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Abstract
Accurate diagnosis of gait impairments is often hindered by subjective or costly assess-
ment methods, with current solutions relying on either expensive multi-camera equipment
or subjective clinical observation. There is a critical need for accessible, objective tools
that can aid in gait assessment while preserving patient privacy. In this work, we present
a mobile phone-based, privacy-preserving artificial intelligence (AI) system for classify-
ing gait impairments that leverages a novel dataset of 743 videos capturing seven dis-
tinct gait types. The dataset consists of frontal and sagittal views of clinicians simulating
normal gait and six types of pathological gait (circumduction, Trendelenburg, antalgic,
crouch, Parkinsonian, and vaulting), recorded using standard mobile phone cameras.
Our system achieved 86.5% accuracy using combined frontal and sagittal views, with
sagittal views generally outperforming frontal views except for specific gait types like cir-
cumduction. Model feature importance analysis revealed that frequency-domain features
and entropy measures were critical for classification performance. Specifically, lower limb
keypoints proved most important for classification, aligning with clinical understanding
of gait assessment. These findings demonstrate that mobile phone-based systems can
effectively classify diverse gait types while preserving privacy through on-device pro-
cessing. The high accuracy achieved using simulated gait data suggests their potential
for rapid prototyping of gait analysis systems, though clinical validation with patient data
remains necessary. This work represents a significant step toward accessible, objective
gait assessment tools for clinical, community, and tele-rehabilitation settings.
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Author summary
Our research aims to make gait analysis more accessible and private by using pose esti-
mates recorded on a standard mobile phone. Gait, or the way people walk, is crucial
for diagnosing movement impairments caused by conditions like stroke or Parkinson’s
disease. Currently, accurate gait assessment often requires expensive equipment or sub-
jective judgments by specialists. Our approach instead uses a mobile phone, allowing us
to gather video data that can be processed directly on the device, protecting individuals’
privacy while achieving reliable results. In our study, we video recorded trained clini-
cians simulating different types of gait impairments to create a diverse dataset, which
we used to train the AI system to recognize and classify these gait types. Our system can
correctly identify various simulated gait types. Our findings demonstrate that mobile
phones can serve as effective, low-cost tools for clinical gait analysis. With further vali-
dation, this technology could become a practical solution for monitoring and diagnosing
movement disorders in everyday environments, supporting broader access to health
monitoring and rehabilitation.

Introduction
Walking is essential for functional mobility and activities of daily living [1]. Gait impairments

(trisha.m.kesar@emory.edu) or through the
Emory BMI Department (bmi@emory.edu) for
researchers who meet the criteria for access to
confidential data.

Funding: T.K. received funding from the Eunice
Kennedy Shriver National Institute of Child
Health and Human Development (NICHD) under
grant number R21HD084231. H.K. received
funding from the National Institute on Deafness
and Other Communication Disorders (NIDCD)
under grant number 1R21DC021029-01A1.
Additionally, H.K. received support from the
James M. Cox Foundation and Cox Enterprises,
Inc., in support of Emory’s Brain Health Center
and the Georgia Institute of Technology. The
sponsors and funders had no role in the study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have
declared that no competing interests exist.

differ significantly in class and severity, depending on the individual’s specific neuropathol-
ogy, such as stroke, Parkinson’s disease, spinal cord injury, or traumatic brain injury [1]. This
variability in classes and causes of gait impairments poses significant challenges in precise
diagnosis when using observational gait analysis in clinical settings [2–4], a method reliant
on visual assessment and interpretation of gait. Although observational analysis is common in
clinical settings, it has limited accuracy, test-retest, and inter-rater reliability [5,6]. For objec-
tive, accurate, and sensitive gait assessments, marker-based 3D gait analysis is the gold stan-
dard method used in motion analysis laboratories and academic medical centers [7,8]. How-
ever, the adoption of marker-based 3D motion capture is limited by high costs, the need for
specialized expertise, and time constraints [9,10].

Recently, with advances in computer vision techniques, numerous studies have explored
markerless gait analysis methods [11,12]. These novel methods eliminate the need for markers
and expensive equipment by utilizing pose estimation algorithms [13,14] that extract the loca-
tions of anatomical key points from only videos recorded using low-cost video cameras. The
markerless approach reduces both time and setup complexity for gait analysis. Several recent
studies have demonstrated the clinical value of deriving gait kinematics from pose estimation
for quantifying gait types and classifying pathological conditions, thus enhancing diagnos-
tic and prognostic value [11,12,15,16]. Pose estimation, therefore, may overcome the limi-
tations of both laboratory-based high-tech, high-cost 3D gait analysis and clinic-based, low-
tech observational gait analysis, enhancing the accessibility, scalability, and reliability of gait
assessments.

Although an area of active research, recent studies have primarily employed markerless
methods for a limited range of pathological gaits–including stroke, amputation, Parkinson’s
Disease, and Cerebral Palsy [15–18]–and no studies have investigated the use of datasets
containing more than three gait classes. To understand the applicability of markerless gait
analysis, there is a need for benchmark datasets that include not only normal and one type of
impaired gait, but instead large datasets comprising a wide variety of pathological gait classes.
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However, these video datasets are challenging to collect, annotate, and analyze. Such bench-
mark datasets of different types of pathological gait, if available, will help provide a fair com-
parison between various pose estimation algorithms, and gait analysis methodologies for the
research community. Furthermore, most existing studies that employ pose estimation for
analysis of human gait videos assume the availability of a secure computer network with a
graphical processing unit (GPU)-enabled cloud servers for processing gait video data [17,18].
This poses a challenge with respect to preserving participant privacy, as video data can cap-
ture sensitive information, such as bystanders, nudity, facial features, and other potential
identifiers (like tattoos) when used in the real world. A recent IBM report stated that secu-
rity and privacy data breaches related to cloud computing could cost $4.45 million per inci-
dent [19]. Finally, most studies using pose estimation algorithms alongside AI systems uti-
lize a black box approach, lacking interpretability and limiting their use for clinical decision-
making, by preventing clinicians from understanding potential biases or limitations in the AI
models and how they arrive at their conclusions.

