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Abstract

Recent evidence suggests that psycho-cardio-metabolic (PCM) multimorbidity finds its
origins in exposure to early-life factors (ELFs), making the exploration of this associa-
tion crucial for understanding and effective management of these complex health issues.
Moreover, risk prediction models for cardiovascular diseases (CVD) and diabetes, as
recommended by current clinical guidelines, typically demonstrate sub-optimal perfor-
mance in clinically relevant sub-populations where these ELFs may play a substantial
role. Our methodological approach investigates the contribution of ELFs to machine-
learning-based risk prediction models for comorbid populations, incorporating a wide

set of early-life and proximal variables, with a special focus on prenatal and postnatal
ELFs. To address the complexity of integrating diverse early-life and proximal factors,
we leverage models capable of handling high-dimensional, heterogeneous data sources
to enhance prediction accuracy in complex clinical populations. The long-term predic-
tive ability of ELFs, along with their influence on model decisions, is assessed with the
learned models, and global and local model-agnostic interpretative techniques allow us
to elucidate some interactions leading to multimorbidity. The data for this study is derived
from the UK Biobank, showcasing both the strengths and limitations inherent in utilizing
a single, large-scale database for such research. Our results show enhanced predictive
performance for CVD (AUC-ROC: +7.9%, Acc: +14.7%, Cohen’s d: 1.5) among individu-
als with concurrent mental health issues (depression or anxiety) and diabetes. Similarly,
we demonstrate improved diabetes risk prediction (AUC-ROC: +12.3%, Acc: +13.5%,
Cohen’s d: 2.5) in those with concurrent mental health conditions and CVD. The inspec-
tion of these models, which integrate a large set of ELFs and other predictors (including
the 7-core Framingham and UKDiabetes variables), provides key information that could
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lead to a more profound understanding of psycho-cardio-metabolic multimorbidity. Our
findings highlight the utility of incorporating life-course factors into risk models. Integrating
a diverse range of physiological, psychological, and ELFs becomes particularly pertinent
in the context of multimorbidity.

Author summary

Many people experience multiple chronic diseases at the same time, such as heart dis-
ease, diabetes, and mental health conditions, which makes their health harder to predict
and manage. This challenge contributes to health disparities, as individuals with mul-
tiple conditions often receive less accurate risk assessments and have limited access to
tailored care. Research suggests that experiences early in life, from prenatal development
to childhood, can shape long-term health, but these factors are rarely included in disease
prediction models. In this study, we used machine learning to understand how ELFs
contribute to predicting the risk of heart disease and diabetes, especially in people with
mental health conditions. Our results show that including ELFs makes risk predictions
more accurate, particularly for people affected by multiple diseases. We also visualize
the influence of these factors in health risk prediction, helping to better understand the
connection between early-life experiences and later disease. This research highlights the
importance of considering life-course factors in disease prevention, paving the way for
more personalized and fair approaches to healthcare.

Introduction

The World Health Organisation classifies cardiovascular diseases (CVD) and diabetes among
the foremost non-communicable diseases worldwide [1]. While CVD is the leading cause of
global mortality [2], the prevalence of diabetes is rapidly increasing, imposing a significant
burden on healthcare systems [3]. Apart from their distinct complexities, these conditions fre-
quently intersect with mental health disorders, such as depression and anxiety [4], and also
co-occur with one another [5], suggesting shared environmental and genetic factors that con-
tribute to multimorbidity patterns [6]. However, the mechanisms leading to psycho-cardio-
metabolic (PCM) multimorbidity, characterized by the simultaneous presence of two or more
chronic conditions, are not well understood. Epidemiological studies have shown an associ-
ation between early-life factors (ELFs), spanning prenatal, postnatal, and childhood periods,
and the development of PCM conditions [7]. Prenatal factors, such as maternal smoking or
challenges like poor fetal growth, as well as postnatal and childhood experiences like abuse
or neglect, substantially influence long-term health outcomes, setting the stage for multiple
chronic conditions [8]. These ELFs have been associated with an elevated risk of developing
depression [9], anxiety [10], CVD [11], and diabetes [12] later in life, contributing individ-
ually to the risk profile of these disorders and underscoring the importance of considering
these factors in understanding and addressing the patterns of multimorbidity.

The intricate nature of PCM multimorbidity, characterized by complex interrelationships
among various health conditions and risk factors, poses substantial challenges in accurate dis-
ease prediction, particularly in the context of comorbid conditions. This brings us to another
pivotal concern: the efficacy of risk prediction models currently recommended by clinical
guidelines, which typically demonstrate sub-optimal performance, especially in clinically rel-
evant sub-populations [13]. For example, in predicting CVD, the Framingham Risk Score,
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as recommended by the 2010 American College of Cardiology/American Heart Association
(ACC/AHA) guidelines [14], has been demonstrated to be less effective in individuals with
diabetes [13]. This limitation is largely attributable to the restrictive assumptions of the model
and limited predictors, which frequently presuppose a linear relationship between risk factors
and disease outcomes [15]. Such simplifications may not fully capture the complex and often
non-linear dynamics inherent in disease progression. For instance, associations between risk
factors such as hypertension on CVD outcomes may become more complex in patients with
a history of early childhood adversities. Such adversities could lead to mental disorders and
diabetes, potentially intensifying the interplay between hypertension and CVD outcomes dis-
proportionately. This exemplifies a non-linear dynamic, where the combined effect of these
conditions on CVD progression is greater than the sum of their individual effects, partic-
ularly in patients with such comorbidity profiles. Building on these observations, it is also
important to consider the role of ELFs in these prediction models. While research has iden-
tified associations between ELFs and the later development of CVD or diabetes, the extent of
their contribution to predictive accuracy is unclear. It is important to distinguish that merely
identifying statistical associations between variables, even if they are longitudinal and strong,
does not necessarily translate into effective predictors for new observations, underscoring

a gap in applying these findings to predictive modeling [16]. In a similar vein, causal infer-
ence approaches (e.g., propensity scoring) can offer insights into mechanisms or intervention
effects, but they are not designed to optimize predictive performance in complex, comorbid
populations. Therefore, the strategic selection and application of these factors are essential
for accurate predictions [17]. Machine learning (ML) presents a transformative opportunity
to enhance predictive models for CVD and diabetes. ML approaches, capable of processing
vast and complex datasets, can identify not only novel risk factors but also intricate, non-
linear interactions among them [13]. This capability is expected to improve the accuracy of
predictive models [13,18].

Given the dynamics of PCM multimorbidity, we expect that ML surpasses traditional
approaches in accurately predicting CVD and diabetes by integrating ELFs and more proxi-
mal risk factors as predictors in ML models. In this paper, we leverage ML to investigate the
role of ELFs in predicting CVD and diabetes, particularly within comorbid groups. Specif-
ically, we employ XGBoost (XGB) [19] models. The ability of this type of model to han-
dle high-dimensional data makes it appropriate for biomedical studies. This choice is sup-
ported by findings from a recent systematic review on type 2 diabetes prediction, where tree-
based models were shown to achieve superior predictive performance [20]. Utilizing the UK
Biobank (UKB) [21], a comprehensive national health resource from the UK, our objectives
are twofold. First, we aim to systematically compare the long-term predictive ability of ELFs
for CVD and diabetes among individuals with and without comorbidities. We define these
comorbidities as the co-occurrence of mental disorders (depression or anxiety) with either
diabetes, in the context of CVD prediction, or with CVD, when predicting diabetes outcomes.
Second, we explore the prediction model drivers of these outcomes, including the potential
role of ELFs as key contributors, thereby enhancing our understanding of developing multi-
morbidity. Through this approach, we aim to provide insights that could enhance the preci-
sion of existing risk prediction algorithms, specifically tailored for individuals with comorbid
conditions. This research incorporates both proximal and early-life risk factors within a large
prospective cohort study, rigorously tracking a wide range of variables for each participant.
Recent studies have explored the ability of automated ML frameworks to explore wide arrays
of non-traditional risk factors. For example, up to 473 and 109 input variables were consid-
ered for CVD [13] and diabetes [18] prediction, respectively. However, ELFs were excluded
due to missing rates exceeding 50% in patient outcomes. This study conducts a comprehensive
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investigation into the value of ELFs in predicting CVD and diabetes within comorbid groups,
utilizing statistical and ML techniques. Our study shows that these factors not only enhance
the precision of our predictive models but also prove to be key drivers of prediction in these
complex patient groups.

