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Abstract
The aim of this study was to determine whether differences between manufacturer of
mammogram images effects performance of artificial intelligence tools for classifying
breast density. Processed mammograms from 10,156 women were used to train and
validate three deep learning algorithms using three retrospective datasets: Hologic, Gen-
eral Electric, Mixed (equal numbers of Hologic, General Electric and Siemens images)
and tested on four independent witheld test sets (Hologic, General Electric, Mixed and
Siemens). The area under the receiver operating characteristic curve (AUC) was com-
pared. Women aged 47-73 with normal breasts (routine recall - no cancer) and Vol-
para ground truth were selected from the OPTIMAM Mammography Image Database
for the years 2012-2015. 95 % confidence intervals are used for significance testing in
the results with a Bayesian Signed Rank test used to rank the overall performance of
the models. Best single test performance is seen when a model is trained and tested
on images from a single manufacturer (Hologic train/test: 0.98 and General Electric
train/test: 0.97), however the same models performed significantly worse on any other
manufacturer images (General Electric AUCs: 0.68 & 0.63; Hologic AUCs: 0.56 & 0.90).
The model trained on the mixed dataset exhibited the best overall performance.
Better performance occurs when training and test sets contain the same manufacturer
distributions and better generalisation occurs when more manufacturers are included
in training. Models in clinical use should be trained on data representing the different
vendors of mammogram machines used across screening programs. This is clinically
relevant as models will be impacted by changes and upgrades to mammogram machines
in screening centres.
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Author Summary
A number of manufacturers of mammogram machines are in use within the NHS Breast
Screening Program. Naturally some of these manufacturers use different technologies to
acquire the mammograms. These mammograms are made readable through the appli-
cation of processing to the raw information from the X-ray detector, which is known to
vary both inter- and intra- manufacturer. The aim of this study was to assess whether
these differences impact the performance of AI classification algorithms. We trained
three binary classifiers on three different datasets, two from single manufacturers and
one with an even mix of three manufacturers. Models trained on single manufacturer
data could not generalise their knowledge to manufacturers unseen in training. The
model trained on three manufacturers was the best overall performer. In general models
must be trained on images from any manufacturers in the desired clinical setting as there
are sufficient differences between manufacturers that AI algorithms cannot transfer their
knowledge to a mammogram from an unseen manufacturer. Models must also be mon-
itored and kept up to date to reflect any changes to mammogram machines within the
clinical setting.
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Introduction
AI systems have been shown to be effective when performing tasks on mammograms but
these studies are often single institution or single manufacturer [1–6]. These studies assess AI
models on both processed and unprocessed mammograms. Within the NHS Breast Screen-
ing Program (NHSBSP) mammogram systems from multiple vendors are used, these different
systems use a range of detector types and different vendors apply different processing algo-
rithms to the unprocessed images so they can be read by radiologists creating a range of ven-
dor - processing algorithm combinations. Evidence has already shown that difference image
processing impacts the rates of microcalcification detection by radiologists in digital mam-
mograms [7]. As such performance differences of AI tools on processed images from different
manufacturers is to be anticipated. Due to storage costs unprocessed images are not routinely
stored within the NHSBSP. The knowledge of whether deep learning algorithms can gener-
alise across processed images from different mammogram machine vendors is an important
prerequisite to clinical deployment.

It is well known that women with high breast density have a higher risk of masking with
mammography imaging and a higher risk of breast cancer [8]. Therefore, it would be useful to
be able to identify the women with the highest breast density for supplemental screening with
other imaging techniques. Commonly used methods of breast density estimation include esti-
mation by radiologists and calculation with commercial software. Estimation by radiologists
suffers from large inter- and intra- observer variability [9,10]. One piece of commercial soft-
ware (Densitas Inc, Halifax, NS, Canada) and a few research softwares [2,3,11,12] have been
developed to calculate breast density on processed images.