To address these gaps in markerless approaches, the objective of our current work was to
demonstrate that pose estimation models running on a mobile-phone-based system [13,20]
can classify various types of gait pathologies simulated by clinical specialists. We hypoth-
esized that pose landmarks extracted independently from two mobile-phone videos—one
frontal and one sagittal—can be fused to improve gait�type classification accuracy, without
any added complication or time for synchronizing a dual camera setup. This work provides
a significant step toward the long-term vision of implementing scalable, accessible, robust,
privacy-preserving, and interpretable gait assessments in clinical, home, and community
environments for diagnosing gait dysfunction and tracking gait recovery.

Materials and methods
Ethics statement
All study procedures were approved by the Human Subjects Institutional Review Board of
Emory University (IRB Approval Number: 00003848). Participants provided written informed
consent before participating in the gait video data collection.

Study design and video dataset
We collected video data from 27 able-bodied participants (4 males, mean age 26± 0.4; 23
females, mean age 33.5± 3.1), all of whom were Doctor of Physical Therapy (DPT) students
or faculty (See Fig 1 for Participant demographics). Participants walked an outdoor over-
ground ten meter straight path with a camera placed perpendicularly four meter from the
walking line. This walking distance, commonly used in clinical gait assessments, captures
five to ten consecutive gait cycles. Each video yielded, on average, seven gait cycles. The total
number of cycles observed across all videos varied by gait type per video (ANT: 7.6; CIR:
5.8; CRO: 7.2; NOR: 4.6; PAR: 10.4; TRE: 6.4; VAU: 5.4), reflecting individual differences in
stride length and impairment severity. Participants completed one trial for each of the seven
simulated gait classes: normal (NOR), circumduction (CIR), Trendelenburg (TRE), antalgic
(ANT), crouch (CRO), Parkinsonian (PAR), and vaulting (VAU). These seven gait patterns
were selected based on clinically important and commonly observed gait impairments in neu-
rological populations—as defined by physical-therapy experts—to ensure representation of
diverse types of gait impairments in a non-lab setting [21–25].

Participant inclusion criteria included the ability to follow instructions, no medical or
musculoskeletal conditions interfering with walking, and the ability to accurately (as judged
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Fig 1. The demographics of our trained able bodied clinicians, setup of our video data collection, and number of simulated gait types.

https://doi.org/10.1371/journal.pdig.0001004.g001

by the experimenters) replicate the simulated gait impairments. The number of videos per gait
class is summarized in Fig 1: Simulated Gait Types. Before each trial, participants received
verbal instructions on how to simulate each gait impairment, with asymmetrical gaits (e.g.,
CIR, ANT) performed as if the right leg was affected. For each trial, we recorded separate
videos for walks in two directions (left and right) and from two camera angles (frontal and
sagittal views). From the frontal view camera’s perspective, when walking towards the Right,
participants moved away from the camera (camera facing their back); when walking to the
Left, participants moved towards the camera (camera facing their front). A total of 743 gait
videos were recorded, evenly split between frontal and sagittal views. The number of videos in
each view and direction are summarized in Fig 1: Data collection Setup.

Privacy-preserving video-based gait analysis
Overall pipeline. Our analysis pipeline (Fig 2) followed a standard human activity recog-

nition framework [26]. We used Mediapipe [20] for on-device pose estimation [13], prepro-
cessed the poses, segmented them into overlapping 1-second analysis frames, extracted statis-
tical, frequency time series features, and trained Support Vector Machine (SVM) [27], Ran-
dom Forest (RF) [28], and Extreme Gradient Boosting (XGBoost) [29] classifiers to make pre-
dictions for each analysis frame. Video-level gait class predictions were made by aggregating
frame-level predictions using majority voting.

Preprocessing. Pose estimation was conducted using MediaPipe [13,20], extracting
the position of 33 keypoints across time from each video(Fig 2; 1. MediaPipe Pose Esti-
mation). Each keypoint within a frame was represented by three channels: its x and y pixel
coordinates, along with the estimated depth or z-axis distance from the camera. The pose
estimator was run on-device, a setup allowing for only the detected poses to be uploaded
to the server, ensuring that identifiable or sensitive data, such as the face or any nudity,
would be safeguarded from potential data breaches. Frames where the participant was not
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Fig 2. Overall video-based gait analysis pipeline and evaluation approach.

https://doi.org/10.1371/journal.pdig.0001004.g002

PLOS Digital Health https://doi.org/10.1371/journal.pdig.0001004 September 16, 2025 5/ 20

https://doi.org/10.1371/journal.pdig.0001004.g002
https://doi.org/10.1371/journal.pdig.0001004


ID: pdig.0001004 — 2025/9/12 — page 6 — #6

PLOS DIGITAL HEALTH Privacy-preserving, simulated gait classification with explainable mobile AI

visible or where no pose was detected were excluded from the analysis. For poses with
partially missing keypoints due to occlusions (e.g., the arm facing away from the camera
being obstructed by the torso), missing keypoints were linearly interpolated over time. All
the pose sequences were downsampled to 30 frames per second (fps), as the majority of
low-spec mobile phone cameras support 30 fps, improving the scalability of the developed
pipeline.

