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Abstract 

Decision-making in perinatal management of extremely preterm infants is challeng-

ing. Mortality prediction tools may support decision-making. We used  

population-based routinely entered electronic patient record data from 25,902 

infants born between 23+0–27+6 weeks’ gestation and admitted to 185 English and 

Welsh neonatal units from 2010–2020 to develop and internally validate an online 

tool to predict mortality before neonatal discharge. Comparing nine machine learning 

approaches, we developed an explainable tool based on stepwise backward logis-

tic regression (https://premoutcome.shinyapps.io/Death/). The tool demonstrated 

good discrimination (area under the receiver operating characteristics curve (95% 

confidence interval) of 0.746 (0.729–0.762)) and calibration with superior net bene-

fit across probability thresholds of 10%–70%. Our tool also demonstrated superior 

calibration and utility performance than previously published models. Acceptable 

performance was demonstrated in a multinational, external validation cohort of 

preterm infants. This tool may be useful to support high-risk perinatal decision- 

making following further evaluation.
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Author summary

Increasingly, more premature babies are being born even earlier and surviving. 
Each premature baby is unique, with different combinations of factors affecting 
their chances of survival. An individualised approach is needed to support dis-
cussions with parents in creating a care plan for the baby before birth. Prediction 
tools can help support this discussion and reduce variation in the care delivered 
by providing an objective measure after considering important risk factors. We 
used artificial intelligence to analyse the electronic health records of 25,902 
premature babies born between 23 and 27 completed weeks of pregnancy from 
2010 to 2020 in England and Wales. We worked with parent groups to use the 
data pattern identified by artificial intelligence to develop an online tool (https://
premoutcome.shinyapps.io/Death/) to predict the risk of premature babies dying. 
The tool demonstrated how the risk factors contributed to the prediction, explain-
ing how the predicted risk was derived. The tool developed demonstrated better 
performance than previously developed tools in our cohort of babies in England 
and Wales. The tool also showed good performance when tested in a separate 
cohort of babies in Australasia. The tool developed could support parental dis-
cussion and decision-making following further evaluation.

Introduction

Preterm births are increasing in industrialised countries and are the leading cause 
of mortality in children under five [1]. Over the last 20 years, survival of extremely 
preterm infants born before 28 weeks’ gestation has improved across the UK [2,3] 
and other developed countries [4,5]. Approximately 50% of neonatal unit deaths of 
extreme preterm infants occur in the first week of life [3]. Parental counselling and 
preterm birth decision-making surrounding the perinatal management of infants born 
at the extremes of prematurity can be very challenging [6]. Parents prefer counselling 
to be personalised, to balance hope and realistic expectations, and to offer shared 
decision-making [7]. Perinatal clinical teams may lack recent risk-based data to allow 
more individualised counselling and decision-making, potentially introducing bias and 
personal experience into the discussion, resulting in variability with subsequent care 
of the infant.

Internationally, there is marked variation in active treatment of extremely preterm 
infants, especially those born less than 25 weeks’ gestation, which can be dependent 
on the gestational days of the pregnancy [8] and can influence care pathways with 
variation with in-utero transfer to a tertiary care centre or initiation of antenatal corti-
costeroids [9–11]. Difficult decisions around active treatment or the need to consider 
transfer could be influenced by outcome data, which will differ based on the charac-
teristics of the pregnancy.

To try and address these issues, national bodies have written guidance [12,13] on 
the perinatal management of extremely preterm infants with emphasis on two key 
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areas. Firstly, the need for an individualised approach in decision-making, taking into account multiple factors, moving 
away from gestational age or birth weight cut-offs alone. Secondly, the importance of supporting parental involvement in 
decision-making by providing clear antenatal information.

The current recommended risk-based approach to perinatal decision-making [14] is still subjective and open to misin-
terpretation. Although risk factors are listed in the recommendations [12,13], it is unclear how these factors interact with 
one another to determine infant outcomes. Hence, a multivariable prediction tool combining key perinatal characteristics 
could provide an objective measure to support complex shared decision-making. Although several mortality prediction 
models have been developed [2,15–17], none are used in routine clinical practice to predict individual outcomes or pro-
vide users with estimates of the importance of characteristics for that infant.

Using population-based, routinely entered electronic patient record data in England and Wales and nine machine learn-
ing approaches, we aimed to develop and internally validate a mortality prediction tool for extremely preterm infants. We 
planned to compare our developed prediction tool with previously published models [2,15–17] in a separate ‘test’ cohort, 
and externally validated the tool in an international cohort of preterm infants.