Materials and methods
Study design and participants

Selection of dataset. For this study, we use the UKB for its comprehensive health data, which
spans demographics, health status, and disease incidence among a diverse representation of
the UK population [21]. The archive includes fully anonymized records from half a million
individuals collected from 2006 to 2019. For our analysis, a subset of approximately 150,000
participants without prior diagnoses of CVD or diabetes for which ELFs were available was
selected. This allows us to track the onset of these conditions over a decade. S1 Fig illus-
trates the stratification of these participants, detailing the process for selecting the final study
cohorts with CVD and diabetes outcomes.

The UKB data were accessed for research purposes from November 11, 2022, to Decem-
ber 17, 2023. Access to the UKB data for this research is facilitated under the project titled
’Association between Early-Life-Stress and Psycho-Cardio-Metabolic Multi-Morbidity: The
EarlyCause H2020 Project’ (application number 65769). The UKB obtained ethical approval
from the North West Multi-centre Research Ethics Committee (MREC) and the Community
Health Index Advisory Group (CHIAG). We adhere to the ethical approval obtained by the
UKB through the signature of MTA (Material Transfer Agreement). All participants in this
study provided written informed consent.

Selection of variables. The study considers a range of ELFs available from our UKB appli-
cation, including eight ELF variables (both prenatal and postnatal, including exposure to
maternal smoking and childhood maltreatment; details in S1 Table), contextualized within
a spectrum of demographic and proximal risk factors. Demographic characteristics include
age, sex, and ethnicity, while proximal risk factors comprise external exposome data: socioe-
conomic status (income, qualifications) and physio-metric data (body mass index, height,
weight, etc.). They also encompass family history (illnesses of parents or siblings), medical
history, lifestyle characteristics (physical activity, diet, sleep habits, smoking, and alcohol
use), mental health history (depression, anxiety), and subjective well-being indicators (mood
swings, loneliness, etc.). Internal exposome is also available in the form of blood assay results,
reflecting the body’s internal biological environment. This includes key biomarkers such as
Apolipoprotein A, Apolipoprotein B, C-reactive protein, glycated hemoglobin (HbAlc), and
random glucose (RG). Note that while HbAlc and glucose are well-established markers for
diabetes [22], in our study, they are measured at study entry and treated as baseline predic-
tors. Our models are designed to assess future diabetes risk in an initially non-diabetic pop-
ulation, with individuals diagnosed with diabetes at baseline excluded from the cohort. This
approach avoids data leakage and aligns with prior diabetes risk prediction research [18,23,
24]. All variables had a missingness rate of less than 25% among participants with positive
diabetes outcomes, corresponding to a missingness rate of 20% for the entire participant pop-
ulation. To address missing data, we applied a statistical imputation algorithm to recover the
missing values. S1 Table lists the ELFs along with the other input variables among the 64 con-
sidered, grouped by category (e.g., sociodemographics, psychosocial factors, blood assays).
These variables were preprocessed into 83 features as a result of one-hot encoding applied to
categorical variables with multiple levels.
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Selection of benchmarks. The performance of our models is compared with that of well-
established risk prediction algorithms: the Framingham score for CVD and DiabetesUK for
diabetes. The Framingham score, based on seven core risk factors (sex, age, systolic blood
pressure, treatment for hypertension, smoking status, history of diabetes, and BMI), is a
widely recognized algorithm for assessing CVD risk [25]. UKDiabetes [26], which incorpo-
rates seven features (sex, age, ethnicity, family history, waist size, BMI, and high blood pres-
sure requiring treatment), was selected for assessing diabetes risk due to its alignment with
the demographics of the UKB dataset. Framingham and DiabetesUK models are used in our
study as benchmarks to visualize the challenges of risk prediction in the comorbid popula-
tion. Although their performance could be improved through different learning strategies,
we decided to use the available models as model optimization is not the primary focus of our
study. Additionally, we assess the performance of ML models learned using only the seven
core variables used by Framingham score and Diabetes UK for CVD and diabetes risk pre-
diction, respectively. This enables us to separately investigate the influence of employing ML
models and the impact of using a broader variable set on prediction accuracy.

Model and validation strategy. In our study, we utilize XGB, an ML algorithm that sets
a series of gradient-boosted trees to progressively refine predictions, thereby systematically
enhancing model accuracy. Its nonparametric nature contributes to robustness in high-
dimensional settings, and the algorithm’s ability to recognize complex variable interactions
makes it particularly apt for this study. Models are implemented using Python’s Scikit-learn
library [27], with hyperparameter optimization via the Optuna framework [28]. Note that our
goal is not solely to develop the best ML frameworks for CVD and diabetes risk prediction
possible, but rather to leverage ML models’ capacities to reveal latent relationships among
variables, particularly to elucidate the association between ELFs and the development of PCM
conditions.

To ensure the reported model performance is robust and not unduly influenced by over-
fitting, we conduct 5-fold stratified cross-validation. Our evaluation metrics include the
area under the receiver operating characteristic curve (AUC-ROC) for assessing prediction
accuracy, and the Brier score for model calibration. These are separately assessed on non-
comorbid and comorbid test groups. It is important to note that a single, unified XGB model
is trained to evaluate performance across both the comorbid and non-comorbid subgroups,
rather than developing separate models for each subgroup. This approach allows for a con-
sistent evaluation of predictor contributions and comparative performance across the two
groups. Additionally, decision curve analysis [29] is performed to assess the clinical utility of
models for the test’s comorbid subgroup. This analysis calculates the clinical net benefit’ of
prediction models across a range of risk threshold probabilities, f, which represents the min-
imum likelihood at which intervention is considered. Given a threshold ¢, the net benefit b(t)
is defined by the difference between the proportion of true positives (TP) and the proportion
of false positives (FP) adjusted for ¢:

b(t) =T -T2 ()

where n represents the number of samples. For the sake of comparison, we also show the deci-
sion curves of two simplistic models: one that predicts risk for all patients, and a model that
never predicts risk. Models that yield a higher net benefit at clinically relevant decision thresh-
olds are preferred, as they provide a more advantageous balance between correctly identifying
cases and avoiding unnecessary interventions for these groups.

Outcome. In our study, a CVD event is identified through the assignment of ICD-10 diag-
nosis codes FO1 (vascular dementia), 120-125 (coronary/ischemic heart diseases), I50 (heart
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tailure events, including acute and chronic systolic heart failures), and 160-169 (cerebrovascu-
lar diseases), or ICD-9 codes 410-414 (ischemic heart disease) and 430-434, 436-438 (cere-
brovascular disease), with self-reported data also included. While the diagnosis of vascular
dementia can be challenging due to confounding factors, its inclusion follows methodologies
from prior large-scale studies to ensure comprehensive coverage of CVD-related conditions
[13]. For diabetes, events are identified by the assignment of ICD-10 codes E10 (type 1 dia-
betes), E11 (type 2 diabetes), and E13/E14 (unspecified diabetes), or ICD-9 code 250 (Dia-
betes mellitus), along with self-reported data. Gestational diabetes (ICD-10 O24) and diabetes
insipidus (ICD-10 E23.2) were not included as they are distinct conditions with separate eti-
ologies and clinical implications. Additionally, comorbid conditions of depression and anxiety
are identified based on ICD-10 codes F32 and F33, and ICD-9 code 311 for depression, and
ICD-10 code F41 and ICD-9 code 3000 for anxiety, including self-reported instances of these
conditions.

