the task is to estimate the depression score from 65 attributes related to exercise, nutri-
ents, sleeping habits, stress, and tiredness. We generated 10,000 synthetic records for the 66 attributes. R2 denotes the
coefficient of determination.

https://doi.org/10.1371/journal.pdig.0001059.t010
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Table 11. Published models as an API service and their model parameter sizes.
Model Name Date of Publish Feature Attributes Parameter Size
fomalhaut Dec. 7, 2022 General-purpose 1841 1,668,232
helvetios-a Feb. 2, 2023 Health checkup focus 260 290,266,849
helvetios-b Feb. 2, 2023 Health checkup focus 302 11,056,686
intercrus May 12, 2023 General-purpose 1975 85,822,679
libertas June 30, 2023 General-purpose 2150 94,131,094
lich Oct. 6, 2023 General-purpose 2097 26,951,129
musica April 8, 2024 General-purpose 2110 32,381,324
pollux May 21, 2025 General-purpose 2142 2,736,600
The model parameter size is typically dominated by the number of hidden nodes and the number of layers in the
model architecture. The model names are based on the names of stars.

https://doi.org/10.1371/journal.pdig.0001059.t011

Fig 9. Improved model performance in bivariate relationships. Overlap areas between the dataset and model output were increased for each attribute pair. (a) Bivariate
relationships using fomalhaut published in Oct. 2022. (b) Bivariate relationships using pollux published in May 2025.

https://doi.org/10.1371/journal.pdig.0001059.g009

reviewed the results. A summary of these preliminary experiments has been reported else-
where [34], indicating no immediate evidence of exploitable risk. Nevertheless, we acknowl-
edge that a more comprehensive empirical evaluation is warranted and plan to address this in
future work.

Estimated health information can potentially contribute to unethical decisions, such as
ones that result in discrimination against underrepresented groups. The VHGM is a general-
purpose API service and it is extremely difficult – if not impossible – to implement technical
safeguards that fully prevent misuse. Instead, the terms and conditions of the VHGM explic-
itly prohibit antisocial or unethical uses of the technology. Furthermore, the committee also
continuously monitors API usage to ensure compliance.
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Discussion
Principal findings
The principal findings of this paper are twofold. First, a general-purpose generative model
for healthcare can be built by combining multiple data sources and managing its quality to a
certain degree. Second, there are identifiable patterns for how such a model can be applied in
real-world applications.

Feasibility of a general-purpose statistical model. The VHGM is provided as an API
and is intended to be a building block for healthcare applications developed and operated by
independent vendors. We demonstrate two such applications.

1. App for encouraging more walking: Amobile phone company has developed a health-
care app for their phones, which encourages users to walk more for their health. One
of the challenges for the app is setting appropriate goals (the number of steps a user
should walk daily) because different people have different abilities. The VHGM includes
attributes such as daily walking steps and other factors like lower back pain. The app
uses this information to suggest, “Individuals with similar profiles but without back
pain walk an average of X steps per day,” allowing users to decide whether to try walk-
ing more.

2. App for health-related financial assets:The VHGM contains attributes derived from
health insurance records. With these attributes, one can estimate the distribution of
annual medical spending, given available attribute values such as age, sex, weight, and
lifestyle habits. A financial service startup uses this information to calculate the esti-
mated lifetime medical spending, referred to as “Health Asset.” The app enables users to
know their Health Asset and experiment with how this number changes based on dif-
ferent habits, such as exercise, drinking, and smoking. To prevent misunderstanding or
misuse, the service clearly states that this application is not a medical device and is not
intended for the diagnosis, treatment, or prevention of any disease. Users are advised to
interpret the results as informative guidance rather than definitive medical or financial
advice.

These applications provide evidence of the usefulness of the VHGM as a general-purpose
generative model. More applications of the VHGM are described in the model development
paper [11].

Usage patterns of the VHGM. As of the time of writing this paper, there are several pay-
ing customers who regularly use the VHGM. Additionally, we conducted a couple of business
idea contests, asking for new applications based on the VHGM.These experiences revealed
recurring usage patterns of the VHGM.

1. Estimation of a missing value from known values –This is the basic function of the
VHGM. Given observed values o1, o2, ..., om, VHGM returns the estimated distribution
P(y|o1, o2, ..., om) for the target attribute y. This pattern is useful when some attribute is
difficult to measure directly (e.g., measuring blood sugar usually requires an invasive
process – VHGM provides a means to estimate the blood sugar from other observable
attributes).

2. What-if analysis (Counter-factual scenario generation) – One can provide counter-
factual input to the VHGM. For example, “what would my estimated BMI be if I were
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not smoking” is a counter-factual query. This should not be interpreted as a causal-
ity, but these queries are useful for considering possible scenarios and planning future
course of action. The walking encouragement app described above uses this pattern.

3. Optimization for a desired output – One can use the VHGM API to iteratively search
possible combinations of values that would yield the desired estimated value of the out-
put attribute. For example, “How can I change my diet to reduce the estimated risk of
neuropathic pain” would be answered by optimizing the diet attributes to reduce the
estimated number of annual doctor visits related to neuropathic pain. Open-source
tools for black-box optimization such as Optuna [39] could be used for such computa-
tions.