Next, all poses were projected to a hip-center coordinate. This process removed potential
biases in the model, arising from variations in the detected pose’s relative position to the cam-
era. To preserve the natural sway of the hips during movement, we centered the keypoints
using the median of the hip location from a 2-second (60 frames) window centered at the
corresponding frame. For the frontal view, we re-scaled poses to the same height, removing
perspective biases caused by changes in size due to the individual’s distance from the cam-
era. Participants further away from the camera appeared smaller, which necessitated this
re-scaling. For the sagittal view, we skipped this re-scaling process, as the participant’s per-
spective size and distance from the camera remained nearly constant throughout the video
sequence. The centering and re-scaling processes were illustrated in Fig 2 (2. Preprocessing).
Finally, the preprocessed pose sequences were segmented into 1-second windows (analysis
frames) using a sliding window with 30 frames (1 second) and 50% overlap Fig 2 (3. Window-
ing). We chose a 1-second window following previous work in human activity recognition for
gait classification [30].

Gait impairment video classification.
Extraction and selection of features. For each 1-second analysis, we extracted time series

features from each keypoint to characterize the gait window. Specifically, we used Time Series
FeatuRe Extraction based on Scalable Hypothesis tests (TSFRESH) [31] Python package, a
widely used time series feature extraction pipeline, to generate 783 features per channel [31].
In total, we extracted 77,517 features from 99 keypoint time series. These features were then
reduced using the Fresh (FeatuRe Extraction and Scalable Hypothesis testing) algorithm [32],
which eliminates time series features that are statistically insignificant to classification tasks.
The Fresh algorithm utilizes the Benjamini-Yekutieli (BY) method [33], which identifies high
dependencies or autocorrelation in time series features. Feature selection reduced the set of
feature extraction methods used in the sagittal view to 31 and in the frontal view to 37, as
included in Table 1.

Data augmentation. The different walking speeds observed across simulated gait classes
and participants led to an imbalance in the number of segmented windows per gait class,
as displayed in Fig 2 (5.2 Window-level Class Balancing). Class imbalance could poten-
tially result in suboptimal performance of machine learning models [34]. To address this, we
applied the Synthetic Minority Over-sampling Technique (SMOTE) [35], which increased the
sample sizes of the minority gait classes (VAU, NOR, CIR, TRE, ANT, and CRO) to match
those of the PAR gait class. SMOTE oversampled existing minority class examples by gener-
ating new synthetic samples by interpolating across their features, helping to mitigate class
imbalance and improve model performance.

Video-level classification. The augmented window-level features were input into several
machine learning models previously used in gait research [36–38], which were SVM [27],
RF [28], and XGBoost [29], to classify each window to a specific gait class. For single view
video-level classification, we aggregated the labels inferred from each window in the video
using a majority voting scheme. For multi-view video-level classification, majority voting
was applied across all window-level labels from both frontal and sagittal views of the partic-
ipant simulating the gait. The video-level aggregation was illustrated in Fig 2 (6. Video-level
Aggregation).
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Table 1. Comparison of selected feature types across sagittal and frontal views.

Legend:
†S Not relevant in Sagittal View as per TSFresh
†F Not relevant in Frontal View as per TSFresh

Feature Type Definition
abs energy Returns the absolute energy of the time series, which is the sum over the squared values.
absolute maximum Calculates the highest absolute value of the time series x.
absolute sum of
changes

Returns the sum over the absolute value of consecutive changes in the series x.

agg autocorrelation Descriptive statistics on the autocorrelation of the time series.
agg linear trend Calculates a linear least-squares regression for values of the time series that were aggre-

gated over chunks versus the sequence from 0 up to the number of chunks minus
one.

approximate entropy Quantifies the amount of regularity and unpredictability of fluctuations over the channel.
autocorrelation Calculates the autocorrelation of the specified lag, according to the formula.
benford correlation Returns the correlation from first digit distribution; useful for anomaly detection

applications.
binned entropy†S Bins the values of x into a maximum number of equidistant bins.
c3 Uses c3 statistics to measure non-linearity in the time series.
change quantiles Fixes a corridor given by the quantiles qlandqhofthedistributionofx.
cid ce Estimates time series complexity (complex time series have more peaks, valleys, etc.).
count above†S Returns the percentage of values in xthatarehigherthanathresholdt.
count below†S Returns the percentage of values in xthatarelowerthanathresholdt.
cwt coefficients Calculates a Continuous Wavelet Transform for the Ricker wavelet (Mexican hat wavelet).
fft aggregated Returns the spectral centroid, variance, skew, and kurtosis of the absolute Fourier

transform spectrum.
fft coefficient Calculates the Fourier coefficients of the one-dimensional discrete Fourier Transform for

real input by FFT algorithm.
fourier entropy†S Calculates the binned entropy of the power spectral density of the time series (using the

Welch method).
linear trend Calculates a linear least-squares regression for the time series versus the sequence from 0

to the length of the time series.
max langevin fixed
point

Largest fixed point of dynamics estimated from polynomial h(x).

