PLO\S\. Digital Health

L)

Check for
updates

E OPEN ACCESS

Citation: Cherezov D, Dam T, Najjingo |,
Mbabazi M, Kisembo H, Kirenga B, et al. (2025)
Opportunistic use of artificial intelligence with
X-ray imaging for diagnosis of HIV status in
tuberculosis patients in Uganda and Tanzania.
PLOS Digit Health 4(9): e0000988. https://doi.
0rg/10.1371/journal.pdig.0000988

Editor: Dhiya Al-Jumeily OBE, Liverpool John
Moores University - City Campus: Liverpool
John Moores University, UNITED KINGDOM OF
GREAT BRITAIN AND NORTHERN IRELAND

Published: September 2, 2025

Copyright: © 2025 Cherezov et al. This is an
open access article distributed under the terms
of the Creative Commons Attribution License,
which permits unrestricted use, distribution,
and reproduction in any medium, provided the
original author and source are credited.

Funding: Research reported in this publication
was supported by the National Cancer Institute
under award numbers RO1CA249992-01A1,
R0O1CA216579-01A1, RO1CA257612-01A1,
R01CA264017-01, RO1CA268287-01A1,
U01CA113913-16A1 U01CA239055-01,
U01CA269181-01, U24CA274494-01, and

OPINION

Opportunistic use of artificial intelligence with
X-ray imaging for diagnosis of HIV status in
tuberculosis patients in Uganda and Tanzania
Dmitrii Cherezov¢', Tanmoy Dam’, Irene Najjingo?, Margaret Mbabazi?,

Harriet Kisembo?, Bruce Kirenga?, Grace Soka*, Esther Ngadaya*, Sayoki Mfinanga*,
Anant Madabhushi@®'5*

1 Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta,
Georgia, United States of America, 2 Makerere University, Kampala, Uganda, 3 Mulago National Referral
and Teaching Hospital, Kampala, Uganda, 4 National Institute for Medical Research, Dar es Salaam,
Tanzania, 5 Atlanta Veterans Administration Medical Center, Atlanta, Georgia, United States of America

* anant.madabhushi@emory.edu

Human immunodeficiency virus (HIV) and tuberculosis (TB) remain prevalent, par-
ticularly in regions like Africa and India [1]. Many individuals with HIV are unaware of
their status due to limited diagnostic resources [2,3]. Conventional HIV tests, such as
laboratory-based antibody or antigen assays, are resource-intensive and often inac-
cessible in rural settings, forcing patients to travel extensively for diagnosis [4]. Thus,
alternative diagnostic approaches are urgently needed.

Chest X-rays are routinely used for TB screening, a common co-infection in
HIV-positive individuals. Given this frequent co-occurrence, chest X-rays present
an opportunity for opportunistic HIV screening. Recent advancements in machine
learning (ML) demonstrate significant potential for medical image analysis, including
automated TB diagnosis from X-rays [5].

Previous radiologic studies, including Frey and colleagues [6] and Haramati
and colleagues [7], have shown that HIV co-infection in TB patients is associ-
ated with atypical chest X-ray patterns—such as reduced cavitation, lymph-
adenopathy, diffuse infiltrates, or miliary spread—especially in individuals with
low CD4 counts. This biological and clinical evidence supports our model’s
objective to detect radiographic features indicative of HIV-associated immuno-
suppression in TB-positive patients.

This study evaluates whether artificial intelligence (Al) can opportunistically
screen HIV status in TB patients via chest X-ray images [8]. We hypothesize that
HIV induces subtle but detectable radiographic changes in TB patients, enabling
ML detection of HIV status. In sub-Saharan African healthcare settings, where
access to laboratory testing is often limited, image-based assessments can
assist in identifying TB patients who may show signs of HIV co-infection. Such
tools may help prompt targeted HIV testing, enabling earlier diagnosis and
more efficient use of clinical resources.

A dataset of chest X-ray images was collected from 265 TB patients in Uganda,
alongside clinical data including HIV status, age, sex, and smoking history.
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Among the patients, 74 were HIV-positive. The mean age was 40.45 years for
HIV-positive patients and 43.28 years for HIV-negative patients. The dataset
included 192 males (48 HIV-positive) and 73 females (26 HIV-positive). Smoking
history was available for some patients: 10 current smokers (8 HIV-positive), 62
never smokers (28 HIV-positive), 36 former smokers (16 HIV-positive), and 157
with unknown smoking history (22 HIV-positive). An additional dataset from
Tanzania included chest X-ray images from 13 patients. Demographic data
were not available for these patients. Among them, 6 were HIV-positive and
7 were HIV-negative.

The data was split into training (60%) and testing (40%) sets, stratified by HIV sta-
tus. Automated segmentation isolated lung regions from X-ray images. The choice
between deep learning and traditional ML methods was made in favor of the
latter due to the limited dataset size. Future work should include the evaluation
of diagnostic models trained using deep learning frameworks once a larger
dataset becomes available. A pre-trained ResNet-101 model extracted features
from these segmented areas, capturing patterns potentially associated with HIV sta-
tus. The Minimum Redundancy Maximum Relevance (mRMR) algorithm selected the
most informative features. To balance the training data, SMOTE was applied to
generate 71 synthetic HIV-positive samples, resulting in a total of 242 instances
(121 HIV-negative, 50 original HIV-positive instances, and 71 synthetic HIV-
positive instances). The workflow is shown in Fig 1a.