Results

Mortality prediction tool development

Study population.  A total of 25,902 infants born between 23+0 and 27+6 weeks’ gestation were included in 
the study cohorts to develop and internally validate the prediction tool. Of these, 5,550 (21%) infants died before 
neonatal discharge. 1,642 (6%) infants with missing data for the nine predictors used in the modelling were excluded 
from the analysis (S1 Table). The proportion of deaths in infants in the ‘test’ cohort was lower than that in the ‘training 
and validation’ cohort (20% vs 22%). The infants in the ‘test’ cohort were also slightly more preterm and had a lower 
median birth weight z score. Mothers of infants in the ‘test’ cohort were more likely to have received a complete 
course of antenatal corticosteroids (ANC) and delivered in a centre with a co-located neonatal intensive care unit 
(NICU) (Table 1).

Algorithm development.  The nine machine learning approaches are described in S1 File. Across all machine learning 
approaches used, gestational age and birth weight z-score were consistently the two most important predictors based 
on the mean SHapley Additive exPlanations (SHAP) values (Fig 1). Chorioamnionitis and congenital anomalies were 
the least important predictors (S1 Fig, S2 Table). Most of the predicted risks derived from the nine machine learning 
approaches were below 20% (S3 Table).

Internal validation (discrimination, calibration and utility).  Discrimination (Area under the receiver operating 
characteristics curve): There was little difference in the discrimination performance in the ‘test’ cohort in terms of area 
under the receiver operating characteristics curve (AUROC) between the seven approaches of extreme gradient 
boosting, feedforward neural network, random forest, long short-term memory, adaptive neuro-fuzzy inference system, 
AutoPrognosis 2.0, and logistic regression with AUROCs ranging from 0.746 to 0.757 (Table 2).

Calibration (Calibration plot, calibration-in-the-large and calibration slope): Extreme gradient boosting, feedforward neu-
ral network, long short-term memory, and logistic regression had good calibration across the range of predicted mortality 
risk (Table 2, Fig 2).

Utility (Decision curve analysis): All the approaches, except for support vector machine, also had a similar superior net 
benefit compared with providing palliative/comfort care for all or no infants across a reasonable range of mortality thresh-
old probabilities between 10% to 70% when deciding perinatal management in the decision curve analysis (Fig 3).

The logistic regression model (S4 Table) was further developed in preference to the other machine learning approaches 
due to its familiarity among healthcare professionals and ease of interpretation, while achieving similar model performance 
in the ‘test’ cohort.
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Table 1.  Characteristics of infants in the cohorts used to develop, internally and externally validate the prediction model.

Clinical characteristics Development and internal validation cohorts ‘External validation’ 
cohort
(N = 1,052)

‘Training & Validation’  
cohort (N = 19,406)

‘Test’
cohort (N = 6,496)

Gestation at birth (weeks), median (IQR) 26 + 1 (24 + 6–27 + 1) 26 + 0 (24 + 6–27 + 0) 25 + 4 (24 + 5–26 + 5)

Birth weight Z score1, median (IQR) -0.37 (-0.88 to 0.09) -0.41 (-0.94 to 0.07) -0.12 (-0.85 to 0.48)

  Missing, n (%) 0 (0) 1 (0.02) 0 (0)

Sex, n (%)

  Male 10,557 (54) 3,525 (54) 582 (55)

  Missing 0 (0) 1 (0.02) 0 (0)

Multiple pregnancy, n (%) 4,862 (25) 1,404 (22) 295 (28)

  Missing 2 (0.01) 1 (0.02) 0 (0)

Antenatal corticosteroids1, n (%)

  Complete course 12,688 (65) 4,542 (70) 700 (67)

  Incomplete course 3,813 (20) 1,334 (21) 309 (29)

  No course 1,882 (10) 5 (0.08) 43 (4)

  Missing 1,023 (5) 615 (9) 0 (0)

Congenital anomaly, n (%) 461 (2) 239 (4) 0

Chorioamnionitis, n (%) 1,464 (8) 516 (8) 480 (46)

  Missing 0 (0) 0 (0) 1 (0.1)

Prolonged rupture of membranes, n (%) 2,688 (14) 688 (11) 324 (31)

  Missing 0 (0) 0 (0) 1 (0.1)

Born in a centre with NICU, n (%) 13,139 (68) 4,880 (75) 1,017 (97)

  Missing 3 (0.02) 0 (0) 0 (0)

Maternal ethnicity, n (%)

  White 12,028 (62) 3,275 (50) 611 (58)

  South Asian 2,256 (12) 742 (11) N/A

  Black 2,113 (11) 581 (9) N/A

  Aboriginal or Torres Strait Islander N/A N/A 57 (5)

