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Abstract

Background

Digital behavior change interventions (eHealth, mHealth) are known to be capable of
promoting clinically significant weight loss among some participants. However, these
programs can struggle with declining engagement and adherence over time, which can
hamper their effectiveness. This analysis examines the extent that depression symptoms
may negatively influence engagement, adherence, and 6 month weight change in an
eHealth intervention.

Methods

Structural equation modeling is applied to test the effects of baseline depression symp-
toms on weight change outcomes, mediated through latent constructs of engagement and
adherence, respectively. These constructs were highly correlated within this dataset and
necessitated two separate models to be tested. Engagement was indicated by 6 month
sums of website logins, user-created goals, visiting various webpages, and posts on the
online discussion boards. Adherence was indicated by 6 month sums of weeks exercise
goals met, days weight logged, and days of complete dietary tracking.

Results

Depression symptoms showed no direct association with weight change (p’s = 0.6), but
were negatively associated with both constructs of engagement and adherence (p’s <
0.001), which in turn were negatively associated with weight change in both models (p’s
< 0.001). It was determined depression symptoms had a positive indirect association with
weight change fully mediated through these variables, meaning less weight loss or possi-
ble weight gain (p < 0.001).
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Discussion

This analysis shows that depression symptoms had a significant, undesirable effect on
weight loss outcomes within this eHealth intervention, fully mediated through measured
participant engagement and adherence. Further research is needed to test these con-
structs within a longitudinal model to better understand their dynamic interrelationships,
and consider means to address depression in future digital interventions.

Author summary

Digital behavior change interventions (DBClIs) have shown promise for developing
scalable interventions to help address health outcomes such as overweight and obesity.
However, it is known that engagement with DBCIs tends to drop off before an interven-
tion is finished, thus reducing its potential for effectiveness. Depression is often men-
tioned as a likely contributor to reduced engagement and/or adherence in these
programs, but is rarely studied in-depth outside of mental health-specific interven-
tions. We applied structural equation modeling to test the extent that depression may
influence weight change outcomes directly, or mediated through latent constructs of
engagement and adherence to try and solidify the literature. We found that depression
symptoms were fully mediated through these constructs; meaning that higher levels of
depression had negative impacts on engagement and adherence, which in turn have
negative impacts on weight (i.e., more weight loss). We concluded that depression
symptoms have a significant indirect positive effect on weight, meaning less weight loss
or possible weight gain. Our study provides a basis to consider baseline depression levels
as an important variable to consider when designing future DBCIs for weight manage-
ment, and possibly other outcomes.

Introduction

Digital behavior change interventions (DBCIs) are able to benefit a variety of health outcomes,
including weight management, physical activity promotion, as well as smoking and other
substance use cessation; often eliciting equal or greater effect sizes than traditional in-
person interventions [1-5]. These programs feature increased scalability to reach multitudes
of participants for lower cost than in-person programs and are largely accessible at partici-
pants’ convenience. As over 70% of U.S. adults are living with overweight or obesity, which
increase risks of numerous chronic diseases, certain types of cancers, and other morbidities,
this improved scalability is a key asset to support contemporary weight management interven-
tions [6,7]. While the literature is robust with recommendations and resources to design and
implement DBClISs for a variety of health outcomes, their effectiveness inevitably depends on
how much participants use these programs. This analysis investigates one potential issue which
may be contributing to reduced participant engagement, adherence, and success in DBCIs.
Participant engagement and adherence are both necessary precursors to DBCI effective-
ness, which happen more or less in tandem during an intervention. Despite their importance
to DBCI research, definitions of these constructs have tended to vary between publications
[8]. It is clear that engagement and adherence are inextricably linked process; however, they
are conceptually and empirically distinct. Definitions and operationalizations are provided
here to promote clarity and comparability.
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Engagement is defined here as the extent to which a user interacts with the digital interface
of an intervention as intended, based on the systematic definition proposed by Perski et al
[8]. Engagement is a latent construct that may be measured using objective usage indicators
including logins, page views, proportion of full program components utilized, as well as
messages, resources or lessons read [9,10]. Engagement with DBCIs is typically considered
essential to promote the dose received of intervention content and is a common focus of
DBCI research. There is an often-cited ‘Law of Attrition” which broadly states since DBCIs
operate at the discretion of participants who may choose to stop using them, they suffer from
rapid declines in user engagement, increased risks of disengagement (i.e., all usage indicators
dropping to zero, but not lost to follow-up; a.k.a. “non-usage attrition”), and possible attrition
or loss to follow-up [11-15]. There are several proposed hypotheses explaining these observed
high disengagement rates, including replacement discontinuance, where users may switch
to some preferred alternative to the DBCI, and disenchantment discontinuance, where users
may disengage from a program because they are dissatisfied with it in some way [12]. While
much DBCI research focuses on increasing or sustaining program engagement among active
participants, comparatively less research investigates factors which may negatively influence
participant engagement and adherence, and possibly contribute to this hypothesized replace-
ment or disenchantment discontinuance mechanisms.