maximum Calculates the highest value of the time series x.
mean Returns the mean of x.
mean abs change Average over first differences in the time series.
mean n absolute max Calculates the arithmetic mean of the n absolute maximum values of the time series.
median Returns the median of x.
minimum Calculates the lowest value of the time series x.
number crossing m Calculates the number of crossings of xonathresholdm.
number peaks†S Calculates the number of peaks of at least support ninthetimeseriesx.
permutation entropy Calculates the permutation entropy for time series complexity.
quantile Calculates the qquantileofx.
range count†S Counts observed values within the interval [min,max).
root mean square Returns the root mean square (RMS) of the time series.
sample entropy Calculates and returns the sample entropy of x.
standard deviation Returns the standard deviation of x.
sum values Calculates the sum over the time series values.
variance Returns the variance of x.
variation coefficient Returns the variation coefficient (standard error / mean) for x.

https://doi.org/10.1371/journal.pdig.0001004.t001

Experiment and evaluation.
Cross validation and evaluation metrics. To validate the proposed gait classification

pipeline, we used a user-independent nested cross-validation approach following the stan-
dard methods in machine learning research [39,40]. This was to validate the generalizability
of the trained model when tested on unseen participants, separate from the training set. First,
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we split the participant data using a Leave-One-Subject-Out (LOSO) cross-validation scheme,
where each fold used data from one participant as the test set and the remaining participants’
as the training set (Outer Loop). Within each fold, the training set was further divided using a
user-independent 5-fold cross-validation scheme, where 20% of the participants were used as
the validation set and the remainder as the training set (Inner Loop). The inner loop was used
to tune hyperparameters of each model (SVM, RF, and XGBoost), listed in Table 2, using an
open-source package named Optuna [41]. The outer loop’s test set was used to derive the final
model evaluation. The Fresh feature selection and SMOTE techniques were applied exclu-
sively to the training set to prevent information leakage from the validation set (in the inner
loop) and the test set (in the outer loop) during nested cross-validation. Model performance
was evaluated using accuracy, F1 score, precision, and recall. To evaluate the statistical signifi-
cance of the model performances, we applied ten trials of nested cross-validation and reported
the average test scores across all splits, accompanied by 95% confidence intervals based on
Z-type or normal approximation type confidence intervals [42].

Multi-class and per-gait classification tasks. We first studied the overall multi-class clas-
sification performance for all seven gait classes. Then, we studied the per-gait classification
performance when considering one gait class as positive samples while considering all other
six gait samples as negative samples. This was to understand which gait class was specifically
challenging to identify when presented with other gait impairments. We only used XGBoost
for the per-gait classification evaluation, which showed the best performance in the overall
classification performance. Our evaluations were done for frontal view-only, sagittal view-
only, and frontal and sagittal combined view models. The overall cross-validation scheme was
illustrated in Fig 2 (5. LOSO Cross-validation, 5.1 TSFRESH Feature Selection, and 5.3 Model
Training).

Feature importance analysis. We applied permutation feature importance analysis to
analyze the relevance of each feature for classifying the seven gait classes (NOR, CIR, TRE,
ANT, CRO, PAR, and VAU). Permutation importance assessed the impact of each feature on
the model’s performance by randomly shuffling the feature values and observing the change
in the model’s performance [43]. A positive value indicates the model performance dropped
and the feature is therefore important to the model. A negative value indicates the model

Table 2.Hyperparameters tuned for SVM, RF, and XGBoost models.
Model Hyperparameter Description
SVM C Regularization parameter controlling trade-off between error and

margin
gamma Defines how far the influence of a single training example reaches
kernel Specifies the kernel type to be used in the algorithm (linear or rbf, in

this case)
RF n_estimators Number of trees in the forest

max_depth Maximum depth of the tree
min_samples_split Minimum number of samples required to split an internal node
min_samples_leaf Minimum number of samples required to be at a leaf node
max_features Number of features to consider when looking for the best split

XGBoost max_depth Maximum depth of a tree in the model
learning_rate Step size shrinkage to prevent overfitting
n_estimators Number of boosting rounds (trees)
min_child_weight Minimum sum of instance weight needed in a child node
subsample Fraction of samples used for building each tree
colsample_bytree Fraction of features used when building each tree

https://doi.org/10.1371/journal.pdig.0001004.t002
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performance increased and the feature maybe confusing the model. A zero value indicates the
model performance is unaffected by the feature.

Concerning the statistical significance of feature importance, we also reported a 95% con-
fidence interval for each feature importance score. We further analyzed the keypoint impor-
tance by summing up the feature importance score of all features belonging to each keypoint.
This was to understand the overall importance of a particular joint movement for distinguish-
ing different gait classes, agnostic to feature classes.

Results
Gait impairment classification
The results from our gait classification experiments are summarized below. Table 3 presents
the overall model performance, while Table 4 details the per-class performance of the
XGBoost classifier.

Model performance with only frontal view videos as model input.
Overall performance. When given only frontal view input data, the best performing

model was XGBoost. Conversely, the SVMmodel showed the lowest performance.
Per-class performance. The XGBoost model with frontal video views only as inputs

showed the highest F1 score for circumduction, F1 score ≥ 0.7 for CIR, CRO, PAR and NOR
gaits, F1 score ≥ 0.6 for ANT and TRE gaits, and lowest F1 score for VAU gait.

Model performance with only sagittal view videos as input.
Overall performance. XGBoost achieved the highest overall performance when only

sagittal view data was given. Similar to frontal view, SVM showed the lowest performance.