Variable contribution analysis

In this section, we examine the contribution of individual variables to model performance
and decision-making, including early-life factors. Specifically, we study their predictive utility
for health outcomes and their role in shaping model decisions across subgroups.

Group-specific Bayes error estimation. In our analysis, we quantify the performance limits
of CVD and diabetes predictive tasks across patient subgroups by approximating the theoret-
ical Bayes optimal classifier, which attains the smallest expected error. This minimal achiev-
able error is also referred to as the Bayes error or irreducible noise, representing the portion
of prediction error that cannot be eliminated by any model regardless of the learning algo-
rithm. Estimating group-specific Bayes error provides insights into the inherent difficulty of
disease prediction within each subgroup, helping to identify whether certain populations are
fundamentally harder to forecast, independent of model choice.

We need to estimate the Bayes error since calculating the real value is unfeasible in gen-
eral practice. We estimate its upper and lower bounds to narrow it down for each subgroup.
The lower bound (Elow) represents the best-case minimal error achievable under ideal condi-
tions, while the upper bound (Eup) reflects a worst-case estimate of the minimal error attain-
able even by the optimal classifier. The interval drawn with the upper and lower bounds for
different subgroups can be compared. Non-overlapping intervals might indicate a different
inherent difficulty of prediction for the groups.

We conduct a comparative evaluation on the estimation of Bayes error lower and upper
bounds (Ej,, and E,,) for non-comorbid and comorbid groups, following the methodology
outlined in [30], through non-parametric techniques including the Mahalanobis distance
[31], Bhattacharyya distance [32], and a k-nearest neighbor method [33] with k = 5 and 5-fold
cross-validation. This analysis is applied across two distinct sets: a subset of the seven core
variables utilized by benchmarks and the whole set of variables, to investigate the benefits of
using additional information to make predictions for specific patient subgroups.

Performance model drivers. Performance model drivers are variables that significantly
impact the model’s accuracy, serving as key determinants in achieving optimal predictive per-
formance. These are referred to as predictive features. In our study, we focus on evaluating
the impact of ELFs and other risk factors on the performance of predictive models for CVD
and diabetes. Our goal is to quantify how specific features drive model performance, thereby
allowing us to identify robust risk predictors, ultimately leading to enhanced risk prediction
performance. To achieve this, we employ a twofold strategy rigorously applied to the test sets
to ensure the robustness and generalizability of our findings. We measure (1) the individual
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predictive ability of each variable and (2) their synergistic predictive power when combined
with others.

1. Predictive power of individual variables. To evaluate the individual predictive ability of
each variable, we fit XGB models for each of the 64 variables separately. Each model is trained
with all the training samples, utilizing a single variable as input. Separate evaluations of these
models are carried out for the non-comorbid and comorbid test groups using the AUC-ROC.
This comparison allows us to identify which variables have a consistent predictive capacity
across different health conditions and which are unique or more influential in one group over
the other.

2. Predictive power of synergistic variables. While assessing the predictive power of individ-
ual variables reveals their standalone relevance, we use permutation-based variable impor-
tance (PFI) to evaluate their relative influence by measuring the change in the model’s per-
formance upon each variable’s perturbation. Specifically, we calculate the increase in predic-
tion error resulting from the random shuffling of the variable’s values across samples [34]. If a
varijable is predictive of the outcome, shuftling will weaken its relationship with the outcome
and consequently increase the model’s error. Variables with no strong relationship with the
outcome will see little to no change in error after shuffling. Permutation-based feature impor-
tance can underestimate the influence of highly correlated features as the information pro-
vided by one of them is still available after shuftling from the other one. To anticipate poten-
tial underestimation resulting from highly correlated features, Spearman’s rank correlation
analysis [35] is conducted on our training data. Our examination confirms that none of the
variables exhibit complete correlation, ensuring the robustness of our analysis. We define PFI;
for each variable j as follows:

PFIJ = % Z L(yis}(xi)) - L(yl,}(xjh(J) ))

where 1 represents the number of samples in the group being analyzed, which could be either
the non-comorbid (NC) or comorbid (C) test group, L is the loss function used to evaluate
the model, y; is the true outcome for sample x;, and f(x;) and}(xjh(i)) are the model’s predic-
tions before and after permuting the j variable. A large PFI; value indicates that variable j is a
significant contributor to the model’s predictive performance.

Prediction model drivers. Prediction model drivers are variables that directly influence
the model’s predictive decisions, thereby determining the specific outcomes of interest. They
are also referred to as decision’s explanatory features. Prediction drivers influence the out-
come provided by the model, being it right or wrong, whereas performance drivers boost the
right outcome. In our study, we aim to identify and quantify the role of ELFs, alongside other
risk factors, in influencing our models’ prediction of CVD and diabetes across distinct sub-
populations, specifically within the non-comorbid (NC) and comorbid (C) groups. To achieve
this, we employ a twofold strategy:

1. SHAP variable importance. We integrate SHapley Additive exPlanations (SHAP) val-
ues [36], a local model-agnostic interpretation method, to quantify the marginal contribution
of each variable j in the prediction of model f for instance . In this study, f refers to our XGB
model. This method helps us understand how individual variables affect specific predictive
outcomes, providing insights into their influence on the model’s decision-making process at
an individual prediction level. The SHAP value is defined as:

$i(x) = Zyem gy R Fru gy Covugy) - Fr(an)]
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where F is the set of all features and |F| is the number of features. SHAP value is computed

for each feature over all possible variable combinations (V C F), effectively capturing the non-
linear and interaction effects characteristic of complex biological systems. The local accuracy
property of SHAP ensures that the sum of all variable contributions equals the model’s predic-
tion, f(x) = E[f(x)] + Z]l-ill ¢;(x), where E[f(x)] is the expected value of the model’s output.
This decomposition enables the identification of the most influential variables as those with
greater contributions to the prediction show higher SHAP value attributions. In this study,
global variable importance is evaluated by calculating the average of the absolute SHAP values

across instances. We define the SHAP variable importance I; for each variable j as follows:

L= Xy 19i(x0)]

where n represents the number of test samples in the group being analyzed, which could be
either the non-comorbid (NC) or comorbid (C) group. Through this dual analysis, we iden-
tify features integral to both comorbid and non-comorbid states, as well as those exclusive to
comorbid conditions. This approach clarifies the significance of ELFs and other variables in
their contribution to comorbid profiles.

2. Dual-group risk effect size. While SHAP values provide a detailed, instance-level under-
standing of variable contributions, the risk effect size offers a complementary perspective on
how variables influence risk profiles across sub-groups. Effect size, in statistical terms, refers
to the magnitude of the difference between groups in a study (e.g., difference between group
means). In our context, risk effect size quantifies the degree to which a variable influences
the model’s predicted risk distribution between high-risk and low-risk groups for developing
CVD and diabetes. We use Cohen’s D [37], a statistical metric that quantifies the difference in
means between two groups, to measure the variable’s distributional shift between high-risk
and low-risk groups, as predicted by the model. The larger the Cohen’s D value, the greater
the distributional shift, and thus, the greater the influence of the feature on the model’s risk
stratification. We apply this procedure (Algorithm 1) to both non-comorbid and comorbid
test groups, separately. Through separate rankings of features based on their Cohen’s D values
in each group, we discern variables that significantly impact the risk profile, reflecting their
distinct contributions across these diverse health contexts.