Adherence is the next step along the pathway from engagement to successful intervention
outcomes, and is defined here as the degree that a participant’s actual (measured) behavior
corresponds with requests or goals from an intervention. This definition of adherence is in
line with the WHO, and is generally similar to definitions used in other contemporary pub-
lications. [16-20] In weight management programs, these recommendations would typically
include adherence to dietary regimens [21], physical activity goals [22], daily weighing recom-
mendations, attendance to counseling sessions, and regular self-monitoring of behaviors and
outcomes [23,24]; to contribute to improved weight outcomes [25-27].

It is well known that depression and weight status are strongly associated such that individ-
uals of higher bodyweight tend to also exhibit higher depressive symptoms, and that depres-
sive symptoms can improve with successful weight loss in traditional in-person lifestyle
modification interventions (not considering very low bodyweights) [28-31]. Based on
research in traditional in-person interventions, baseline depressive symptoms have been
associated with increased attrition and fewer intervention sessions attended [28,32]. There is
some evidence of a mediating pathway, as Wing, Phelan, and Tate found that baseline depres-
sion symptoms negatively influenced mediating program adherence, and thus weight change
within an in-person intervention [25]; however, baseline depressive symptoms do not often
predict direct variance in weight change [29,33,34]. As weight-related stigma is a potential
factor influencing adherence to these in-person programs [28], remote DBCIs may be a prom-
ising alternative due to a lower threshold of interaction to attend sessions and lower perceived
risk of encountering stigma.

Unfortunately, depression and poor mental health are not often studied in DBClIs outside
of those specifically focusing on mental health outcomes, and rarely quantified in depth. In
their systematic review, Perski et al identify several studies which mention isolated associa-
tions between mental health and differential adherence or engagement in DBClIs, and possibly
signaling increased risk of participant dropout [8,18,35-44]. Additionally, in their systematic
review of factors influencing adherence in DBCIs for noncommunicable diseases, Jakob et al
found that depression symptoms were reported to be negatively associated with adherence
for several outcomes including physical activity and weight loss, and only positively asso-
ciated with adherence in DBCIs specifically targeting depression [20]. As higher levels of
depression are known to negatively influence motivation and increase feelings of fatigue and
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selective focus on negative information [28], which could increase the risk of factors such as

disenchantment discontinuance, it is valuable to measure how depression may influence the
constructs of engagement and adherence in DBCIs. Therefore, this analysis seeks to test how
depression symptoms may influence distal weight change outcomes when modeled through

engagement and adherence as mediators.

The guiding hypotheses for this analysis are: 1) depression symptoms will have a negative
influence on the latent constructs of engagement and adherence; 2) engagement and adher-
ence will each be negatively associated with 6-month weight change (i.e., weight loss); and 3)
the direct effect of depressive symptoms on weight change will be fully mediated by program
engagement and adherence.

Materials and methods
Dataset

Data for this analysis come from LoseNow PA (LNPA), an NIH-funded 12-month cluster-
randomized controlled eHealth DBCI for weight management among primary care patients
living with overweight or obesity in the United States (clinicaltrials.gov identifier: NCT01606813)
[45]. In this study, primary care providers (PCPs; k = 31) were randomly assigned to one of three
intervention groups, and patients (N = 550) received the intervention assigned to their provider:
1) enhanced usual care (EUC; n = 187); 2) internet weight loss intervention (IWL; n = 181); or 3)
internet weight loss intervention plus automated physician-tailored advice (IWL+PCP; n = 182)
[45]. Summarizing primary outcomes of the trial, both the IWL and IWL+PCP arms exhibited
significantly greater weight loss than EUC, and there were no significant differences between IWL
and IWL+PCP on any outcomes. Full details of the trial can be found in Tate et al., 2022 [45].