Table 3. Classification results for multi-class gait impairments. Bold text means the best performance in each col-
umn. No overlap of confidence intervals shows the difference between values to be statistically significant (p≤ 0.05)

Model View Accuracy F1 score Precision Recall
SVM Frontal 0.376± 0.016 0.352± 0.016 0.397± 0.010 0.376± 0.007

Sagittal 0.640± 0.016 0.633± 0.015 0.649± 0.012 0.640± 0.011
Combined 0.602± 0.016 0.591± 0.015 0.607± 0.013 0.602± 0.011

RF Frontal 0.606± 0.015 0.601± 0.016 0.602± 0.015 0.606± 0.015
Sagittal 0.676± 0.015 0.672± 0.015 0.674± 0.012 0.676± 0.012
Combined 0.745± 0.014 0.740± 0.014 0.742± 0.012 0.745± 0.012

XGBoost Frontal 0.714± 0.015 0.710± 0.014 0.713± 0.012 0.714± 0.011
Sagittal 0.794± 0.013 0.794± 0.014 0.796± 0.012 0.794± 0.012
Combined 0.865± 0.011 0.864± 0.013 0.864± 0.012 0.865± 0.011

https://doi.org/10.1371/journal.pdig.0001004.t003

Table 4. Classification performance for each gait type using the XGBoost model. Bold text indicates the best performance in each column. No overlap of
confidence intervals shows the difference between values to be statistically significant (p≤ 0.05).

Frontal Model Sagittal Model Combined Model
Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
antalgic 0.630 ± 0.041 0.654 ± 0.042 0.642 ± 0.034 0.646 ± 0.044 0.596 ± 0.043 0.620 ± 0.036 0.857 ± 0.032 0.808 ± 0.033 0.832 ± 0.027
circumduction 0.926 ± 0.022 0.962 ± 0.017 0.943 ± 0.016 0.761 ± 0.041 0.673 ± 0.041 0.714 ± 0.033 0.927 ± 0.024 0.981 ± 0.015 0.953 ± 0.015
crouch 0.627 ± 0.037 0.808 ± 0.031 0.706 ± 0.030 0.937 ± 0.025 0.865 ± 0.029 0.900 ± 0.021 0.836 ± 0.031 0.885 ± 0.027 0.860 ± 0.024
normal 0.736 ± 0.039 0.750 ± 0.039 0.743 ± 0.031 0.839 ± 0.032 0.904 ± 0.029 0.870 ± 0.025 0.925 ± 0.026 0.942 ± 0.023 0.933 ± 0.017
Parkinsonian 0.894 ± 0.032 0.808 ± 0.033 0.848 ± 0.026 0.906 ± 0.028 0.923 ± 0.026 0.914 ± 0.019 0.875 ± 0.028 0.942 ± 0.020 0.907 ± 0.020
Trendelenburg 0.640 ± 0.043 0.615 ± 0.042 0.627 ± 0.035 0.639 ± 0.039 0.750 ± 0.039 0.690 ± 0.031 0.808 ± 0.033 0.808 ± 0.033 0.808 ± 0.028
vaulting 0.538 ± 0.049 0.404 ± 0.041 0.462 ± 0.041 0.846 ± 0.033 0.846 ± 0.033 0.846 ± 0.025 0.818 ± 0.039 0.692 ± 0.041 0.750 ± 0.031

https://doi.org/10.1371/journal.pdig.0001004.t004
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Per-class performance. XGBoost showed an F1 score of ≥ 0.90 for CRO and PAR gaits,
an F1 score of ≥ 0.85 for NOR and VAU gaits, and lowest F1 score for ANT and TRE gaits.

Model performance with combined video view (both frontal and sagittal views) as
input.

Overall performance. XGBoost was the best performing model when combined frontal
and sagittal views were used for input data. SVM demonstrated the lowest performance. Inter-
estingly, the combined view model in SVM was the only one that performed worse than its
single view sagittal counterpart.

Per-class performance. XGBoost showed an F1 score of ≥ 0.9 for CIR, NOR, and PAR
gaits, an F1 score of ≥ 0.8 for ANT, CRO, and TRE gaits, and the lowest F1 score for VAU
gait. For XGBoost, the per-class performance in combined view models showed either
improved or statistically similar performance (within confidence intervals) for six out of seven
gait classes compared to the best single view model. The only class that performed worse in
the combined view model was VAU, with a decrease in F1-score compared to the sagittal
view.

Model interpretation: Feature and keypoint importance analysis
Feature importance. In Fig 3, the feature importance analysis for (a) frontal and (b)

sagittal view is shown when using XGBoost for multi-class gait classification. The heatmap
represents the overall importance of features across keypoint_channels (x-axis) and feature
types (y-axis). The heatmap represents the top 20 keypoint_channels and top 20 feature types,
ranked by cumulative permutation importance in XGBoost’s performance. The color gradi-
ent from white to red in the heatmap indicates the level of importance, with red representing
higher significance, while white indicates insignificance to the model classification. Notably,
in both heatmaps, most features and keypoint combinations show zero importance.

Frontal view videos. Themost relevant features when analyzing frontal view videos were
‘mean_n_absolute_max’ in the x-axis of the right_foot_index_toe; and the ‘cwt_coefficients’
and ‘quantile’ across several keypoints belonging to the hand (fingers), and face (eyes and
nose). See Table 1 for definitions of frontal view feature types.