  African or Indigenous N/A N/A 29 (3)

  Asian N/A N/A 208 (20)

  First Nations, Ink/Inuit or Metis N/A N/A 13 (1)

  Hispanic N/A N/A 10 (1)

  Māori N/A N/A 77 (7)

  Pacific Islander N/A N/A 42 (4)

  Others/Mix 720 (4) 243 (4) 5 (0.5)

  Missing 2,289 (12) 1,655 (25) 0 (0)

Neonatal network at birth, n (%)

  Network 1 1,075 (6) 380 (6) N/A

  Network 2 1,489 (8) 499 (8)

  Network 3 1,696 (9) 517 (8)

  Network 4 1,062 (5) 361 (6)

  Network 5 2,704 (14) 848 (13)

  Network 6 991 (5) 335 (5)

  Network 7 1,441 (7) 524 (8)

  Network 8 1,400 (7) 458 (7)

  Network 9 1,205 (6) 352 (5)

  Network 10 1,585 (8) 502 (8)

(Continued)



PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000955  December 10, 2025 5 / 19

Comparison with other published models.  Although the discrimination performance of the Manktelow 2013 [17] and 
Santhakumaran 2018 [2] models (AUROC 0.758 and 0.754, respectively) were similar to our developed logistic regression 
mortality prediction model (AUROC 0.746) in the ‘test’ cohort, they had worse calibration performance (Table 2 and Fig 4). 
Our logistic regression model was also found to have superior net benefit across the range of mortality probability thresholds 
of 20% to 80% than the four previously published models (Fig 4).

Subgroup analysis.  Of the included infants, 1,500 (26%) and 55 (1%) in the ‘test’ cohort had missing data on maternal 
ethnicity and neonatal network, respectively. The performance of the logistic regression mortality prediction model in infants 
born to mothers who identified as Black was worse than in infants born to mothers of other ethnicities. The AUROC was 
0.713 with a 95% confidence interval (CI) of 0.655 to 0.770 (S5 Table) with an overestimation of mortality risk (S2 Fig) in 
infants born to mothers who identified as Black. However, the logistic regression model demonstrated superior net benefit 
across a range of mortality threshold probabilities between 10% to 50% in all four maternal ethnicities (S3 Fig). There was 
also variation in the logistic regression model performance across the 13 neonatal networks. In networks with lower neonatal 
mortality risk, such as Networks 3 and 10, an overestimation of neonatal mortality risk was observed (S5 Table and S2 Fig), 
and the net benefit of using the model was only found across a narrower range of mortality threshold probabilities (S3 Fig).

External validation

Study population.  Our logistic regression model was externally validated on the 1,051 infants recruited to the 
international, multicentre PLUSS trial [19], after excluding seven infants born before 23 weeks’ gestation and one infant 
with missing data on prolonged rupture of membranes and chorioamnionitis. In this PLUSS cohort, 206 (20%) infants died 
before neonatal discharge. Infant characteristics are reported in Table 1.

Model performance.  The logistic regression model had similar discrimination in the ‘external validation’ cohort with an 
AUROC of 0.728 (95% CI 0.700 to 0.767) with an overestimation of mortality risk (calibration-in-the-large of -0.27 (95% CI 
-0.52 to -0.01) and calibration slope of 0.94 (95% CI 0.75 to 1.13)) (Fig 5A). The logistic regression model demonstrated 
superior net benefit across a range of mortality threshold probabilities between 10% to 40% (Fig 5B).

Online tool

An online prediction tool based on the logistic regression algorithm was developed and can be accessed at https://pre-
moutcome.shinyapps.io/Death/ (Fig 6).

Discussion

We have developed and validated a risk prediction model, and produced an online mortality prediction tool for extremely 
preterm infants born 23+0 to 27+6 weeks’ gestation. We used perinatal factors based on the largest and most recent 

Clinical characteristics Development and internal validation cohorts ‘External validation’ 
cohort
(N = 1,052)

‘Training & Validation’  
cohort (N = 19,406)

‘Test’
cohort (N = 6,496)

  Network 11 527 (3) 278 (4)

  Network 12 2,070 (11) 727 (11)

  Network 13 1,718 (9) 569 (9)

  Missing 443 (2) 146 (2)

Death before neonatal discharge, n (%) 4,246 (22) 1,304 (20) 206 (20)

IQR denotes interquartile range (25th to 75th percentile). NICU denotes Neonatal Intensive Care Unit.
1Complete course of antenatal corticosteroids was defined as at least two doses of corticosteroids given before delivery.