Both IWL intervention arms had access to a study website requiring a username and
password to log in. The study website included instructional lessons and resources; self-
monitoring diary pages for diet, physical activity, and weight; weekly computer-tailored
feedback messages and graphs; personal goal setting and problem-solving tools; progress
summary pages; a social forum to message with other participants; as well as opt-in reminder
text messages containing updates, encouragement, and motivational content. Participants
could choose from several Eating and Activity Plan monitoring options to customize how they
monitored calories and how exercise goals would progress, respectively, and shift their moni-
toring plan(s) if desired during the intervention. The primary difference between the interven-
tion arms was that participants in the IWL+PCP condition also received brief biweekly emails
containing a computer-generated tailored message addressed from their PCP related to weight
loss progress, frequency of website log-ins, time in the program, and other aspects such as
patient-reported motivation. PCP’s could view and edit these messages for each patient before
sending, though results showed that this functionality was rarely used by PCPs (only 1.2% of
all PCP messages sent were edited) [45].

Since the study website was functionally identical across both intervention arms and no
significant influence of the automated physician advice messaging was found, participants
from both arms were pooled to maximize the statistical power of this secondary analysis. Of
the full N = 363 participants assigned to the IWL and IWL+PCP groups, 24 did not ever log
in to the website and are excluded from this analysis, bringing the effective sample size to n
= 339. Additionally, this analysis specifically focuses on the first 6 program months to best
measure the effects of active program engagement and adherence with the following ratio-
nale: This timeframe is critical as most DBCI engagement occurs in the early months of an
intervention, most weight loss occurs during months 1-6, and users are increasingly likely to
disengage from DBClIs as duration increases in months 6-12 [12,46-48].
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Ethics statement

The parent LNPA study was approved by institutional review boards at the University of
North Carolina at Chapel Hill (#12-1661) and Penn State College of Medicine (#39237). Both
PCPs and patients completed written informed consent forms prior to data collection and
randomization, as described in Tate et al, 2022 [45].

Measures

LNPA participants completed study assessments at baseline, 3, 6, and 12 months. During base-
line assessments, participants self-reported various sociodemographic characteristics includ-
ing age, sex, and race/ethnicity, which are applied as exogenous covariates. Weight change is
measured by a difference score between participant weights at baseline and 6 months, and is
the primary dependent variable of analysis. Sensitivity analyses using 12-month weight change
data, as well as percent weight change at 6 and 12 months, were applied for added confidence
in estimates.

The Centers for Epidemiology — Depression (CES-D) scale was administered as part of
baseline study assessments and is a validated measure of depression symptoms [49]. Briefly,
the CES-D is a non-diagnostic psychometric scale with score values ranging from 0-60, with
higher values indicating stronger depression symptoms, and scores 216 commonly referenced
as indicating a risk of clinical depression [49]. Standardized CES-D scores were used as the
primary exogenous predictor of interest in the following simultaneous equation models.

Indicators of engagement with the IWL study website include logins, page hits, personal
goals created, and social forum posts - all of which have been previously validated as indi-
cators for this construct [9]. Website page hits refer to the number of time-stamped website
URLs visited by logged user IDs. To reduce collinearity with other indicators, the page hits
variable only encompasses URLs that did not include the login page, home page, any of the
behavioral self-monitoring pages, or the contact/help page. Therefore, increasing values of this
variable indicate users accessing more lessons, resources, viewing feedback pages, etc. for a
greater breadth of program usage. On the first website login each week, participants could cre-
ate and track up to 3 personal goals, which were summed as an additional engagement indi-
cator after being found to be associated with weight loss in a previous analysis [50]. The social
forum posts variable is a sum of the number of posts users made on the IWL message boards
where participants could communicate with other participants and LNPA staff if desired.

Indicators of adherence with LNPA program recommendations include the number of
weeks the minimum physical activity goals were met, days of complete dietary logging, as well
as days bodyweight was logged, and were operationalized as follows: The number of weeks
that users logged a number of active minutes of exercise that met or exceeded the lowest
intensity Activity Plan goals for that point in time were summed to indicate meeting mini-
mum program goals for that week. The number of days participants either directly logged or
adjusted dietary entries to include > 800 calories were summed to indicate complete days of
dietary monitoring, based on previous literature which indicated that this much logging is
associated with improved weight management [51,52]. Lastly, days that users self-monitored
their bodyweight were summed to demonstrate additional adherence to program recommen-
dations, as the website had dedicated pages and feedback graphs for tracking weight change
over time.