Algorithm 1: Dual-group risk effect size analyzer.
Input: S, £, t=05 [> S: set of samples, f: model, t: threshold
to define low/high-risk patients (default value, 0.5)
Output: Variables sorted by descending D; value
1: Identify the high-risk and low-risk patients by applying
threshold t to f's risk probability predictions.
Ghigh ={x€S|f(x)>t}, Gow={x€S|fix)<1-t}
2: For each sample subset and feature j, compute Cohen’s D:
Dj = |Xj,high - }_(j,low| /Sj,pooled
% _ 1 % _ 1
where Xj>hiqh_m2xechighxj’ Xjtow = g 2ixeGy, X @nd

1

Sipooted = (((IGnignl = 1) - 7pign + (IGioul = 1) - 210, ) / (IGhign| + [Grou| - 2))°

with sz,high and sz,low being the variances of feature j for Gug
and Gy, respectively

3: Sort variables by descending D; value

To enhance the robustness of the estimation of the variables’ predictive power and their
contribution to model decisions, 5-fold stratified cross-validation is used. Rather than relying
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on a single train-test split, our results average empirical evidence across different training-
test data splits, using the entire dataset for testing. It is important to understand that SHAP
values help interpret the influence of each individual variable into the model’s predictions
(e.g., a variable taking a specific value might be associated in the model with a large predicted
probability of disease). However, note that this cannot be interpreted as a measurement of
how much each variable boosts the model’s predictive performance (e.g., accuracy or AUC).
SHAP values have been used in the past to rank the top predictors for diabetes risk in the gen-
eral population [23], offering insights into key model contributors. We distinguish between
prediction and performance drivers and use the appropriate techniques to find them.

Post-hoc analysis based on dominant performance drivers. In addition to the primary
analyses, we conducted exploratory, post-hoc evaluations to further characterize the contri-
bution of variables that emerged as dominant performance drivers. In particular, HbAlc is
identified as a key performance driver for diabetes prediction, especially within the comorbid
population. HbA1c is a well-established clinical marker for diabetes diagnosis. In our study, it
is measured at patient entry, prior to disease onset, enabling us to assess its predictive value as
a baseline risk factor.

To understand how HbA1c contributes to performance in this group and to assess its
interaction with other predictors, we perform a post-hoc stratified analysis based on base-
line HbA1c values. The cohort of 149,847 participants was divided into two subgroups: a low-
normal subgroup (HbAlc < 5.34%) and a high-normal subgroup (HbAlc > 5.34%), where
5.34% is the mean HbAlc value in the whole population [22]. In this analysis, we evaluate
model performance across different predictor sets. These include: (1) DiabetesUK, (2) XGB
(7 core variables), (3) XGB (HbAlc only), (4) XGB (all variables except HbAlc), and (5) XGB
(all variables). Each model is evaluated using 5-fold cross-validation, and AUC-ROC metrics
are calculated for the HbA1c-defined subgroups.

To summarize the analytical approach and goals addressed in this study, we provide a
workflow diagram (Fig 1). This figure outlines the main analytical components: subgroup

____________________ Predicted
1 labels
I —_— oottt :
|
i I I SHAP Value :
: Training set 1 1 = Analysis 1
e 1 i Prediction 1
! X y i . . :
" | ;< Classfier y | [Model Drive Dualgroup Risk :
: H I ! Effect Size Analysis |,
| a L e e e =————————"—= ]
1 — X
1
1 Raw Data '_'_‘: ———————————————————— jmTT T T oo s s s
I — Iy
! 1
: _ 1 Predictive Power of  |! 1 |
" > ! Individual Variables || | A I
' Test set X ar wfp| Posthoc HbATc-based |1
1 1 | 11 /| Exploratory stratification | !
1 . | Permutation Feature  |i | 1
L---------.‘ﬁ:‘---l 1 Importance 11 :
g g LI T T T T e —

SUBGROUP PERFORMANCE ANALYS IS
MoDEL PERFORMANCE METRICS
DecisioN CURVE ANALYS IS
BAYES ERROR ESTIMATION

Fig 1. Overview of the analytical framework characterizing the contribution of early-life and proximal factors in ML-based risk prediction of psycho-cardio-
metabolic multimorbidity.

https://doi.org/10.1371/journal.pdig.0000982.9001
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performance analysis, characterization of performance and prediction model drivers, and
post-hoc exploratory analyses. All implementation details, including code and library ver-
sions, are available at https://github.com/ngoc-vien-dang/ELF.

Results

Predictive performance assessment

Comparative performance of prediction models. The predictive performance of the
different models, validated separately on non-comorbid and comorbid populations, is illus-
trated in Table 1. The baseline models, the Framingham score, DiabetesUK, and XGB (7 core
variables), show reduced accuracy in the comorbid population, while the XGB (all variables)
models exhibit enhanced performance for this population. In the non-comorbid group, the
XGB (all variables) models also outperform the baselines in terms of AUC-ROC. The Brier
score, shown in Table 1 too, aligns with these results, indicating a consistently better perfor-
mance of the XGB (all variables) models across both populations.

Note that the XGB (7 core variables) models still achieve an improvement over the Fram-
ingham score and DiabetesUK indicating that model selection can boost the performance of
a model based on the 7 core features. For CVD prediction, the XGB (7 core variables) model
improves the AUC-ROC by +1.73% and +4.83% over the Framingham score in the non-
comorbid and comorbid groups, respectively. Similarly, for diabetes prediction, it improves
the AUC-ROC by +0.92% and +3.07% over DiabetesUK in the non-comorbid and comorbid
groups, respectively.

Comparative decision curve analysis of prediction models. Further augmenting our
understanding, decision curve analysis in Fig 2 compares the net benefit of our XGB mod-
els with that of the benchmark models (an XGB model with the 7 core variables, Framing-
ham model for CVD, and DiabetesUK model for diabetes) in the comorbid population. The
plots also include the behavior of two simplistic predictions: a dummy model that always pre-
dicts that all patients will develop the condition (all’), and another one that always predicts
that none patient will (none’). The performance of benchmark models, closely aligned with
the ’all’ strategy, suggests that they may overestimate risk, potentially leading to a high false
positive rate in the comorbid population. The analysis shows that XGB (all variables) mod-
els provide greater net benefit than all three benchmark models across a broad range of risk
thresholds for both CVD and diabetes prediction.

Specifically in CVD, the XGB (all variables) model begins to deliver a greater net benefit
than both the ’all’ strategy and the Framingham score when the decision threshold exceeds
0.2, while the XGB (7 core variables) model follows closely. For diabetes, the XGB (all vari-
ables) model outperforms both the ’all’ strategy and DiabetesUK at a decision threshold
above 0.1, and the XGB (7 core variables) model shows a similar trend. Additionally, the XGB
(all variables) models for both CVD and diabetes prediction surpass the net benefit of the
‘none’ strategy across all thresholds, confirming their effectiveness in predicting outcomes for
comorbid groups. Next, we analyze the group-specific Bayes error estimates to contextualize
the results from Table 1.

Group-specific Bayes errors

Group-specific Bayes error estimates presented in Table 2 for both CVD and diabetes pre-
diction tasks across comorbid and non-comorbid populations indicate consistently higher
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Table 1. Comparison of models’ predictive performance for CVD and Diabetes with and without comorbid conditions.