An AI binary classification system has been developed to make breast density predictions
from processed mammograms with the positive class being defined as the 75th percentile. This
study aims to determine whether differences between manufacturers affect the classification
performance of a deep learning system. This research is part of a wider question as to whether
generalised models are possible. A study by de Vries [13] found software versions for a sin-
gle model of mammography equipment affected recall rates and that ‘per-software version’
thresholds are required. This knowledge is a core part of clinical deployment across healthcare
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systems in which equipment vendors can differ between screening centres. The evaluation of
performance across manufacturers is the novel aspect of this work.

Materials and methods
Data collection
In the NHSBSP in the UK women are invited for screening every three years between the ages
of 50 and 70 years. An on-going randomised controlled trial is investigating the use of age
extension to 47-73 years [14]. During the screening examination, two views of both breasts
are acquired using a mammography system, Craniocaudal and Mediolateral Oblique.

The data used in this study is from on the OPTIMAMMammography Image Database [15].
Images for this database are collected from eight screening sites which are used for the
NHSBSP. Images are stored in standard DICOM format and identifying information is
anonymised in accordance with DICOM Supplement 142 Annex AI. Images were selected
from the database for women with normal breasts (routine recall – no cancer) who were
screened between 1st January 2014-31st December 2014. In addition, a random selection of
25% of all women (with routine recall - no cancer) screened in 2012, 2013, 2015 were col-
lected. These dates were chosen to provide a sample across a whole single year and represen-
tative samples across three other years. Some DICOM tags are Pseudonymised to allow anno-
tation of images by radiologists. These processes have received ethical approval [REC Refer-
ence 19/SC/0284] . Data were collected with approval from an ethical research committee spe-
cialising in research databases organised by the NHS Health Research Authority. All images
used in this study were de-identified at the point of collection, and therefore written informed
consent from the patients was not required.

Ground truth
The ground truth breast density was calculated for all images using Volpara software version
1.5.4 (VolparaSolutions Limited, Wellington 6011, NZ), outputting the volumetric breast den-
sity. The 75th percentile in volumetric breast density was identified as 9.37 % over the entire
study population. The women were classified as either above or below this threshold. These
two classes are referred to as ‘Dense’ and ‘Non-Dense’ respectively. The 75th percentile was
chosen rather than the mean density. Holland [16] reported that interval cancers were dis-
proportionately found in women with higher breast densities. Due to the scale of the NHS-
BSP, the top quartile has been chosen as it covers the highest risk women classified as having
‘extremely dense’ and there are no studies assessing cost effectiveness of additional screen-
ing. The boundary selected is lower than the 38.5 % discussed by Holland due to the scale of
the NHSBSP, whilst any artificial intelligence methods would need be automated as to not add
unnecessary burdens, both financial and human resource.

Study data selection
Women with ‘Normal’ breasts (no cancer), aged 47-73 years, with Volpara ground truth were
selected for the study (as shown in Fig 1). The women were split by manufacturer of X-ray
imaging equipment – Siemens (Siemens AG, Berlin, Germany), GE (General Electric Com-
pany, Boston, USA) and Hologic (Hologic Inc., Malborough, USA).

Pre-processing and model architecture
Information on pre-processing and the model architecture can be found in S1 Appendix.
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Fig 1. Data selection flowchart. Images were collected to the database for all women with normal breasts (routine
recall – no cancer) screened between 1st January 2014 and 31st December 2014. In addition, a random selection of
25 % of all women screened in 2012, 2013 & 2015 were collected. A random selection of those with Hologic studies
and Volpara ground truths were chosen for the study.

https://doi.org/10.1371/journal.pdig.0000973.g001

The parameters of the model were optimised using the training and validation sets. The
best performance was assessed in terms of the area under the ROC curve and accuracy in the
two classes and the recall of the positive class on the validation data sets. The trained models
were then tested on witheld test sets.

Performance evaluation
A deep learning algorithm was trained and validated on three datasets. One containing only
GE images (referred to as ‘GE’), one containing only Hologic images (‘Hologic’) and one con-
taining an even mixture of Hologic, GE and Siemens images (‘Mixed’). The three models
were then tested on four withheld test datasets; one Hologic only, one GE only, one Siemens
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only (‘Siemens’) and one containing an even mixture of Hologic, GE and Siemens images.
There is no overlap of images between any two datasets. There is insufficient data to produce
Siemens only train and validation data sets. The total number of women contained within
the datasets can be seen in Table 1. No woman appears more than once in the study, there
is no overlap between any datasets and all images from the selected screening study (both
views of both breasts) are used within the study and are provided as separate inputs to the
models.