Data analysis

Missing data. At 6 months, 26.7% of participants were missing weight measurements,
and 17.6% were missing 12-month weight measurements. No clear patterns of missingness
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were discernible. Assuming these observations are missing at random, we applied multiple
imputation using chained equations to pool point and standard error estimates across m = 50
iterations, including the most recent participant weight logged on the IWL website before 6
months in the dataset to facilitate weight imputations [53-59].

Structural equation modeling. We used a structural equation modeling (SEM) approach
to efficiently model mediation pathways between engagement and adherence as latent
variables (LVs), and applied log-link transformations of indicator variables where appropriate.
LVs of engagement and adherence were separately examined using confirmatory factor
analysis to determine optimal loading variables: sum logins for engagement and sum weeks
PA goals met for adherence (indicated by the “*” symbols in Fig 1). We first conducted
measurement models of the adherence and engagement LVs, comparing the fit of a 1- and 2-
factor model. During this phase, we found that the two LVs were highly correlated with one-
another (>95%) when entered into the same model. Because of this, it was deemed necessary
to estimate two separate mediation models to test study hypotheses. Path diagrams of these
twin models are displayed in Fig 1.

Model fit was assessed using Chi-square (x*) fit test, root mean square error of approxima-
tion (RMSEA), confirmatory factor index (CFI), and Tucker Lewis index (TLI) values, as well
as standardized root mean square residuals (SRMR). All analyses were conducted using the
lavaan, semTools, and mice packages for R statistical software [59,56].

Results
Descriptive statistics

Most LNPA participants randomized to intervention arms (N = 363) were white (82.3%) and
female (70.3%) with a mean baseline weight of 97.99kg (216.03 Ibs) and average age 51.86

Depression

Z1 Z2 Z3 Z4
* Age
Sex
Race/Eth.
Engagement l Indicator variables:
Weight Z1 = Sum website logins
(CES-D) Change Z2 =Sum user-createq goals
Z3 = Sum web-page hits
Z4 = Sum forum posts
——————————————————— Z5 = Sum weeks minimum exercise goal logged
Z6 = Sum days weight logged
Depression Weight Z7 = Sum complete diet days logged
(CES-D) Change
* =loading variable
Adherence
\ Age
Sex
* Race/Eth.

z5 Z6 z7

Fig 1. Structural equation model path diagrams. Describing the paths of these SEMs, each model estimates the direct effects of
exogenous baseline depression symptoms measured by the CES-D on 6-month weight change, as well as on endogenous LV's of
engagement and adherence, which in turn each have a direct effect mapped onto 6-month weight change. Three separate exogenous
variables of participant age, sex, and race/ethnicity are mapped onto adherence, engagement, and weight change as demographic
control covariates.

https://doi.org/10.1371/journal.pdig.0000766.9001
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years. Over half of the sample (~56.7%) reported having less than a Bachelor’s degree or
equivalent education. Average CES-D scores at baseline were 13.13 and ranged between 0-41,
with 112 (30.9%) participants reporting scores above the threshold of >16 indicating a risk of
clinical depression. A full descriptive summary of baseline characteristics for those with data is
displayed in Table 1. Two participants were identified as outliers with excessive weight losses
in this sample; however, their inclusion did not meaningfully influence model results, so they
remained in this analysis. There were no significant differences in any variables between the
full and subset samples.

Website engagement indicators exhibited high variability. Approximately 53 partici-
pants (14.6%) logged in 5 times or fewer over 6 months, while there were several users with
extremely high engagement indicators (e.g., one user had 977 website logins and 4,446 regis-
tered page views within 6 months, compared to the sample average of approximately 99 logins
and 300 page views). This high variance in engagement indicators persisted even after outlier
testing and removal. Adherence indicators exhibited much lower variability by comparison.
A correlation matrix of all indicator variables used in this analysis are available in S1 File.
Descriptive statistics for all indicator variables are summarized in Table 2.