https://doi.org/10.1371/journal.pdig.0000955.t001

Table 1.  (Continued)

https://premoutcome.shinyapps.io/Death/
https://premoutcome.shinyapps.io/Death/
https://doi.org/10.1371/journal.pdig.0000955.t001
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Fig 1.  Beeswarm plot showing the SHapley Additive exPlanations (SHAP) value of the predictors (ranked in the y-axis by their mean absolute 
SHAP values) for the overall ‘test’ cohort and by weeks of gestation based on the logistic regression model. Chorioamnionitis and congenital 
anomalies predictors were dropped from the logistic regression model after backward stepwise selection.

https://doi.org/10.1371/journal.pdig.0000955.g001

https://doi.org/10.1371/journal.pdig.0000955.g001
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population-based real-world clinical data. Our tool is novel in providing information on how risk predictions are made for 
individual infants. The tool based on logistic regression demonstrates good model performance in the temporal internal 
validation cohort. The performance in the ‘external validation’ cohort was acceptable considering it was a cohort of infants 
from four different countries with strict eligibility criteria for clinical trial recruitment, and likely represents a slightly more 
restricted population with more immature and sicker infants than the whole extremely preterm population. Our tool also 
demonstrates a superior net benefit to previously published models [2,15–17], especially across the mortality threshold 
probabilities of between 10 and 70%. This threshold range is likely to represent the circumstances when decision-making 
and parental discussions are more challenging [13]. Survival-focused care, i.e., resuscitation and subsequent intensive 
care, is likely to be provided to infants with a very low mortality risk, whereas comfort care may be provided to those 
infants with an extremely high mortality risk and low chance of survival.

The logistic regression algorithm had similar overall model performance to the other machine learning approaches 
but offers a greater level of interpretability. The use of SHAP values to quantify predictors offers insights into the chang-
ing impact they have across the range of gestations. As expected, gestational age, birth weight z score and exposure to 
antenatal corticosteroids had the greatest impact on survival. Male sex has a negative effect on survival. Birth in a centre 
without an NICU, multiple pregnancy and prolonged rupture of membranes also negatively influence survival. The online 
tool allows users to explore the impact of modifiable factors, i.e., provision of antenatal corticosteroids and transfer to a 
centre with an NICU, to understand their influence on survival and so potentially support decision-making.

Individualised prediction

Mortality is a key factor in perinatal decision-making [20]. The tool developed allows more individualised mortality predic-
tion in the perinatal period, which is much needed in view of the complexity of the current neonatal care. Individualised 
prediction may provide an objective measure to address biases that may be inherent within healthcare professionals [21], 

Table 2.  Model performance of the machine learning approaches and previously published models in the ‘test’ cohort (n = 5,879). 

Algorithm/Model Discrimination
Area under ROC curve

Calibration

Calibration-in-the-large Calibration slope

Extreme Gradient Boosting 0.757 (0.741 to 0.773) -0.13 (-0.24 to -0.02) 1.07 (0.99 to 1.15)

Feedforward Neural Network 0.757 (0.741 to 0.773) 0.00 (-0.12 to 0.11) 1.08 (1.00 to 1.16)

Random Forest 0.757 (0.741 to 0.773) 0.11 (-0.01 to 0.24) 1.26 (1.17 to 1.35)

Long Short-Term Memory 0.755 (0.739 to 0.771) 0.12 (0.00 to 0.24) 1.12 (1.03 to 1.20)

Adaptive Neuro-Fuzzy Inference System 0.754 (0.738 to 0.771) -0.26 (-0.36 to -0.15) 0.95 (0.87 to 1.02)

AutoPrognosis 2.0 0.751 (0.735 to 0.768) 0.00 (-0.11 to 0.12) 1.10 (1.02 to 1.18)

Logistic Regression 0.746 (0.729 to 0.762) -0.11 (-0.22 to 0.00) 1.01 (0.94 to 1.09)

K-Nearest Neighbour 0.737 (0.720 to 0.754) -0.38 (-0.50 to -0.27) 0.72 (0.65 to 0.80)

Support Vector Machine 0.718 (0.700 to 0.735) 0.50 (0.27 to 0.75) 1.42 (1.26 to 1.59)

Previous models

Tyson 2008 [18]
(N = 2,577)

0.700 (0.664 - 0.710) -0.36 (-0.46 to -0.26) 0.76 (0.66 to 0.86)

Manktelow 2013 [17]
(N = 5,642)

0.758 (0.741 - 0.774) -0.84 (-0.92 to -0.77) 0.91 (0.84 to 0.98)

Santhakumaran 2018 [2] (N = 5,879) 0.754 (0.738 - 0.770) -0.31 (-0.41 to -0.21) 1.06 (0.98 to 1.15)