Net Benefit

0.05

0.00

-0.05

0.00 0.05 0.10 0.15 0.20
Threshold Values

(A) XGB CVD and Framingham Score

0.25

0.00

0.05 0.10

0.15 0.20 0.25
Threshold Values

(B) XGB Diabetes and DiabetesUK

Outcome |Model Non-Comorbid Comorbid
AUC-ROC Brier score AUC-ROC Brier score
Value (1) Change Value () Change Value (1) Change Value () Change
CVD Framingham score 0.70 + 0.00 Baseline 0.08 + 0.00 Baseline 0.55+0.03 Baseline 0.22 +£0.01 Baseline
XGB (7 core variables) [0.72 + 0.00 +1.73% 0.07 £ 0.00 -1.48% 0.60 + 0.02 +4.83% 0.14 + 0.01 -7.36%
XGB (all variables) 0.73 £ 0.00 +2.8% 0.06 = 0.00 -1.86% 0.63 +0.02 +7.9% 0.14 £ 0.01 -7.34%
Diabetes DiabetesUK 0.78 £ 0.01 Baseline 0.09 +0.00 Baseline 0.70 £ 0.01 Baseline 0.18 £ 0.01 Baseline
XGB (7 core variables) {0.79 + 0.00 +0.92% 0.03 +0.01 -6.39% 0.73 £ 0.01 +3.07% 0.10 £ 0.01 -8.01%
XGB (all variables) 0.87 £ 0.00 +9.07% 0.03 = 0.00 -6.57% 0.82 +0.03 +12.3% 0.09 + 0.02 -8.68%
https://doi.org/10.1371/journal.pdig.0000982.t1001
T T 0-20 T T T T
—— XGB CVD (all variables) —— XGB Diabetes (all variables)
—— XGB CVD (7 core variables) —— XGB Diabetes (7 core variables)
\ Framingham Score DiabetesUK
\ — all i 0.15 — all ]
\ none none
\\ & 0.10 \
5 \
z 0.05 \
\\ \\x
— \ — 0.00 —
\ -0.05

0.30 0.35

Fig 2. Decision curve analysis for comorbid groups. Net benefit is provided for different models in (A) CVD prediction and (B) diabetes prediction. The different
models include the corresponding benchmarks (blue) ~Framingham Score for CVD in (A) and DiabetesUK in (B)-, an XGB model with all variables (green), an XGB
model with the corresponding 7 core variables (cyan), and baseline ‘all’ (purple) and ‘none’ (orange) strategies

https://doi.org/10.1371/journal.pdig.0000982.9002

noise estimates for comorbid groups than non-comorbid groups, utilizing two distinct sub-
sets: 7 core variables and all variables. Particularly, nearest neighbor estimates provide non-
overlapping intervals between non-comorbid and comorbid groups, and the one for comor-
bid subgroup is consistently higher. This suggests that the prediction task is more difficult
among individuals from this population. Additionally, noise estimates for CVD are consis-
tently higher relative to those for diabetes. These findings align with the performance differ-
ences of models shown in Table 1, which shows higher predictive performance for diabetes
tasks than for CVD across both subgroups. The Bayes error estimates with the three tech-
niques show similar trends. Estimations based on Bhatttacharyya’s method considering all the

variables are not provided due to singular matrix errors during their computation.

The demonstrated efficacy of the XGB (all variables) models lays the groundwork for
employing post-hoc approaches, previously outlined, for variable ranking.
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Table 2. Bayes error’s lower and upper bounds estimation (Ej,,, and E,,) of comorbid and non-comorbid
groups for CVD and diabetes prediction. Mahalanobis distance estimates provide only upper bounds; Some
Bhattacharyya’s estimates are not available due to singular matrix errors.

Outcome Method Var. set Non-Comorbid Comorbid
Eigw (1) Eup (1) Eigw (1) Ep (1)
CVD Mabhalanobis 7 core vars. - 0.122571 - 0.282146
All vars. - 0.121617 - 0.238344
Bhattacharyya |7 core vars. 0.053802 0.225627 0.152879 0.359871
All vars. 0.025346 0.157174 - -
Nearest 7 core vars. 0.038402 0.073854 0.110000 0.194059
Neighbors
All vars. 0.037158 0.071600 0.105107 0.188119
Diabetes Mabhalanobis 7 core vars. - 0.047010 - 0.194003
All vars. - 0.043798 - 0.154115
Bhattacharyya |7 core vars. 0.015062 0.121801 0.076367 0.265584
All vars. 0.001459 0.038166 - -
Nearest 7 core vars. 0.013230 0.026110 0.070000 0.127923
Neighbors
All vars. 0.012713 0.025102 0.063133 0.118294

https://doi.org/10.1371/journal.pdig.0000982.t002

Key drivers of model performance

Predictive power of individual variables in comorbid and non-comorbid groups.

The analysis of the predictive power of individual variables is summarized in a scatter plot
(Fig 3) comparing the individual predictive ability of the variables for comorbid versus non-
comorbid groups, separately for CVD and diabetes. To improve visual interpretability and
enable consistent comparison, the horizontal and vertical ranges are delimited to a lower
bound based on the minimum value observed among ELF variables and an upper bound at
the 99th percentile of the distribution of values from both conditions. Each point represents
a variable and it is located according to the performance of a model learned exclusively with
this predictive variable on the C and NC groups (x and y axis, resp.). The diagonal line rep-
resents single-variable models that show the same performance on both subgroups. For both
conditions, variables tend to have a higher predictive ability in the non-comorbid group, as
most points concentrate above the line of similar effect. In CVD prediction, blood assays and
sociodemographic factors exhibit the highest predictive ability for both non-comorbid and
comorbid groups but are more predictive for non-comorbid groups. In diabetes prediction,
blood assays, along with physical measures and activities, display a similar pattern, demon-
strating stronger predictive ability in non-comorbid groups. The complete distribution of
AUC-ROC values for all the features is available in S4 Fig.

The distribution of ELFs varies, with some positioned above or near the line of similar
effect, reflecting a mixed predictive influence on both comorbid and non-comorbid groups.
However, a significant number of ELFs, notably breastfed as a baby (AUC-ROC: 0.54 for
comorbid, 0.51 for non-comorbid) for CVD and felt loved as a child (AUC-ROC: 0.55 for
comorbid, 0.52 for non-comorbid) for diabetes are located below the line, suggesting their
particular relevance and contribution to the predictive models for comorbid conditions. These
ELFs, along with other variables positioned below the line, could explain the enhanced per-
formance of the XGB models for these groups as detailed in Table 1. Note that the AUC-ROC
values of these ELFs slightly exceed 0.5, suggesting that their individual utility in the long-
term prediction of CVD and diabetes, while present, is limited. However, their higher rele-
vance in the comorbid group suggests they provide added value for risk stratification within
this population. Additionally, any factor with modest individual AUC-ROC values can still be
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Fig 3. Predictive ability of individual variables for (A) CVD and (B) diabetes prediction. Each plot compares AUC-ROC performance in the comorbid group (x-axis)
vs performance in the non-comorbid (y-axis) group. Each point represents an XGB model learned with a single feature. Colors differentiate models learned with a vari-
able of different type. The star marker indicates models learned with a variable used by the benchmarks. The dotted grey line indicates equal performance in both groups.
Deviation from this line allows for identifying variables that have a stronger predictive impact on one group over the other.

https://doi.org/10.1371/journal.pdig.0000982.9003

useful for ML models when combined with other features, especially in complex populations
like comorbid groups.

PFI analysis of predictive variables in comorbid and non-comorbid groups. The PFI
analysis underscores the predictive ability of age for CVD and HbA ¢ for diabetes. Table 3
shows results for the comorbid group, whereas details on the non-comorbid group can be
found in S2 Table and S3 Table. These findings align with the results of previous works [13,
18]. Our analysis reveals that while there is a notable overlap in the most relevant predic-
tors of CVD and diabetes in both non-comorbid and comorbid groups, with 60% of the top
30 variables being common to both populations, there are specific variables that distinctly
influence the comorbid group. Traditional risk factors, such as smoking status in the case
of CVD and waist size for diabetes, maintain their predictive validity in the non-comorbid
group; however, their predictive power diminishes in the comorbid group for both condi-
tions. Furthermore, self-reported overall health rating, which is not usually considered in exist-
ing risk prediction models, and clinical measures such as metabolic factors, show more pre-
dictive power for individuals with comorbid conditions. This variation aligns with the find-
ings in Table 1, where the XGB models learned with all the variables demonstrate superior
performance over benchmark models, especially for the comorbid group.