Sagittal view videos. Among the features, ‘fft_coefficient’ for the right_ankle, left_knee
and right_knee in the x-axis, which represents the anterio-posterior axis, and ‘sam-
ple_entropy’ for the right_ankle in the x-axis stand out as particularly influential, demon-
strating high feature importance values. The x-axis of the left_knee and right_knee shows
importance across numerous feature types, including: ‘linear_trend’, ‘change_quantiles’, ‘num-
ber_crossing_m’ and the earlier mentioned ‘fft_coefficient’. For definitions and the full list of
sagittal view feature types see Table 1.

Keypoint importance. Fig 4 shows the top 20 keypoint importance, based on permuta-
tion analysis, aggregating all feature importance values for the corresponding keypoints when
using (a) frontal view and (b) sagittal view.

Frontal view videos. Along the frontal view, we find that the x-axis of the right_foot_index
is by far the most important, with more than 3× the importance of the next most important
keypoint, which is the frontal view y-axis of the left_index. We also notice a greater number of
upper limb/body features being important. With the y-axis of left_index, left_pinky, left_wrist,
and the x-axis of the right_shoulder all being in the top five of feature importance and scoring
more than 0.025.

Sagittal view videos. We find that only the top thirteen keypoints are important to
the model from Fig 1(b). Lower limb keypoints like the x-axis of the left_knee, right_knee,
right_ankle, and the y-axis of the left_heel are the top four in keypoint importance.
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Fig 3. Keypoint feature importance analysis for (A) frontal and (B) sagittal view when classifying seven gait types
using XGBoost.The x-axis shows the keypoint and channel (x, y, or z) and the y-axis shows the feature type. Darker
color implies higher feature importance in the classification.

https://doi.org/10.1371/journal.pdig.0001004.g003
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Fig 4. Anatomical keypoint importance analysis in (A) frontal view and (B) sagittal view for classifying seven gait types
using XGBoost.

https://doi.org/10.1371/journal.pdig.0001004.g004

The remaining seven keypoints in the top 20 are of negative importance and include only
upper body and facial keypoints.

Discussion
The study highlights the feasibility and effectiveness of a mobile phone-based AI system for
classifying multi-class gait impairments, with XGBoost demonstrating superior performance
across different video views, particularly when combining frontal and sagittal view video data.
Consistent with our hypothesis, we showed that model accuracy improves when we fuse two
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independently recorded views, even if they are captured at different times. The system’s accu-
racy benefits from features that capture the frequency, complexity, and directional trends of
movements, aligning with clinical observations. These findings underscore the potential of
simpler asynchronous multi-view video analysis for improving gait classification and suggest
practical applications for privacy-preserving remote monitoring and early detection of gait
impairments in clinical settings.

Gait impairment classification
Machine learning models. The results from Table 3 demonstrate that machine learning

model performance varied significantly across different gait video views (frontal, sagittal, and
combined frontal + sagittal) and machine learning model types.

XGBoost’s consistent outperformance of both SVM and RF likely stems from its ability to
learn nonlinear decision boundaries through iteratively training ensemble classifiers to cor-
rect errors made by one classifier to another, making XGBoost robust at handling missing
data and outliers [29]. Capturing discriminative patterns across seven gait classes is likely not
linearly separable and requires learning non-linear decision boundaries, which is underscored
by the poor convergence of linear-kernel SVMs during our experiments.

We applied the Radial Basis Function (RBF) kernel to the SVM after the failure of linear
separation, but this kernel was insufficient to project the data into a linearly separable space.
As a result, SVM exhibited significantly lower performance compared to XGBoost and RF
[44]. Notably, while RF also uses ensemble classifiers, it lacks XGBoost’s iterative process that
compensates for errors across classifiers, resulting in lower overall accuracy, a result consis-
tent with prior research showing XGBoost generally outperforming RF in many classification
tasks [44].

Frontal vs Sagittal vs Combined gait video data as model inputs. Model performance
varied significantly depending on the camera view used (frontal, sagittal, or combined). Mod-
els trained on sagittal videos outperformed frontal view models, agreeing with clinical prac-
tice, where the sagittal view of a patient’s gait provides greater information to a clinician when
diagnosing gait impairments, especially for gait pathologies such as ANT, PAR, and CRO gait.
Two gait classes (CIR and ANT) deviated from this trend, performing marginally better in
frontal view, likely because their hallmark deviations are more readily visible from the frontal
view.

The accuracy of markerless pose estimation relies heavily on detecting and tracking key-
points on the human body [13,14]. These keypoint landmarks serve as reference points that
help the algorithm infer the positions of other body parts through skeletal modeling [45]. The
mobile phone-based pose estimation model [13] is a lightweight alternative to cloud-server
models [14,46], designed to fit the limited computing resources of a phone. Blazepose had
a higher error rate in measuring keypoint locations and depth from the camera (z-axis val-
ues) compared to the models requiring heavy GPU resources available in cloud servers. We
suspect that the lower performance of frontal view video models is due to the inaccuracy of
depth information obtained from monocular cameras, which is crucial for evaluating gait
in a frontal view. Supporting this, previous studies have shown that sagittal plane kinemat-
ics derived from pose estimation algorithms exhibit lower average errors compared to frontal
plane counterparts in post-stroke and PAR gaits [12,15].