NICHD 2020 [16]
(N = 2,577)

0.700 (0.667 - 0.712) -0.35 (-0.45 to -0.24) 0.82 (0.71 to 0.93)

ROC denotes Receiver Operating Characteristic. Machine learning approaches are arranged in descending order of area under the ROC curve.

https://doi.org/10.1371/journal.pdig.0000955.t002

https://doi.org/10.1371/journal.pdig.0000955.t002
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Fig 2.  Calibration plot of the machine learning approaches in the ‘test’ cohort (N = 5,879). Perfect calibration is seen when the predicted value 
(x-axis) matches the observed average of mortality (y-axis), i.e., when the machine learning approach follows the diagonal grey line.

https://doi.org/10.1371/journal.pdig.0000955.g002

https://doi.org/10.1371/journal.pdig.0000955.g002
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affecting how perinatal counselling is carried out. Current resources to support perinatal counselling provide estimates of 
survival based on broad criteria, especially gestational age groups in weeks [12,13]. However, mortality outcome varies 
depending on a range of factors, and it is unclear how these interact with one another to determine the mortality out-
come. Furthermore, parents prefer a more individualised approach during perinatal counselling [7]. Our focus groups also 
demonstrated that understanding which factors contributed to the mortality risk would support parents in shared  
decision-making. As with all risk prediction models, the individualised predictions should be interpreted based on the 
clinical condition of the infant, with clinical input from healthcare professionals. It should be viewed as part of a package 
of supporting information that healthcare professionals have to hand to inform shared decision-making discussions, rather 
than making a clinical decision solely based on the output of the tool.

In addition to the support it could offer for decision-making, it could also have a role to play in research. Using the key 
characteristics which are important to the risk of infant death in this population could allow a more personalised approach 
to trial recruitment based on this risk, and could be enhanced with the addition of other multi-omic biomarkers [22]. This 
would be particularly useful for high-risk treatments by allowing identification of patients most likely to benefit, whilst at the 
same time avoiding exposing those least likely to benefit, but where the adverse effects may carry significant risk.

Challenges/limitations

Our study attempted to address many of the common challenges [23] faced when developing and validating prediction 
tools, as detailed below.

Quality of the dataset.  Data inaccuracies and missing data could not be controlled for as the data were entered 
at the point of care. However, predictors used in the dataset were derived from multiple data items within the dataset 
to ensure the validity of the variables extracted and reduce the missing data rate. At present, the dataset used 
to develop the tool does not include infants who died in the labour suite or obstetric theatre before admission to 

Fig 3.  Decision curve analysis of the machine learning approaches in the ‘test’ cohort (N = 5,879). The threshold probability denotes the mortality 
risk threshold above which healthcare professionals would provide palliative/comfort care. Net benefit denotes the ‘net’ mortality cases detected per 100 
infants. Net benefit is calculated as a weighted combination of true and false positives based on the threshold probability.

https://doi.org/10.1371/journal.pdig.0000955.g003

https://doi.org/10.1371/journal.pdig.0000955.g003
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Fig 4.  A, Calibration plot and B, decision curve analysis comparing the logistic regression model with four previously published models in 
the ‘test’ cohort (N = 5,879).

https://doi.org/10.1371/journal.pdig.0000955.g004

https://doi.org/10.1371/journal.pdig.0000955.g004


PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000955  December 10, 2025 11 / 19

neonatal units. This may result in underestimating the true mortality risk among the highest-risk group of infants, 
typically those <24 weeks of gestation. We used birth weight z scores, which are not known prior to birth, rather 
than estimated fetal weight z scores, which may be quite different to the actual birth weight, potentially leading to 
inaccurate mortality estimates.

Generalisability of the tool.  The dataset used to develop our tool encompasses all neonatal admissions of extremely 
preterm infants in England and Wales from 2012 and 2014, respectively. Hence, it reflected current perinatal practice with 
a diverse infant cohort representative of the national population. However, the variation in the model performance of our 
developed tool in different maternal ethnicities and neonatal networks must be interpreted with caution due to the smaller 
sample size and number of deaths within each subgroup, and the high missing data of 26% in maternal ethnicities. The 
variation in neonatal outcomes across different maternal ethnicities [24] and neonatal networks [25] may also partly 
explain some of the differences in model performance found. However, maternal ethnicity and region of care were not 
included as predictors, as our tool was intended to be used widely across high-income countries. Caution is needed when 
using the tool in the subgroups with poor performance. Predictions provided by the tool should be considered within the 

Fig 5.  A, Calibration plot and B, decision curve analysis of the developed logistic regression model in the ‘external validation’ cohort 
(N = 1,051).

https://doi.org/10.1371/journal.pdig.0000955.g005

https://doi.org/10.1371/journal.pdig.0000955.g005
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clinical context of the pregnancy and infant. Furthermore, the performance of our tool in different ethnicities and regions of 
care needs to be continuously monitored to avoid exacerbating ingrained inequalities in the current healthcare system.