Simultaneous equation model fit and estimates

Both models converged across m = 50 imputed datasets with good fit statistics overall. The chi
square (x*) test statistics for engagement were both significant (p’s < 0.001) which is undesir-
able, yet not surprising as the x* tests the null hypothesis that a given model fits the data
perfectly, and with a modest sample size of n=339, even small deviations could produce
significant values [53]. Pooled RMSEAs for engagement = 0.063 (p = 0.19) and adherence
=0.089 (p = 0.02) indicate that both models fit the data fairly well, though the engagement
model shows better fit. Pooled SRMRs for engagement = 0.033 and adherence = 0.023 which

Table 1. Participant characteristics of pooled intervention groups (N = 363).

Variable Frequency (%) Mean (SD) Min; Max
Gender

Female 255 (70.3%)

Male 93 (25.6%)

Race

White 299 (82.3%)

Black 45 (12.5%)

Other POC 19 (5.2%)

Highest Education Achieved

High School 89 (24.5%)

1-3 Years College 117 (32.2%)

4+ Years College 139 (38.3%)

Age 51.86 (10.86) 21;70
Clinic Weight, Baseline (kg) 97.99 (18.73) 62.1; 148.6
Clinic Weight, 6 months (kg) 92.63 (18.23) 57.6; 157.75
Clinic Weight, 12 months (kg) 93.61 (18.72) 58.2; 167.60
6-month Weight Change (kg) -4.72 (5.79) -30.0; *6.9
CES-D Scores (0-60) 13.13 (9.96) 0; 41

Notes:

SD = Standard Deviation; POC = People of Color; CES-D = Centers for Epidemiology Scale - Depression

https://doi.org/10.1371/journal.pdig.0000766.t001
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Table 2. LNPA engagement and adherence indicator descriptive statistics (n = 339).

Indicator Variables Mean (SD) Median Min; Max
Engagement

Sum logins 106.04 (182.59) 39 1; 1362
Sum page-hits 321.15 (559.69) 114 0;4714
Sum goals set 25.05 (23.72) 18 0; 81
Sum forum posts 1.81 (4.98) 0 0; 36
Adherence

Sum weeks physical activity goal met 9.85(10.29) 5 0; 27

Sum complete diet days logged 55.59 (63.20) 27 0; 182
Sum weight days logged 91.51 (110.64) 38 0; 379

Notes:SD = Standard Deviation

https://doi.org/10.1371/journal.pdig.0000766.t1002

both indicate good fit. Additionally, the pooled CFIs for engagement = 0.971 and adherence
= 0.974, as well as the pooled TLIs for engagement = 0.949 and adherence = 0.943, which all
indicate good model fit for the data. These results are re-summarized in Table 3.

There were no observed direct effects between baseline depression symptoms and 6-month
weight change in either of the engagement and adherence models (p’s > 0.6). However, results
indicate that a one standard deviation increase in baseline CES-D scores was negatively asso-
ciated with engagement (y, . = -0.315; SE = 0.082; p < 0.001) and with adherence (y,,, .., =
-0.333; SE = 0.083; p < 0.001), net of demographic covariates. In turn, these constructs were
each associated with significant reductions in weight at 6 months, net of demographic covari-
ates. As program engagement increased, participants lost an additional 2.1kg by 6-months
(Voeheng = ~2:097; SE = 0.209; p < 0.001), controlling for covariates. Further, as adherence
to program recommendations increased, participants lost an additional 1.8kg by 6-months
(Vyichaan = ~1787; SE = 0.203; p < 0.001), controlling for covariates. Fig 2 displays the same
path diagram with coefficients and factor loadings superimposed over directional arrows to
aid interpretation.

While the primary outcomes of these models show how depressive symptoms can neg-
atively influence engagement and adherence to then contribute to poorer weight change
outcomes, there were several notable effects from the demographic control covariates: Age
was the only consistently significant covariate across both engagement and adherence models,
with increasing participant age above the program mean (51.86) showing positive effects
on engagement (yeng)age =0.037; SE = 0.008) and adherence (y, dhage = 0.028; SE = 0.008), and
negative effects on 6-month weight change in the engagement (y,, .- =-0.057; SE = 0.025)
and adherence (y, dhage = -0.083; SE = 0.026) models (all p’s < 0.001). Participant sex was sig-
nificantly associated with 6-month weight loss in the engagement model (y_, . = -1.667; SE

Table 3. SEM Fit Statistic Summary.