As shown in S2 Table and S3 Table, the analysis indicates an elevated prevalence and rank-
ing of ELFs in the comorbid group for both CVD and diabetes, indicating their interdepen-
dent contribution to the model’s overall predictive performance in patients with multiple
health issues. Specifically, in CVD prediction, 4 ELFs rank in the top 30 for comorbid groups

13/ 26
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Table 3. Permutation-based variable ranking for predicting CVD and diabetes in comorbid groups.

Variable (CVD prediction) Score Variable (Diabetes prediction) Score

Age*’ 0.056253 |HbAlc' 0.119222
OverallHealthRating" 0.016420 |WaistCircumference* " 0.023598
Glucose' 0.007265 |OverallHealthRating" 0.010247
CurrentEmploymentStatus_Retired 0.007114 | Triglycerides' 0.006574
WaistCircumference’ 0.006805  |HDLCholesterol" 0.005897
HbAIlc! 0.006483  |Glucose' 0.003622
CurrentEmploymentStatus_Paid/SelfEmployed? 0.003173  |Hypertension*" 0.003426
LDLDirect’ 0.003124  |Sex' 0.003144
IlnessesOfMother_CVD' 0.002986  |BodyFatPercentage’ 0.002629
SmokingStatus* 0.002780 |Age*" 0.001551
DiastolicBloodPressure" 0.002697  |CurrentEmploymentStatus_Sick/Disabled 0.001472
Depression 0.002218 |Qualifications_UnivDegree’ 0.001422
CurrentEmploymentStatus_Sick/Disabled” 0.002155 |BMI*" 0.001389
PorkIntake 0.001957  |SomeoneToTakeToDoctorWhenNeededAsAChild  {0.000909
CReactiveProtein' 0.002057 |Cereallntake 0.000909
PhysicallyAbusedByFamilyAsAChild 0.002031 | FeltHatedByFamilyMemberAsAChild 0.000865
Cholesterol" 0.001815 |SleepDuration 0.000858
ApolipoproteinAT 0.001792 |AvgHouseholdIncome® 0.000729
BodyFatPercentage' 0.001593 |RawVegetableIntake 0.000705
MaternalSmokingAroundBirth 0.001591  |ProcessedMeatIntake® 0.000691
SaltAddedToFood 0.001431  |Depression 0.000648
SleepDuration 0.001137  |Qualifications_NoneAbove 0.000625
AlcoholIntakeFrequency 0.000868 |IllnessesOfMother_Diabetes™ 0.000591
WaterIntake 0.000839 IllnessesOfSiblings_Diabetes*T 0.000532
FeltHatedByFamilyMemberAsAChild" 0.000759 |CReactiveProtein® 0.000442
Breastfed AsABaby 0.000708 |IllnessesOfFather_CVD 0.000434
Qualifications_UnivDegree' 0.000623 | FeltLovedAsAChild 0.000416
HDLCholesterol 0.000580 | AlcoholIntakeFrequency’ 0.000394
MoodSwings 0.000530  |PoultryIntake 0.000387
Qualifications_ProfQual(Nurse/Teach) 0.000517  |IllnessesOfMother_CVD 0.000347

*Variables used by the benchmarks." Shared variables between comorbid and non-comorbid groups. Underlined variables indicate

ELFs.

https://doi.org/10.1371/journal.pdig.0000982.t003

among 83 features, versus 2 in non-comorbid groups (with lower placement), and one over-
lapping ELF between groups. For diabetes, 3 ELFs make the top 30 in comorbid groups,

against a single, lower-ranked ELF in non-comorbid groups. This finding is consistent with
the detailed predictive ability of individual variables analysis presented in Fig 3, confirming

the significant role of ELFs in comorbid scenarios.

Key drivers of model prediction

In this section, we analyze the variables central to predicting the risk of CVD and diabetes,
focusing on the contrasting profiles between non-comorbid and comorbid groups. This anal-
ysis provides detailed explanations of what led to a patient’s predicted risk, as determined by

ML-based models.

SHAP value analysis of predictive variables in comorbid and non-comorbid groups.
CVD prediction. For those with comorbid conditions, as shown in Fig 4, age, sex, and the
presence of diabetes are the most significant variables for predicting the risk of CVD, indi-

cating a higher risk profile in these patients. Additionally, metabolic health measures such as
waist circumference and LDL cholesterol play significant roles, underscoring that the learning
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Fig 4. Averaged SHAP scores for the top 30 influential variables in the prediction models for CVD and diabetes within comorbid patient groups. Core variables
used by the benchmark models are marked with an asterisk (*). Coloured bars highlight ELFs.

https://doi.org/10.1371/journal.pdig.0000982.9004

method has assigned them a large influence in the model predictions, which is more noto-
rious in the case of comorbidities. Notably, psychosocial experiences, captured by variables
reflecting childhood abuse, feelings of isolation, and depressive symptoms, are identified as pow-
erful predictors. This would support the integration of psychological health considerations
into a comprehensive CVD risk assessment, especially for patients managing coexisting con-
ditions. In the non-comorbid cohort, our SHAP value analysis for CVD prediction, detailed in
S5 Fig, underscores the impact of personal lifestyle factors, including alcohol intake frequency
and smoking status, as well as social engagement, overall health ratings, and body fat percentage,
as significant drivers of risk prediction. Traditional risk factors such as age and blood pressure
retain their expected prominence. These results emphasize the importance of lifestyle choices
in developing CVD risk for individuals without additional health conditions.

Diabetes prediction. In the context of diabetes prediction, the analysis presented in Fig 4
for the comorbid group underscores an amplified significance of metabolic factors, with waist
circumference and HbA1c demonstrating higher SHAP scores. These findings align with estab-
lished clinical understanding, demonstrating that the model has accurately captured key risk
factors for comorbid patients in a clinically relevant manner. This trend points to the signifi-
cant role of metabolic dysregulation in diabetes risk in individuals with multiple health chal-
lenges. Additionally, the presence of CVD is identified as a key predictor. The SHAP scores
also highlight the critical role of psychosocial factors, particularly depression, indicating the
evident interplay between mental and physical health in diabetes management for comorbid
patients. Furthermore, ELFs like having someone to take to the doctor when needed as a child
and being breastfed as a baby are found to have enduring impacts on health outcomes. These
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findings advocate for a diabetes risk model that integrates a diverse range of physiological,
psychological, and ELFs, particularly pertinent in the context of comorbidity.

For individuals without comorbidities, glucose levels unsurprisingly dominate as a key fac-
tor, followed by traditional clinical markers such as HbAIc and waist circumference, reflecting
their critical roles in diabetes risk prediction. Beyond these, lifestyle habits including smoking
status and dietary patterns, particularly the consumption of cooked vegetables and fresh fruit,
are identified as influential, which underscores the importance of day-to-day health behaviors
in diabetes risk prediction in the comorbid population. Note that the referred dietary factors
included in this study reflect adult dietary behaviors, rather than early-life dietary exposures.

Poultry intake also ranked as a prominent risk predictor for diabetes, placing 10th in our
SHAP analysis. This result aligns with recent evidence from a multi-regional study, which
observed a positive association between poultry intake and diabetes risk, particularly in Euro-
pean populations, including the UK [38]. However, the association was less consistent in
regions such as South Asia and the Eastern Mediterranean. Given poultry’s classification as
a healthier alternative to red meat, these results suggest the need for further investigation
into its role in diabetes risk prediction. Notably, ELFs such as feeling loved during childhood,
although less dominant, still appear in the analysis, suggesting that the learning technique is
uncovering a subtle yet present impact on long-term health outcomes. However, it is crucial
to acknowledge that these findings, particularly from self-reported ELFs like childhood mal-
treatment, may be influenced by reporting biases, especially in individuals with mental health
issues who may be more likely to negatively appraise their life histories, potentially influenc-
ing associations between these factors and health outcomes. For a detailed analysis of the
non-comorbid cohort, see S6 Fig.