Computational expense.  Temporal internal validation was used as it was computationally expensive to analyse the 
entire dataset using a bootstrapping approach. Our models did not account for birth year as a predictor, as we anticipated 
that these would be accounted for by the changes in perinatal predictors across the birth years. Furthermore, our tool 
demonstrated good model performance in the temporal internal validation despite the changes in perinatal characteristics 
and neonatal outcomes with time.

Perinatal predictors.  Mortality is predicted for the whole neonatal admission, but is based on early perinatal 
characteristics. The accuracy is therefore unlikely to significantly improve beyond the current routinely collected baseline 
data without the inclusion of important postnatal events during the NICU stay, and this likely explains why the different 
models show similar results. Furthermore, the majority of the predicted risks derived by the nine machine learning 
approaches were below 20% (S3 Table), despite good calibration for some of the approaches (Fig 2). This may be a 
reflection of the imbalanced dataset, with only 20% infant mortality in the ‘test’ cohort. The current models may also be too 
conservative due to a lack of variation within the perinatal predictors, and the distribution of predicted risk may improve 
with further postnatal clinical data.

Fig 6.  Online prediction tool (https://premoutcome.shinyapps.io/Death/) based on the logistic regression model with explainability provided 
using Local Interpretable Model-agnostic Explanations (LIME).  In this example, the predicted risk (95% confidence interval) of mortality is 70% 
(67% to 72%) in a male infant born at 24+0 weeks’ gestation, birth weight 600 grams, with no exposure to antenatal corticosteroids, and born in a centre 
with no co-located NICU. The predicted risk is driven by the gestation and no exposure to antenatal corticosteroids. The predicted risk decreases to 45% 
(43% to 47%) if the mother had received a complete course of antenatal corticosteroids (two doses of corticosteroids before birth) and given birth in a 
centre with a co-located NICU.

https://doi.org/10.1371/journal.pdig.0000955.g006

https://premoutcome.shinyapps.io/Death/
https://doi.org/10.1371/journal.pdig.0000955.g006
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Further development of the tool will explore the addition of dynamic postnatal clinical data and events, alongside 
multi-omics biomarkers. This will also allow prediction of other important morbidities, such as severe bronchopulmonary 
dysplasia or intraventricular haemorrhage, and neurodevelopmental outcomes, which are of prime importance to parents 
and are often discussed during the perinatal counselling process [13,21,26].

Clinical implementation and explainability.  Despite our tool demonstrating promising findings, further external 
validation and impact studies on the usability and explanability of the tool, alongside its impact on real-world clinical 
decision-making, are needed before consideration for use in clinical practice to support shared clinical decision-making 
and to facilitate clinical implementation. The variable importance demonstrated by the tool for each individualised 
prediction provided a “technical” measure of explanability, rather than true explanability, as more work is needed to assess 
the tool from a causal reasoning or decision logic perspective. However, the visualisation of variable importance within the 
online tool, coupled with the co-design of the tool with focus groups of parents of extremely preterm infants, is a key first 
step taken in facilitating clinical implementation and explainability.

It is also unclear how our tool performs compared to clinical judgement alone in predicting mortality in extremely 
preterm infants. Previously published studies demonstrated the complexity and variation of mortality risk assessment in 
extremely preterm infants among perinatal healthcare professionals. Healthcare professionals were found to underesti-
mate [27,28] or overestimate [29,30] the mortality risk, demonstrating a need for an objective measure in risk assessment 
and consideration of care plans for extremely preterm infants.

Conclusion

Our individualised, online mortality prediction tool demonstrated the potential of applying machine learning approaches to 
population-based routinely recorded electronic patient data to predict neonatal outcomes in preterm infants. Further exter-
nal validation and impact analysis studies are needed to understand if this could support parental discussion and shared 
perinatal clinical decision-making.

Materials and methods

Ethics statement

Ethical approval was granted by the Sheffield Research Ethics Committee (REC reference 19/YH/0115). The study was 
reported using the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis AI 
(TRIPOD+AI) checklist [31] and the Transparency, Reproducibility, Ethics and Effectiveness (TREE) framework [32]. The 
PLUSS Trial Steering Committee approved the use of grouped trial data for the external validation.