It is important for our study to estimate the variance in performance of classifiers trained
on different datasets from the same manufacturer. The variance in performance due to intra-
manufacturer data selection can be compared to the variance due to inter-manufacturer data
to show the former is insignificant. For this purpose, we also investigated the variance in per-
formance of our algorithm as a result of being trained on five independent Hologic datasets.
These were made up of 54,377 images from 13,554 women, none of whom were included in
any other data set.

Statistical analysis
A Chi-Squared test is used to test for statistically significant differences between the demo-
graphic means. Bootstrapping was used to generate 1000 samples with replacement which
were used to generate 95 % confidence intervals for the AUC values. Statistical significance
decision were made using overlaps in the 95 % CI values.

Advice on the best method to compare overall classifier performance differs across
researchers in the literature [17–20]. As Demsar [21] noted, all of the most popular tech-
niques to generate performance estimates will generate samples that violate the independent
samples assumption of most statistical tests, and hence lead to statistical designs which are
only approximate.

Due to these limitations in the overall performance is assessed using a Bayesian Signed
Rank test as discussed by Benavoli [20]. This is done using the ‘Baycomp’ software presented
in the same study. This test does not require synthetic samples and is able to provide mean-
ingful results with the real samples within the study.

Results
Table 2 contains the demographics of women in the study, separated by manufacturer. The
women with Siemens images were significantly older(p = 0.0001), had breasts which were sig-
nificantly thinner and had a higher volumetric breast density (p = 0.0001) than women with
Hologic or GE images (p = 0.0001).

Table 1. The distribution of women across the Training, Validation and Test datasets. The named manufac-
turer datasets consist of images solely from that manufacturer whilst the Mixed datasets are made up of even
distributions of Hologic, GE and Siemens images.

Hologic GE Siemens Mixed
Train 2169 2169 - 2169
Validation 542 542 - 540
Test 540 540 395 552

https://doi.org/10.1371/journal.pdig.0000973.t001
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Table 2. Table showing the average age, compressed breast thickness and volumetric breast density of the
patients. The volumetric breast density has been assessed by Volpara Solutions.The value provided is the mean
with the standard deviation in brackets. The overall average breast density top quartile value was used across the
study.

Hologic GE Siemens
Number of Women 4338 4338 1482
Age (years) 59.7 (0.02) 59.4 (0.2) 62.0 (0.02)
Compressed Breast Thickness (mm) 56.5 (0.02) 58.4 (0.12) 52.4 (0.15)
Volumetric Breast Density (%) 7.72 (0.05) 7.23 (0.04) 8.86 (0.08)
Thresholds for breast density quartiles (%)
Q1/Q2 4.26 3.65 4.44
Q2/Q3 5.96 5.56 6.87
Q3/Q4 9.37 9.05 11.5

https://doi.org/10.1371/journal.pdig.0000973.t002

Models trained and tested on datasets with the same manufacturer
distributions
The confusion matrices for the three trained models when tested on the independent test
datasets with the same distribution of manufacturers as their training datasets are shown in
Fig 2. The rate of correct ‘Dense’ classifications can be seen in the lower right quadrant. The
models predicted these with 88 %, 87 % and 90 % for Hologic, GE and Mixed data respec-
tively. The values in brackets are the 95 % confidence intervals, these were calculated using
1000 bootstrap samples.

Models trained and tested on a range of manufacturers
TheHologic, GE and Mixed models were tested on the four independent test datasets;
Hologic only, GE only, Siemens only and an equal mix of all three. The areas under the ROC
curves are shown in Fig 3.