Inaccuracies in keypoint depth estimation may also contribute to the per-class perfor-
mance differences observed between frontal and sagittal views. Most notably, detecting CIR
requires precise measurement of the semi-circular movement of the lower limb, which is eas-
ily captured along the medio-lateral axis and difficult to capture in the sagittal view due to
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the distinguishing direction of the movement being perpendicular to the camera plane. In
line with this, the per-class performance of CIR in the frontal view had a 0.229 higher per-
class F1-score compared to the sagittal view model. Similarly, CRO gait is better analyzed
by understanding the posture in the sagittal plane, which is poorly captured in the frontal
view. This explains the superior performance of XGBoost’s sagittal view in comparison to the
frontal view when detecting CRO. As discussed above, the reliability of captured keypoint
position data varies between the frontal and sagittal views. By using majority voting on pre-
dictions from both the frontal and sagittal view models, the limitations of each view are com-
pensated, leading to improved overall predictions. However, the combined view can be less
effective for poorly performing models, such as the frontal view SVM, which has a < 0.40 F1-
score, leading to significantly decreased overall prediction quality. This can also be seen in the
poor combined view per-class performance of VAU within the XGBoost model, likely caused
by the low per-class VAU F1-score of the frontal view model.

Feature type and keypoint channel importance analysis
Features in frontal vs Sagittal views. The notable features that demonstrated high signif-

icance in feature importance analysis were few, as shown in Fig 3. ‘mean_n_absolute_max’
measures the maximum deviation of the right foot from the body center, along the frontal
view horizontal axis, during walking. This deviation is an important measure for the gaits cap-
tured from the frontal view, like CIR, which are characterized by abnormal deviation of the
lower leg away from the body midline in the frontal plane. ‘cwt coefficients’ measure the fre-
quency characteristics of a channel, enabling the identification of subtle changes or periodic-
ities in gait cycle data that distinguish different gait classes. ‘quantiles’ is a statistical measure
used to infer the nature of the distribution of points in any time series. ‘approximate_entropy’
quantifies the regularity and complexity of the gait cycle, enabling classifiers to differentiate
between steady, predictable walking and irregular behaviors that may discriminate between
specific gait impairments. ‘agg_linear_trend’ captures the overall directional movement of
keypoint time series, such as forward hip progression or vertical knee oscillation, helping to
identify consistent gait characteristics crucial for classification. Finally, ‘absolute_maximum’
measures the peak values of keypoint time series during the gait cycle, which are critical for
distinguishing different walking speeds or intensities.

Along the sagittal plane video data, the features like ‘fft_coefficient’ and ‘sample_entropy’
were particularly influential in the x axes of the left knee, right knee, and right ankle. The
importance of the ‘sample_entropy’ of the right ankle’s x-axis was the highest and ≥ 0.03. The
‘fft_coefficient’ and ‘sample_entropy’ provide detailed information on the frequency and reg-
ularity of movements, which may be vital for understanding motor control, and inform future
research and the design of data-driven clinical decision-making algorithms for gait diagnosis.
The standout features–such as ‘fft_coefficients’, ‘sample_entropy’, and ‘linear_trends’– demon-
strate the importance of capturing both the frequency and complexity of movements across
specific body parts. For example, ‘fft_coefficients’ are highly relevant for joints like the ankle
and knee, indicating that repetitive or cyclic patterns in lower body motion play a significant
role in the model’s predictions. These movements could correspond to gait frequency, or other
repeated actions, all of which are important in gait analysis [47,48]. The entropy-based fea-
tures, such as ‘sample_entropy’ and ‘binned_entropy’, highlight the need to capture the unpre-
dictability and complexity in motion, suggesting that irregular or erratic movements may be
key indicators of certain classes [49,50]. Overall, the model performances appear to leverage
feature types that capture the frequency, complexity, and directional trends of movement,
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most of which have been shown to be meaningful in gait analysis and align with clinical intu-
ition. Our results show that a model trained on features extracted without gait expert input
also focuses on and prioritizes aspects of gait characteristics considered important in clinical
practice.

Keypoints in Frontal vs Sagittal views. Other than the right foot index, the frontal view
had a very high permutation importance in the y-axis of the left index finger, the left pinky,
and the left wrist, and the x-axis of the right shoulder.

As mentioned above, the high importance of the right foot keypoint can be attributed to
its relevance in classifying gaits like CIR, where quantifying deviation of the lower limb from
the midline of the body is very helpful [51,52]. Furthermore, upperlimb movement has also
been shown to be important for balance, posture, and gait coordination in NOR gait [53]. The
high importance of the contralateral y-axis upperlimb keypoints indicate their utility in cap-
turing compensatory movements and imbalance in the gaits. The keypoint importance anal-
ysis revealed that the top five features in the sagittal view included lower limb keypoints, in
order of importance, they are the x-axis of the left knee, right knee, and right ankle, followed
by the y-axis of the left heel. It also includes the right ear’s x-axis with an importance > 0.02.
The importance of keypoints in the lower body (e.g., ankles and knees) along with facial key-
points (as is the ear) suggests that the model is sensitive to not only lowerlimb positions but
also the relative posture of the head. Lower limb movements often reflect changes in balance,
gait, and physical effort, while keypoints of the head, along with the similarly important hip,
are indicative of postural height or the height as measured during the subjects gait, which is
closely tied to gait classes like CRO and PAR.