Study population and data source

Model development and internal validation.  Routinely entered electronic patient record data from a retrospective 
population-based cohort of extremely preterm infants born between 23+0 and 27+6 weeks’ gestation and admitted to all 
185 neonatal units in England and Wales between January 2010 and December 2020 were extracted from the National 
Neonatal Research Database (NNRD) [33]. This represented over 90% of neonatal units in England in 2010 with complete 
coverage in England from 2012 and Wales from 2014. Infants with birth weight z score < -4 or >4 based on the UK WHO 
preterm growth reference [34] or discharged to non-participating neonatal units were excluded as these were potentially 
erroneous or incomplete entries.

The study population was split into three cohorts depending on the birth year of the infants. Firstly, infants born from 
2010 to 2015 (‘training’ cohort) were used to develop the mortality prediction models using different hyperparameters for 
each of the nine machine learning approaches. Secondly, infants born from 2016 to 2017 (‘validation’ cohort) were used to 
identify the optimal hyperparameters that produced the best discrimination performance for each of the machine learning 
approaches. Lastly, infants born from 2018 to 2020 (‘test’ cohort) were used to internally validate the performance of each 



PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000955  December 10, 2025 14 / 19

of the machine learning approaches using the optimal hyperparameters identified previously [35]. The ‘test’ cohort was 
also used to compare the performance of our preferred final model implemented in our developed online mortality predic-
tion tool with previously published models [2,15–17].

External validation.  The developed prediction tool was externally validated on infants born between 23+0 and 27+6 
weeks’ gestation enrolled in the PLUSS trial [19] from 21 NICUs in four countries (Australia, New Zealand, Singapore and 
Canada) from January 2018 to March 2023. Infants were recruited in the first 48 hours of age if they were either invasively 
ventilated or receiving non-invasive ventilation with a decision to treat with surfactant.

Predictors

Nine perinatal predictors were determined a-priori based on their clinical significance and association with mortality from 
the literature review [36,37], framework of practice [13] and national guidance [12]. No postnatal predictors nor biomarkers 
were included.

The predictors recorded at or shortly after delivery were: (i) gestational age determined using the best obstetric esti-
mate [38]; (ii) birth weight z-score as a measure of fetal growth; (iii) sex; (iv) multiple pregnancy; (v) exposure to com-
plete (defined as at least two doses of ANC) or incomplete ANC; (vi) prolonged rupture of membranes of more than 18 
hours; (vii) chorioamnionitis; (viii) major congenital anomaly based on the European Surveillance of Congenital Anomalies 
(EUROCAT) registry [39]; and (ix) born in a maternity centre with a co-located Level 3 NICU [40]. Definitions of these 
predictors are described in S6 Table. Due to the retrospective nature of the study, the assessment of the predictors and 
outcome was not blinded.

Outcome

Mortality was defined as death of the infant before discharge from neonatal units.

Statistical analysis

The extracted dataset was cleaned using STATA 15 [41].
Machine learning approaches.  The prediction models were developed in the ‘training and validation’ cohort using R 

version 4.3.2 in Rstudio [42] and Python version 3.11.7 in Jupyter Notebook [43] for nine machine learning approaches. 
The nine approaches were Logistic Regression, AutoPrognosis 2.0, Adaptive Neuro-Fuzzy Inference System, Extreme 
Gradient Boosting, Feedforward Neural Network, K-Nearest Neighbour, Long Short-Term Memory, Random Forest and 
Radial Kernel Support Vector Machine (Table 2). For the latter seven machine learning approaches, the dataset was 
z-score normalised based on the training data values to ensure stability and speed up the convergence of the algorithms. 
A complete case analysis was used for all approaches, excluding infants with missing data for the predictor variables. 
Further details of the modelling approaches are described in S1 File. For each of the nine machine learning approaches, 
the importance of each predictor to the prediction in the ‘test’ cohort was determined using the mean SHAP values. These 
were derived from Kernel SHAP [44] using the kernelshap package in R [45] and a sample of 100 infants to calculate the 
marginal expectation. As a subgroup analysis, the importance of the predictors to the prediction of the best-performing 
algorithm was determined for each gestational week in the ‘test’ cohort using mean SHAP values.