Performance of the same model across different datasets. Both the Hologic and GE
models performed significantly better when tested on their corresponding Hologic only and
GE only datasets compared with any of the other three test datasets. The model trained and
validated on Mixed data performed significantly worse on the GE only test set compared to
the Siemens only and Mixed test sets. The difference in performance of the Mixed model
between the GE only test set and Hologic only test set was not significant. The error on these
two results are large compared to the errors of all the other results.

Comparing different models across the same dataset. When testing on the Hologic only
test data the Hologic and Mixed model performed similarly, but both performed significantly
better than the GE model. When testing on GE only data the GE model performed signifi-
cantly better than the Mixed model and both performed significantly better than the Hologic
model. When testing on Siemens images the Mixed model performed significantly better than
the Hologic model which performed significantly better than the GE model. When testing on
the Mixed data set the Mixed model performed significantly better than the Hologic model
which performs significantly better than the GE model.

Performance on test data from unseen manufacturers (Hologic on GE and Siemens only,
GE on Hologic and Siemens only) was only good in one of the four cases, Hologic Model on
Siemens only data. This suggests GE images present differently to the AI compared to Hologic
and Siemens images which are more similar.

These results show there are sufficient differences between images from different mam-
mography vendors as to impact the performance of a deep learning model. It is unknown
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Fig 2. Confusion matrices models tested on same data distribution as training. Confusion matrices showing the per-
formance of the three models when trained, validated and tested on the same respective manufacturer. The performance is
shown using True Negatives and False Negatives along the top row and False Positives and True Positives along the bottom
row of each heat map with 95 % confidence intervals shown in brackets.

https://doi.org/10.1371/journal.pdig.0000973.g002

whether this results from the processing algorithms used or the difference in detectors used
to acquire the images. All the models developed are affected by differences in vendor. Opti-
mal single dataset performance in seen for the Hologic and GE models tested on the Hologic
only and GE only test datasets respectively. The most generalisable model is the Mixed model
but even this sees reduced performance on GE only images. This suggests tailored models
per manufacturer is ideal. Some generalisation is seen and the reduction in performance of
the Mixed on the GE only images may be mitigated by increasing the share of GE images in
training.

Overall performance and statistical analysis
Table 3 shows the probability that a given model exhibits overall better performance across
all test datasets than another. There is a 75.2 % chance that the Mixed model is overall better
than the Hologic model, a 96.1 % chance that the Mixed model is better than the GE model
and there is a 74.9 % chance that the Hologic model is better than the GE model. These results
imply that the Mixed model is the most generalisable, followed by Hologic and finally the GE
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Fig 3. AUC Heatmap of all train/test permutations.Heatmaps showing the AUC values of each of the three models
on the corresponding 4 witheld test sets. The 95 % Confidence Intervals are shown in brackets and were calculated
from 1000 bootstrap samples.

https://doi.org/10.1371/journal.pdig.0000973.g003

Table 3. Results of Bayesian Signed Rank test. The rows are pairwise comparisons of the models and the outputs
are given that the probability that the first is better, equal or worse than the second model. Mixed (Mix), Hologic
(Hol), General Electric (GE).

P(better) P(equal) p(worse)
Mix vs Hol 0.752 0.006 0.241
Mix vs GE 0.961 0.004 0.035
Hol vs GE 0.749 0.007 0.244

https://doi.org/10.1371/journal.pdig.0000973.t003

model is the least. This suggests that including a greater number of manufacturers in training
improves the generalisation across manufacturers.

Variance
In order to assess the variance in performance five further Hologic models were trained on 5
training and validation datasets and tested on the same Hologic only test set. Due to the abun-
dance of Hologic data these datasets are independent from both each other and the original
training and validation datasets. The same algorithm was used to create these models. These
produced AUC values of 0.978, 0.979, 0.974, 0.981 and 0.982 with a mean of 0.979 and stan-
dard deviation of 0.003. The variance observed in training models is much smaller than the
difference between values observed from a single model tested on different test datasets. This
shows the results observed are due to differences within the processed images rather than due
to any variance in the algorithm’s training.
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Overall performance and statistical analysis
Table 4 shows the probability that a given model exhibits overall better performance across
all test datasets than another. There is a 75.2 % chance that the Mixed model is overall better
than the Hologic model, a 96.1 % chance that the Mixed model is better than the GE model
and there is a 74.9 % chance that the Hologic model is better than the GE model. These results
imply that the Mixed model is the most generalisable, followed by Hologic and finally the GE
model is the least. This suggests that including a greater number of manufacturers in training
improves the generalisation across manufacturers.