Indicator Value (p-value)

Engagement Adherence
Chi Square (x?) 39.58 (p =0.001) 37.066 (p < 0.001)
RMSEA 0.063 (p =0.189) 0.089 (p = 0.016)
CFI 0.971 0.974
TLI 0.949 0.943
SRMR 0.033 0.023

https://doi.org/10.1371/journal.pdig.0000766.t003
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Z1 Z2 Z3 Z4
1 0.884**\ 0.60%*/ 0.283*% Age
Sex
Race/Eth.
-0.315%x M Engagement N 5 097+* Indicator variables:
Depression Weight Z1 = Sum website logins
(CES-D) 0.074 Change Z2 = Sum user-created goals
Z3 = Sum web-page hits
Z4 = Sum forum posts
______________________ Z5 = Sum weeks minimum exercise goal logged
Z6 = Sum days weight logged
Depression 0.140 Weight Z7 = Sum complete diet days logged
(CES-D) Change Significance indicated as follows:
-0.333%* -1.787%% *=p<0.05
Adherence #* = <0.001
\ Age
Sex
1 1.171%*] 0.810% Race/Eth.
Z5 Z6 z7

Fig 2. Path diagrams with coefficients. These results showed that the effects of baseline depression symptoms on weight change were completely mediated
through the constructs of engagement and adherence in each model. The indirect effect of CES-D scores on 6-month weight change through engagement was
0.660 (SE = 0.170; p < 0.001). Rephrased in practical terms, participants with CES-D scores one standard-deviation above the mean (~23) engaged with the
LNPA website less, and lost approximately 0.66% less weight by 6 months (p < 0.01) than those with average CES-D scores (13.13). Likewise, the indirect effect
of CES-D scores on 6-month weight change through adherence was 0.594 (SE = 0.148; p < 0.001). Again rephrased in practical terms, participants with CES-D
scores one standard deviation above the sample mean (~23) were less adherent to program self-monitoring and physical activity recommendations, and lost
approximately 0.59% less weight by 6 months (p < 0.01) than those with average CES-D scores (13.13). These positive indirect effects on weight change would
indicate attenuated weight loss, or possible weight gain, over 6 months by affected participants. Results did not meaningfully differ when using 12-month
weight change values as the outcome.

https://doi.org/10.1371/journal.pdig.0000766.9002

= 0.588; p = 0.005) and barely reached significance in the adherence model (y,, . =-1.190;
SE = 0.604; p = 0.049), such that males tended to lose more weight than females in this study
sample. Additionally, race/ethnicity was associated with reduced adherence only in that model
(Vadnrace = ~0-510; SE = 0.224; p = 0.023). These results were largely replicated when using
percent weight change as the outcome; however, sex was no longer a significant predictor

of weight change. This suggests that while males may have lost more absolute weight in this
study than females, the relative reductions in percent weight did not statistically differ.

Discussion

The primary aim of this secondary analysis was to empirically test whether baseline depres-
sion symptoms exert undesirable influences on program engagement, adherence, and distal
behavioral outcomes within a digital weight loss intervention. Results from this study fully
support the guiding hypotheses and provide some quantitative estimates of the associations
between depression symptoms and conduct within a digital weight management interven-
tion. Results from this study also agree with previous research in traditional in-person weight
management interventions that baseline depressive symptoms are negatively associated with
intervention adherence, and thus contribute to undesirable change in weight outcomes [25].
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This analysis shows that participants with mild to moderate depression symptoms (i.e.,
reporting CES-D scores < 16) can struggle to engage with website-based interventions and/
or to adhere to program recommendations, which can in turn have meaningful impacts on
their behavior change outcomes. It is of growing importance for researchers to consider
how depression may influence participant involvement in DBClISs, as population depression
levels are climbing to unknown degrees since the COVID-19 pandemic, with some estimates
documenting a >300% increase in adults reporting depression and anxiety symptoms between
2019-2021 [60,61]. National statistics tend to focus only on clinical, severe, or major depres-
sive episodes, which likely underestimates the prevalence of people living with mild to moder-
ate depression in the US [62,63].