Dual-group risk effect size analysis of predictive variables. In the assessment of
explanatory variables using the dual-group risk effect size analyzer, Fig 5 shows a substantial
overlap of approximately 60% in the top-30 variables between non-comorbid and comorbid
groups for both CVD and diabetes. Age and HbA Ic are consistently the top-ranking variables
for these groups in CVD and diabetes, respectively (see S4 Table and S5 Table for a list of vari-
ables ordered by their effect size). In the comorbid group, ELFs as well as psychosocial fac-
tors such as mood swings and irritability, which are generally underrepresented in traditional
risk models, display a significant effect size for both CVD and diabetes prediction. This may
be explained by the possibility that these indicators reflect underlying depression severity,
influencing the likelihood of developing comorbid conditions like CVD and diabetes. This
indicates that our models rely on emotional well-being and formative childhood experiences
for disease risk prediction among these individuals. The dual-group risk effect size analysis
thus complements the SHAP value analysis by providing additional insights into how these
variables, especially ELFs, distinctly influence risk stratification in comorbid scenarios.

Expanding upon these findings, we observe that the association between ELFs and PCM
multimorbidity can be modified by lifestyle factors. This association seems to be positively
moderated by health-promoting behaviors such as increased intake of fresh fruits, and both
raw and cooked vegetables, alongside engagement in leisure social activities and consistent
physical activity. Conversely, the association is exacerbated by negative lifestyle habits, includ-
ing smoking and alcohol consumption, along with psychological factors like mood swings
and feelings of loneliness. A causal analysis, which is beyond the scope of this work, would
be required to find causal relationships between these behaviors and the respective risk out-
comes.
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Fig 5. Differential top features by effect size: comorbid vs. non-comorbid. The top 30 features are identified by their effect size for (A) CVD and (B) Diabetes
predictive models. All features are indicated by blue dots, and red dots specifically highlight ELFs. Variables marked with an asterisk (*) are used in benchmarks.

https://doi.org/10.1371/journal.pdig.0000982.9005

HbA1c’s role in diabetes prediction for the comorbid cohort

As outlined in Section Materials and methods, a post-hoc stratified analysis was performed
to evaluate the role of HbAlc in diabetes prediction within the comorbid population,
following its identification as a dominant performance driver (Table 3). As shown in Table 4,
the predictive performance of XGB models for the comorbid cohort varies across HbAlc-
defined subgroups. In the low-normal HbA1c group, XGB models trained on 7 core variables
or non-laboratory variables achieve high predictive accuracy, demonstrating the model’s abil-
ity to predict diabetes risk without relying on HbA1c. By contrast, the XGB model trained
only on HbAlc shows limited predictive value for this group. In the high-normal HbAlc
group, HbA1c plays a stronger role, with its inclusion improving the model’s performance
compared to using all predictors except HbAlc. The XGB model trained only with HbAlc
also outperforms the benchmarks (XGB trained on 7 core variables and DiabetesUK). How-
ever, HbAlc is not the sole performance driver in this group. The XGB model trained only on
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Table 4. Comparison of models’ predictive performance (AUC-ROC) for diabetes risk in HbAlc-defined
subgroups within the comorbid group.

Method HbA1lc < 5.34% HbAlc > 5.34%
DiabetesUK 0.83 +0.05 0.66 + 0.02
XGB (7 core variables) 0.88 + 0.06 0.70 +0.02
XGB (HbAlc) 0.51+0.10 0.75 + 0.04
XGB (all variables - HbA1c) 0.87 +0.04 0.74 +0.02
XGB (all variables) 0.87 +0.05 0.81 +0.04

https://doi.org/10.1371/journal.pdig.0000982.t004

HbA1c achieves lower predictive performance than the model trained on all predictors. Addi-
tionally, the model trained on all predictors except HbAlc demonstrates competitive perfor-
mance. These results underscore HbA1c’s critical role as a performance driver, particularly in
the high-normal group, while highlighting the importance of integrating diverse predictors to
achieve robust performance across the whole population of comorbid patients.

Fig 6 displays the feature importances as performance drivers in the XGB model with all
the features across HbAlc-defined subgroups. In the high-normal group, HbAlc ranks as
the top feature by FPI score, while in the low-normal group, it ranks second, with waist cir-
cumference as the leading contributor. The relative differences in variable scores suggest that
the model relies on many predictors other than HbA1c to maintain performance across both
subgroups.

The role of HbAlc as a prediction driver is slightly different, as shown in Fig 7. In the high-
normal HbAlc group, HbAlc ranks as the top feature, with the largest effect size among all
predictors, reflecting its prominent role in shaping individual-level predictions. In the low-
normal HbAlc group, HbAlc ranks sixth, with predictors such as waist circumference, BMI,
and overall health rating ranking higher. Notably, laboratory-based features are key predic-
tion drivers in the high-normal group, while ELFs consistently feature among the top pre-
dictors in both subgroups, reflecting their long-term impact on diabetes risk. These results
emphasize the importance of using clinical laboratory markers and early-life information to
support risk stratification and preventive strategies in the comorbid group.

ELF contribution for diabetes prediction with smaller predictor sets

Diabetes prediction can achieve high accuracy with a minimal number of predictors, as few
as four biomarkers, illustrating a balance between prediction accuracy and the cost of acquir-
ing additional variables in clinical practice [39-41]. In this line, we designed an experiment
aimed at identifying a compact set of predictors that preserves high predictive performance
and evaluates ELF contributions within this set. We start with the seven core UKDiabetes’ fea-
tures plus all the ELFs. Incrementally, we add other features to the model based on their PFI
scores in the high-normal HbAlc group. This strategy allowed us to assess how the inclusion
of each variable influenced the model’s predictive performance.

We observe that the AUC-ROC improved rapidly with the first 20 variables, which include
the 7 core variables and ELFs, but plateaued after the inclusion of approximately 25 predic-
tors. Beyond this point, additional features provided only marginal gains. This result suggests
that a focused subset of around 25 predictors achieves an optimal balance between predictive
utility and simplicity, leading to further evaluation of ELF contributions in this model. This
25-feature model achieves an AUC-ROC of 0.90 + 0.06 (95% CI) for the non-comorbid group
and 0.82 + 0.03 (95% CI) for the comorbid group. These results are slightly better than those
achieved by the XGB (all variables) model in Table 1, demonstrating its ability to balance
predictive accuracy and simplicity effectively.
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Fig 6. Top 30 features for XGB (all variables) by FPI score in HbA1c-defined cohorts within the comorbid group. Core variables used by the benchmark models are
marked with an asterisk (*). Green bars highlight ELFs; orange bars indicate HbAlc. Note that PFI scores are log-transformed to enhance the visibility of smaller values

while maintaining relative differences.

https://doi.org/10.1371/journal.pdig.0000982.9006

We also examine ELF contributions in the absence of lab-based predictors. This analysis
aims to assess the relative importance of ELFs when costly laboratory features are excluded,
relying only on easy-to-collect variables. Thus, we learned an XGB model only with non-
laboratory variables and it achieved an AUC-ROC of 0.89 + 0.07 (95% CI) for the non-
comorbid group and 0.73 £ 0.03 (95% CI) for the comorbid group.