4. Exploration of possible factors – One can explore possible attributes that have some
relationship with the target attribute. For example, many older adults are concerned
about their body odor but are unaware of the factors that may influence it. By changing
the value of the body odor attributes and observing how the other over 2000 attributes
respond, one may be able to form a hypothesis on the cause of body odor.

For each of the above examples, there are two “modes” of using the VHGM. One is to use
it through the API to directly obtain the query results. The other is to generate synthetic data
under given conditions and then use the synthetic data for further analysis. In general, this
“indirect” mode of use is not recommended because the resulting analysis may contain both
the errors incurred by the VHGM training process and the errors in the second, derivational
analysis. This mode is, however, useful for:

• Educational purposes because the trainees do not need to have a programming environ-
ment for API access

• Analysis in specific groups for which no data is available.

This is by no means an exhaustive list. We expect that there will be more innovative
VHGM use cases in the future.

Limitations. Limitations of the VHGM are as follows:

• Bias in the training dataset – Due to the cost, logistical constraints, and clinical study pur-
poses, the populations used for building the training dataset were biased. This may make
applications that target different populations (e.g., different racial groups) inappropri-
ate. The external dataset validation indicates this limitation. Certain medical conditions
specific to populations or environments outside the scope of the training data may not be
appropriately addressed.

• Comprehensiveness of evaluation – While we devised a multi-faceted evaluation frame-
work (imputation error, distributional concordance, and scenario-based analysis), it does
not comprehensively capture all aspects of model quality. Moreover, due to the general-
purpose design of the VHGM, it is not feasible to exhaustively benchmark all possible
input-output combinations. This limited comprehensiveness should be considered when
interpreting the reported results.

• Deep stratified analysis – Due to the available sizes of the source datasets, including that of
Data Source A, deeply stratified groups do not have enough records, which may result in an
unreliable statistical model.

• Cross-sectionality –The training dataset is largely cross-sectional (Data Source C-2 was
from interventional studies) and therefore, the VHGM is not capable of predicting the
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future. It is theoretically possible to build a model with predictive functions if we have
high-dimensional time-series data, but collecting such data is excessively expensive.

• Correlation vs causality –What-if analysis carries the risk of being interpreted as causal. If
the VHGM returns “if you were doing daily exercise, your estimated BMI would be lower,”
it does not mean that exercise will lower the BMI. Clear communication of how to interpret
the output of the VHGM is one of the critical risk factors we identified. Transparency (see
Governance process) is one of the mitigation efforts.

Conclusion
We demonstrated the feasibility of constructing a general-purpose generative model for
healthcare data. Our analysis confirms that the model captures key statistical properties,
including univariate distributions and bivariate relationships among attributes. Additionally,
we presented several real-world applications to highlight the model’s practical value.

Supporting information
S1 Fig. Histogram of correlation coefficients using the Spearman rank correlation.The
number of combinations of selecting pairs of attributes from 1776 attributes is 1,088,550. For
each combination, the Pearson rank correlation coefficient was obtained, and the histogram
was created.
(TIF)

S2 Fig. Typical correlated pairs of each data type in Data Source A.The ΦK correlation
coefficient [40] was employed to assess the relationships between pairs of variables across var-
ious data types, including numerical, categorical, and ordinal. Each 5-letter code corresponds
to an attribute definition. (a) Typical correlated pairs between numerical attributes. The num-
bers in the titles represent the correlation coefficient of the pairs. (b) Typical correlated pairs
between a numerical attribute and a categorical attribute. The numbers in the titles repre-
sent the correlation coefficient of the pairs. (c) Typical correlated pairs between categorical
attributes. The numbers in the titles represent the correlation coefficient of the pairs.
(TIF)

S1 Text. Analytical method details on skin surface lipid (SSL)-RNA, intestinal microbiota,
and saliva microbiota.Method details are described in S1 Text.
(DOCX)

S2 Text. Details on the imputation error calculation methods.Method details are described
in S2 Text.
(DOCX)

S3 Text. Details on the univariate and bivariate analyses.Method details are described in S3
Text.
(DOCX)

S4 Text. Details on the external dataset validation.Method details are described in S4 Text.
(DOCX)

S1 Table. Number of male participants. Decade, N (visit 1), Ratio (%), N (visit 2), Con-
version (%), and Ref. (%) correspond to the age group of participants, numbers in each age
group, percentages of each age group relative to the total participants, ratios of N (visit 2) to
N (visit 1), and ratios of the Japanese population from the recent Japanese official statistics
that are available at e-Stat (2019), respectively. At visit 2, conversion rates of the men’s 60-69
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and ≥ 70 age groups were slightly lower compared to those in younger age groups. This reduc-
tion appears to be attributable to the exclusion criteria applied in the study or their health
conditions (see the medical history records in S3 Table).
(DOCX)

S2 Table. Number of female participants.The column name definitions are the same as S1
Table.
(DOCX)

S3 Table. Number of diseases under treatment. Numbers of participants undergoing treat-
ment for each disease.
(DOCX)

S4 Table. Attribute number, missing rate, and outlier rate of each measurement.Measure-
ment categories were described elsewhere [13].
(DOCX)
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