Discussion
Themodels trained on images from a single manufacturer perform significantly better when
tested on the same single manufacturer data compared to images from other manufactur-
ers. Comparatively the model trained on images from three mainstream manufacturers per-
formed worse on the GE only images compared to any of the other three test datasets. The
mixed model exhibited the greatest generalisation and this may be further improved by using
more GE data. To our understanding this is the first study to compare the performance of
a deep learning algorithm to predict breast density across different manufacturers. A study
by Van Vugt et al. [12] trained a computer aided detection algorithm on Hologic images and
measured the performance on Siemens images using transfer images. The study does not
compare to performance with the same manufacturer images and suffers from small num-
bers of cases. Zanca et al. [7] performed a similar study assessing detection of microcalcifica-
tions by radiologists. They found ‘image processing has a significant impact on the detection
of microcalcifications in digital mammograms’ by radiologists although the magnitude of this
effect is smaller with radiologists than with AI.

The main limitation of this study is a result of data limitations. The limited availability of
GE and Siemens studies meant the sizes of the data sets for the GE only and Mixed models
were limited, thus limiting the size of the Hologic only training set, despite an abundance of
data. There was also not enough Siemens data for a Siemens only training set for additional
comparisons and the Siemens only test set was smaller than the others. The requirement
that the Mixed dataset contains even numbers of images from the three manufacturers lim-
its its size and thus the size of the Hologic and GE only datasets are subject to the same limit.
The study would benefit from a greater number of manufacturers but data was not available
from others in sufficient quantity and those included in the study represent the largest in the
NHSBSP. The data included is from years 2012-2015, this does not cover recent changes in
equipment and any future studies should endeavour to include more recent images.

The exact reason for the difference in performance is unknown. Alongside the different
processing algorithms, manufacturers use different detectors. These produce images of dif-
ferent image size and pixel size, 70𝜇m for the Amorphous Selenium detector used by Hologic
and Siemens and 100𝜇m for the Caesium Iodide phosphor used by GE [22]. The contribution

Table 4. Results of Bayesian Signed Rank test. The rows are pairwise comparisons of the models and the outputs
are given that the probability that the first is better, equal or worse than the second model. Mixed (Mix), Hologic
(Hol), General Electric (GE).

P(better) P(equal) p(worse)
Mix vs Hol 0.752 0.006 0.241
Mix vs GE 0.961 0.004 0.035
Hol vs GE 0.749 0.007 0.244

https://doi.org/10.1371/journal.pdig.0000973.t004
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of each difference is unknown and is a possible avenue for future work. This could be explored
through a similar study that used unprocessed (‘For Processing’) mammograms. Alternative
methods of overcoming the problem such as domain adaptation should be explored.

A significant challenge, particularly within healthcare is the task of updating AI models
upon release of new hardware and software. In Healthcare settings time is required to build up
data in order to update models. This is an ongoing research question and guidance is required
on avoiding this problem.

Conclusion
They key clinical finding from this study is that deep learning models trained on images from
a single manufacturer performed significantly worse on datasets containing images from
other manufacturers. This implies that if a model is to be used in a clinical setting it should be
trained on data from all manufacturers used within that setting to maximise its performance.
There can be no certainty that a model can generalise between processed images from any two
manufacturers nor that it can generalise between different software versions. Care must be
taken that a model is able to perform well in all locations and conditions in which it is being
deployed and that models reflect any changes or upgrades to the X-ray systems within even
individual screening centres.

Supporting information
S1 Appendix. Image pre-processing and model design.
(PDF)

S1 Fig. CNNModel Architecture. The number of features written are the number output after
the application of 0.5 dropout.
(TIFF)
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