ELF contributions consistently increase in both the top 25-variable model and the non-
laboratory variable model relative to the all-variable model, as summarized in Table 5.
Notably, SHAP analysis shows that ELF contributions rise from 6.97% in the all-variable
model to 16.70% in the top 25-variable model, representing an absolute gain of 9.74 per-

centage points (a 139.77% relative increase). The non-laboratory variable model also exhibits
higher ELF contributions, reinforcing their role as key predictors in the comorbid population
when laboratory biomarkers are not available.

Discussion

Key findings

In a comprehensive analysis based on the UKB, our first key finding is that the ML model,
trained with data from 150,000 participants and 64 variables, demonstrates improvement
in predicting the 10-year risk of CVD and diabetes compared to traditional risk assessment

tools, specifically the Framingham score and the DiabetesUK model, respectively. Our analy-
sis shows that traditional risk models, while demonstrating utility in the general population,
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Fig 7. Top 30 features for XGB (all variables) by risk effect size in HbAlc-defined cohorts within the comorbid group. Core variables used by the benchmark models
are marked with an asterisk (*). Green bars highlight ELFs; orange bars indicate HbAlc.

https://doi.org/10.1371/journal.pdig.0000982.9007

Table 5. ELF accumulated contributions, measured by PFI, SHAP, and effect size, for the comorbid group in XGB
models learned with all variables, non-laboratory variables, and the top 25 variables. Normalized values ensure
comparability across models. Gain refers to the absolute and relative increases in ELF contributions compared to
the all-variable baseline model. Absolute gain is expressed as the percentage point difference, while relative gain
(in parentheses) is calculated as the percentage increase relative to the baseline value.

Model PFI SHAP Effect size
Value (%) Gain Value (%) Gain Value (%) |Gain
XGB (all vars) 0.45 Baseline 6.97 Baseline 5.11 Baseline
XGB (Top 25 variables) |2.91 +2.91 (547.58) |16.70 +9.74 (139.77) 19.13 +9.74 (139.77)
XGB (non-lab. variables) |2.24 +1.79 (397.73) |10.29 +3.33 (47.74) 5.48 +0.37 (7.19)

https://doi.org/10.1371/journal.pdig.0000982.t1005

are limited when applied to individuals with multiple health conditions. Being constrained

by linear assumptions, they may not fully capture the complexities inherent in such popula-
tions. Conversely, ML models uncover these complexities by learning the variable interactions
and maintaining robustness in high-dimensional settings. They consistently reach closer to
the estimated error bounds, indicating their superior predictive capability. Not only the use

of ML models, considering a broader set of features (both benchmarks use only 7 core fea-
tures) is proven to be beneficial for predictive performance. Our analysis also highlights that
while some of these 64 variables may not be strongly predictive in isolation, their considera-
tion in a multivariate ML model offers improved predictions for comorbid populations, which
are frequently underserved by existing prediction guidelines. Take triglycerides as an exam-
ple, which is ranked 4th in the permutation-based variable ranking for comorbid groups in
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diabetes prediction (see Table 3), whereas its individual AUC-ROC score is only 0.48. Simi-
larly, while HbAlc is a strong standalone predictor, its predictive capacity is further enhanced

when combined with other features, demonstrating that a combination of features is essential
to achieving the best-performing model. Notably, a model with 25 predictors achieves slightly
better performance than the all-variable model. In this reduced set, ELFs exhibit greater rel-
ative importance, underscoring their contribution to risk prediction for comorbid popula-
tions. Secondly, leveraging global and local model-agnostic interpretation approaches on our
ML models, which incorporate ELFs and proximal risk factors, such as physical measures and
activity, diet, and substance use, is instrumental in discovering potentially novel risk predic-
tors for CVD and diabetes. This approach enlarges the set of variables traditionally considered
relevant for predicting CVD and diabetes outcomes, thereby advancing our understanding

of multimorbidity by revealing complex interactions among these variables, including both
predictive and explanatory features. ELFs appear as key drivers of both performance and pre-
diction when combined with proximal factors in comorbid groups, underscoring their role

in improving the accuracy of CVD and diabetes risk predictions and understanding com-
plex disease interactions. For instance, being breastfed as a baby for CVD, and having some-
one to take to the doctor when needed as a child for diabetes demonstrates information value
in comorbid scenarios. While acknowledging the information value of these factors, it is cru-
cial to recognize that breastfeeding is influenced by broader socioeconomic, educational, and
cultural contexts [42], and having accessible medical care in childhood is a potential marker
of physical neglect [43]. These elements highlight the complexity of isolating direct impacts
on health outcomes, emphasizing the need for careful interpretation when such factors appear
significant in predictive models for specific individuals. Our results support the claim that
ELFs contribute to risk prediction in comorbid groups. While our study provides an initial
understanding of their role in multimorbid populations, their contributions may vary within
broader populations and, thus, further research is needed to comprehend how these find-
ings generalize to more general populations. Additionally, this study has identified the crucial
role of metabolic health measures, including both non-laboratory and laboratory variables, as
well as psychological factors, in enhancing the accuracy of predicting CVD and diabetes for
comorbid groups.

Clinical implications

Our findings suggest that ML models may offer an improvement over traditional risk assess-
ment tools such as the Framingham score and DiabetesUK, a gain that is particularly relevant
for patients with comorbid conditions. The ML models appear to capture comorbid-specific
risk factors, including influences from early life, that are not usually considered by existing
algorithms. This indicates the potential for utilizing ML models in clinical settings for more
personalized risk assessments since such models are robust in handling high-dimensional
data, which facilitates the incorporation of life-course factors into risk models. The use of
post-hoc interpretative methods on these models aids in making complex data more under-
standable, which could support clinicians in making informed decisions. However, further
validation and research are necessary to fully grasp the implications of these findings for
clinical practice, especially in the management and prevention of CVD and diabetes among
patients with comorbidities. It is important to note that the 64-variable model, as used in
this study, is not intended for direct clinical use. Rather, it serves as a tool to explore the role
of ELFs as both performance drivers and prediction drivers in risk models for comorbid
patients. Insights from this analysis aim to raise awareness of the importance of ELFs in risk
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prediction, encouraging the integration of key predictors, including ELFs, into future clinical
models.

Limitations

The main limitation of our study is that the exclusive use of the UKB affects the generaliz-
ability of our findings. With over 96% of participants being white and the age range of par-
ticipants limited to 40-70 years at the time of assessment, the ethnic and age diversity is lim-
ited. Additionally, most of the non-laboratory variables in the UKB, such as health ratings,
are obtained through an automated touchscreen questionnaire, a practice that may intro-
duce self-reporting biases, potentially affecting the performance of the models. Furthermore,
our study’s scope for investigating the contribution of early life factors is limited by the inclu-
sion of only eight of these variables. Recent evidence [6,44] suggests that a wider variety of
ELFs should be considered, such as perinatal characteristics like birth weight and prematurity,
along with parental and neighborhood characteristics, within the context of more proximal
risk factors.

Another limitation of our study is the performance of the models for predicting individ-
uals with comorbid conditions at baseline. Addressing this issue could involve exploring
alternative ML model families that might uncover different types of relationships within the
data, potentially enhancing performance for this group. Crucially, observed differences in the
smallest expected error (Bayes error) between comorbid and non-comorbid groups indicate
that no model can achieve zero discrimination in performance without additional informa-
tion. Therefore, integrating a broader spectrum of input variables may further enhance pre-
dictive accuracy for individuals with comorbid conditions. We encourage further research
aimed at identifying more informative features and fostering greater transparency around
the predictors used in these models, which may ultimately improve prediction performance
for comorbid groups. We also note that our models identify statistical associations between
variables rather than causal pathways. Therefore, utilizing causal machine learning would be
instrumental in exploring potential causal links between ELFs and multimorbidity outcomes
in more diverse population-based samples.
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