Limitations and future direction
This study faces several limitations that will be addressed in our future research. First, our
dataset was simulated by able-bodied participants with clinical training, rather than by indi-
viduals with real gait pathologies. Although this approach allowed controlled capture of seven
reasonably realistic and distinct gait patterns, it cannot fully replicate the variability, com-
pensatory motions, and severity found in real patient populations. We consider the current
study as an important step to develop gait classification models using high quality curated gait
video datasets. Our ongoing work is recruiting patients with real gait impairments from vari-
ous demographic groups and clinical diagnoses to further validate the generalizability of our
proposed framework. This will help quantify the clinical utility of a pretrained model with a
simulated gait dataset.

Second, to maintain standardization of methodology, all asymmetrical gait impairments in
this work were mimicked as right-leg deficits (e.g., circumduction, antalgic gait on the right
side). Consequently, our feature-importance analysis, highlighting ‘mean_n_absolute_max’
of the right-foot index in the x-axis, may partly reflect this design choice. This bias introduces
a potential limitation of the trained model for individuals with left-sided impairments. This
is concerning as hemiplegic (or unilateral) gaits consist of a large portion of certain impaired
gait patterns, such as those following stroke [54] with significant heterogeneity affecting either
the right or left side of the gaits [55]. Future work will collect larger sample sizes, simulat-
ing unilateral impairments on either the right or left side for analysis and test the model’s
generalizability.

Third, the relatively small number of participants and gait classes limits generalizability.
The current classification system assumes mutually exclusive categories, whereas in reality,
gait impairments often arise from overlapping conditions, with the same individual show-
ing multiple gait classes or patterns, leading to more complex presentations that are not fully
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reflected in our model. For example, in real-world clinical settings, a video of the same indi-
vidual may demonstrate three different gait classes (e.g., CIR, VAU, and ANT gait) with vary-
ing levels of severity. Expanding the dataset to include multi-label examples and a broader
demographic will help models handle complex, real-world presentations. Future work can
also employ generative AI methods to produce synthetic mixed condition gait, allowing the
model to train and generalize better on this subgroup of the population.

Fourth, we employed classical machine learning classifiers (XGBoost, RF, SVM) on hand-
engineered time-series features. While interpretable and efficient, these “shallow” methods
lack the representational power of modern deep architectures such as DeepConvLSTMs [56],
attention-based networks [57], Graph convolutional Networks, [58] or Transformer models
[59]. These advanced models can be trained on much larger datasets and, as a result, may also
offer superior explainability of a wide variety of conditions in a generalized manner.

Explainable techniques like attention-based approaches and Shapley values [60], can pro-
vide deeper insights into the decision-making process behind their gait classification.

Fifth, our time-series features aggregate over the full trial without considering the number
of gait cycles needed for quantifying each gait type. Our current analyses do not isolate the
effect of cycle count on model performance; instead, the classifiers are trained on sliding one
second windows with 50% overlap, which contain fewer than two complete cycles on aver-
age. A comprehensive investigation of how window length or cycle count influences model
performance would be a valuable direction for future work.

Finally, all recordings were captured under controlled instructions and camera setups.
To move toward clinical deployment, models must be tested on truly “in-the-wild” videos
with realistic clinical and at-home settings captured in various backgrounds, clothing, patient
demographics, and camera positions. Incorporating diverse real-world data will be critical for
robust, privacy-preserving gait monitoring in clinical, home, and community settings.

Clinical applications
The proposed mobile phone-based, privacy-preserving system has strong potential for clin-
ical applications in gait analysis, particularly for early and more accurate diagnosis. The on-
device processing ensures privacy, making the system suitable for use in non-clinical envi-
ronments like outdoor community settings or at home without the need for costly or complex
instrumentation, and in the context of tele-rehabilitation.

The proposed system’s scalability, privacy-preservation, and computational simplicity
make it an ideal solution for remotely monitoring high-risk populations, such as elderly indi-
viduals in nursing homes who are prone to gait impairments. By enabling continuous assess-
ment without requiring frequent clinic visits, the system can monitor patient’s gait over time
periods much longer than a ordinary clinician would be exposed to. Thus, these methods can
enable clinician-researcher teams to detect gait impairments early and to flag them for timely
treatment before serious mobility loss. Early identification of subtle pre-clinical gait impair-
ments will allow clinical teams to prioritize and allocate therapist resources more efficiently,
ensuring that patients who need rehabilitative care are identified and treated sooner.

Active collaboration between clinicians, machine learning engineers, and software devel-
opers is critical to ensure the usability and convenience of such tools. Both clinician-friendly
and patient-friendly interfaces are needed to further facilitate the adoption of this technol-
ogy in routine practice. Ultimately, this technology has the potential to enhance the accuracy
and accessibility of gait analysis, improving patient outcomes in both clinical and home-based
rehabilitation settings.
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Conclusions
This study demonstrates the effectiveness of a mobile phone-based, privacy-preserving AI sys-
tem for classifying simulated gait impairments. Using pose estimation models and multi-view
videos, XGBoost with combined frontal and sagittal views offers the highest accuracy (0.864
F1 score). Sagittal views were generally more effective, but certain gait classes like CIR bene-
fited from frontal views, emphasizing the value of a multi-view approach with asynchronous
video. Key features such as FFT coefficients and entropy-based measures proved critical for
distinguishing between gait classes by capturing the frequency and complexity of movements.
The on-device pose estimation ensures privacy, making this system scalable for real-world
applications, such as home-based rehabilitation. Future work should validate these findings
on real-world, diverse clinical datasets and explore advanced models for further improve-
ments. Overall, this system offers a practical solution for accessible and interpretable gait
analysis, supporting early detection and personalized rehabilitation.
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