Model performance.  Performance of the nine machine learning approaches was assessed by temporal internal 
validation in the ‘test’ cohort across the three domains of (i) discrimination (AUROC) [46], (ii) calibration (calibration plot, 
calibration-in-the-large and calibration slope) [47], and (iii) utility measures (decision curve analysis) [48]. Decision curve 
analysis is a decision-analytic measure to summarise the ‘net’ benefit of the model in detecting neonatal death across a 
range of mortality risk thresholds above which healthcare professionals would provide palliative/comfort care (threshold 
probability).
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The performance of the previously developed mortality prediction models (Tyson 2008 [18], Manktelow 2013 [17], San-
thakumaran 2018 [2] and NICHD 2020 [16]) was also assessed in the ‘test’ cohort using published regression coefficients 
for the first three models and the freely available online NICHD 2020 [16] tool. Only infants within the ‘test’ cohort who 
fulfilled the inclusion criteria for each of the previously published models were used to assess their performance. Sub-
group analysis was also performed to assess the performance of the best-performing algorithm across different maternal 
ethnicities and regions where perinatal care was provided (neonatal networks). The performance of the best-performing 
algorithm was then externally validated on the PLUSS trial [19] cohort of infants.

Online prediction tool.  An online prediction tool was developed based on the best-performing algorithm using the 
shiny package in R [49] and deployed on shinyapps.io. The tool displays the predicted mortality risk for each infant 
alongside the predicted mortality risk if the modifiable predictors of exposure to antenatal corticosteroids and being born in 
a centre with a co-located NICU were optimised. Explainability of the individual predictions made was provided using the 
Local Interpretable Model-Agnostic Explanation (LIME) package in R [50]. The ‘training and validation’ cohort was used 
to train the LIME explainer. Once the LIME explainer is created, 5,000 permutations using forward selection in a ridge 
regression model and Gower’s distance were used to explain how the individual predictions were made. The tool was co-
designed with parents of ex-preterm infants through two focus group sessions organised with the Spoons charity.

Supporting information

S1 Table. Table demonstrating the characteristics of infants with complete data included in developing and vali-
dating the prediction model, and excluded infants with missing data for birth weight z score, multiple pregnancy, 
exposure to antenatal corticosteroids or born in a centre with neonatal intensive care unit (NICU). IQR denotes 
interquartile range.
(DOCX)

S1 File. File detailing the model development process for each of the nine machine learning approaches. 
(DOCX)

S2 Table. Table demonstrating the importance of the predictors to the predictions in the testing dataset based 
on mean SHapley Additive exPlanations (SHAP) values. NICU denotes Neonatal Intensive Care Unit. PROM denotes 
Prolonged rupture of membranes. 1 Chorioamnionitis and congenital anomalies predictors were dropped from the logis-
tic regression model after backward stepwise selection. 2 Sex and Multiple pregnancy predictors were used to group the 
dataset in the Adaptive Neuro-Fuzzy Inference System.
(DOCX)

S1 Fig. Figure demonstrating the importance of the predictors to the predictions of the logistic regression model 
in the ‘test’ cohort based on mean SHapley Additive exPlanations (SHAP) values for the overall cohort and by 
gestational week groups. 
(DOCX)

S3 Table. Table describing the distribution of the predicted risk obtained from the nine machine learning 
approaches used in the ‘test’ cohort (N = 5,879). 
(DOCX)

S4 Table. Table presenting the regression coefficients with 95% confidence intervals (CI) of the final logistic 
regression model to predict death before neonatal discharge. Regression coefficient denotes estimated change in the 
log odds of death when the associated predictor increases by one unit or in comparison with a reference category. NICU 
denotes Neonatal Intensive Care Unit.
(DOCX)
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S5 Table. Table describing the incidence of death and the model performance of the logistic regression approach 
in the ‘test’ cohort (N = 5,879) stratified by (A) maternal ethnicity (N = 4,379) and (B) neonatal network (N = 5,824). 
ROC = Receiver Operating Characteristic. 1,500 (26%) and 55 (1%) of infants with missing data on maternal ethnicity and 
neonatal network were excluded.
(DOCX)

S2 Fig. Calibration plot of the logistic regression approach in the ‘test’ cohort (N = 5,879) stratified by (A) maternal 
ethnicity (N = 4,379) and (B) neonatal network (N = 5,824). 
(DOCX)

S3 Fig. Decision curve analysis of the logistic regression approach in the ‘test’ cohort (N = 5,879) stratified by (A) 
maternal ethnicity (N = 4,379) and (B) neonatal network (N = 5,824). 
(DOCX)

S6 Table. Table describing the definition of variables extracted from the National Neonatal Research Database. 
(DOCX)

S7 Table. Participating neonatal units in England and Wales and their respective lead clinicians. The list was 
accessed from https://www.imperial.ac.uk/neonatal-data-analysis-unit/neonatal-data-analysis-unit/list-of-national-neona-
tal-units/ on 06/01/2022.
(DOCX)
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