A Random Forest model, trained with features selected by mRMR, classified HIV
status from X-ray features. This ensemble method constructs multiple decision trees,
efficiently managing high-dimensional data. Hyperparameters were optimized via
grid search and cross-validation. Model performance was evaluated using AUROC,
sensitivity, and specificity.

The Random Forest model achieved an AUROC of 0.72, specificity of 0.75, and
sensitivity of 0.63. Detailed results are illustrated in Fig 1b and 1c. Because the
selected features originate from high-dimensional latent representations within
a deep network, their exact nature is abstract and not directly interpretable
in clinical terms. To address this, we used GradCAM to provide visual expla-
nations of the image regions most relevant to HIV-positive predictions. The
saliency map shown in Fig 1d was generated using the GradCAM [9] algorithm
for a randomly selected feature from the top-ranked training features, applied
to the X-ray of a representative HIV-positive patient.

Performance varied across subpopulations: AUROC was 0.74 for males versus
0.64 for females, and 0.69 for smokers compared to 0.60 for never smokers [10].
Higher performance in males may result from physiological differences or variations
in X-ray quality [11]. Acknowledging these differences ensures equitable diagnos-
tic utility across patient groups. Improved performance among smokers suggests
smoking-related lung changes enhance model detection capability. Adjusting models
for nonsmoking patients could further improve accuracy.

Overall, this study demonstrates Al’s potential for opportunistic HIV screening
using chest X-rays obtained for TB diagnosis. Despite moderate accuracy, the
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Fig 1. Workflow and performance details. (a) The workflow includes image processing steps such as lung segmentation and masking of the lung
area on X-ray images, followed by extraction of deep features, and finally training a diagnostic model using a Random Forest classifier; (b) The AUROC
performance metric was computed for the entire population as well as for different subpopulations: males, females, smokers, and never-smokers; (c)
Accuracy, sensitivity, and specificity were computed for the selected populations. (d) Region within X-ray images whose texture correlates with HIV-
positive status.

https://doi.org/10.1371/journal.pdig.0000988.9001

findings support the feasibility of using ML to detect complex interactions between co-existing diseases like TB and HIV.
Related work by Pyrros and colleagues [12] combined raw chest X-rays and electronic health records (EHR) to predict
type 2 diabetes, whereas our approach relies solely on deep features from segmented lung images without EHR integra-
tion or end-to-end training.

Utilizing existing chest X-rays to identify high-risk patients could reduce reliance on costly laboratory-based diagnos-
tics, generating substantial savings for healthcare systems in Africa. Early detection and treatment also curb disease
progression and HIV transmission, reducing long-term healthcare costs associated with advanced HIV/AIDS manage-
ment. Observed differences in model performance across patient subgroups, such as higher diagnostic accu-
racy among smokers, may point toward specific target populations for which opportunistic diagnostic models
are most applicable. Rather than assuming uniform application across all patients, future work should consider
subgroup-specific deployment strategies to maximize clinical value.

The results of this study highlight the potential for opportunistic disease detection in diagnostic imaging, even
when the primary clinical objective is unrelated. For instance, Frey and colleagues [6] demonstrated that deep
learning can predict cardiovascular disease risk from low-dose lung cancer screening CTs, and Hiremath and
colleagues [13] showed that lung shape features derived from chest CT scans correlate with COVID-19 severity.
While promising, such applications require further investigation to assess potential biases, particularly when
analyzing patients with known primary diagnoses, as in our case with TB.

We believe that dataset curation efforts—particularly in the context of public dataset releases—should aim
to capture not only labels related to the primary disease but also comprehensive descriptors of the patient’s
broader clinical status. Such enriched datasets would facilitate a wide range of diagnostic applications, including
the detection of comorbid conditions and risk profiling.

We acknowledge study limitations, including a relatively small sample size that may impact model robustness. Addi-
tionally, questions remain about the generalizability of Al-derived radiographic patterns due to the complex interaction
between HIV and TB, which individually and jointly affect lung pathology. Further research is necessary to confirm whether
these Al-derived patterns generalize across diverse populations. Nonetheless, our findings underscore Al’s potential
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to enhance healthcare delivery by providing rapid, noninvasive HIV diagnosis in TB patients in resource-constrained
environments.

Identification and comparison of radiographic features in HIV-positive and HIV-negative TB patients may hold
substantial clinical relevance, especially in supporting differential diagnosis and treatment prioritization. This
line of research may also enhance our understanding of HIV’s impact on TB presentation and contribute to the
development of population-specific diagnostic strategies. Further work with larger datasets could enhance the
ability to relate Al-extracted features to medically interpretable radiographic patterns and improve generalizability
across diverse populations.

Our study is one of the first to investigate whether HIV-associated changes in the radiographic appearance of
TB can be captured using ML methods. By applying feature-based analysis to real-world X-ray data from sub-
Saharan Africa, we highlight the potential of opportunistic HIV risk detection during TB diagnosis in low-resource
settings.

This study was supported by NIH/NCI U54CA254566, and only deidentified chest X-ray images were used for
analysis. All image de-identification was performed using DICOM Cleaner software to ensure the removal of per-
sonal identifiers. As a result, the study was deemed exempt from IRB review and classified as non-human sub-
jects research according to institutional guidelines.
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