This issue should be of particular interest for future digital weight management interven-
tions, as it is known that depression symptoms and weight status are highly correlated, and
that during the COVID-19 pandemic, those living with depression and anxiety experienced
significantly greater weight gains than those without [64-66]. If these effects of depression
symptoms remain unaddressed, future interventions may see reduced engagement and adher-
ence, which can contribute to reduced weight change. As losing 25% body weight remains
the clinically meaningful benchmark for weight loss [67], even small reductions in weight
loss due to the influence of depression can impact a program’s overall measured effectiveness
among those participants most likely to need these tools. It would instead be prudent for
future DBCIs to consider additional tailoring (i.e., personalizing intervention messaging and
content) on depression symptoms and related factors measurable at baseline in tandem with
sociodemographic and behavioral tailoring to potentially address these issues. Some possibil-
ities might include tailoring the types of feedback messages sent by an intervention to avoid
triggering negative attributions to failing goals [68,69], including lesson and review content
tailored to depression and motivation at baseline to attempt to inoculate potential negative
outcomes, relaxing goal standards in the early stages of an intervention to help participants to
build initial self-efficacy, or possibly building in a ‘time-out’ feature if participants would want
to take a short break from a program without worrying about failing goals in the interim. In
a meta-synthesis of user experiences with DBCI’s for depression and anxiety, Knowles et al.
synthesized themes that computerized tailoring should be sensitive to “‘Who I am’ for person-
alized relevance, as well as to ‘How I feel’ to be appropriate for those experiencing low moods
and low motivation typical of depression [70].

This analysis has several limitations. First, due to the nature of data available, there were
limited system usage indicators to measure program adherence and engagement. While the
original intent of this analysis was to model both engagement and adherence simultaneously,
the two LVs were too highly correlated to model meaningful results, despite efforts to dis-
tinguish the page-hits indicator from all self-monitoring activities. This is likely because all
behavioral self-monitoring in LNPA required manual logging using the IWL website. DBCIs
using passive data collection methods such as wearable activity trackers to measure participant
adherence to exercise goals may be more capable of comparing these LVs within the same
model. Second, the LNPA study functionality which allowed participants to change dietary
monitoring strategies and physical activity goal intensity ad libitum during the intervention
changed the standards for how data were recorded (e.g., one dietary format had users man-
ually log all calories they consumed, while another was assigned to a ‘meal plan’ format that
automatically recorded preset menu items with calories and requested users note any devi-
ations from that plan) and created challenges for consistently operationalizing longitudinal
indicators of program adherence. This resulted in dietary and physical activity adherence indi-
cators varying over time for a large number of participants and necessitated for all indicators
to be brought into the same coarse scale for this analysis. This also may have contributed to
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the adherence LV contributing less unique predictive capability than anticipated, as partici-
pants likely to be recorded as having higher adherence would necessarily need to log into the
IWL website more often. Future examinations these relationships using longitudinal methods
and measures will be valuable to understand if and how these relationships may vary over
time. Third, the LNPA study sample lacked racial and gender diversity with a majority propor-
tion of white female participants, which is unfortunately not uncommon in DBCI research
(47,48].

Strengths of this analysis include the high-fidelity, automated program delivery across
all users within a real-world setting and extensive collection of objective participant usage
metrics. These manifest, objective indicators enabled this detailed analysis of how baseline
depressive symptoms likely influenced how participants used this intervention, and the
resulting undesirable impacts on weight loss, without relying on self-report measures which
could be biased. Additionally, the parent study included a majority of participants who had
not achieved a Bachelor’s degree or equivalent, approximately 25% male participants, included
many older adult participants with a wide range of BMIs, and also included many adults living
with comorbidities such as diabetes all recruited within primary care settings. Thus, the results
and conclusions from this study are likely be somewhat more generalizable to participants
recruited for DBCIs within a primary care setting.

Conclusion

This secondary analysis adds a novel contribution to the DBCI literature as being among the
first to empirically show that depression symptoms can negatively influence distal weight
loss within a website-based digital weight management intervention, and that this effect is
fully mediated through the latent constructs of engagement and adherence. This finding may
point to an important factor contributing to observed declines in participant engagement
over time in DBClIs. The field of digital behavior change interventions would greatly bene-
fit from future research examining if tailoring digital interventions on baseline depression
levels can help ameliorate these negative relationships, and whether other psychological
factors may be influencing participant engagement, adherence, and overall success in these
interventions.
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