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Abstract

Pediatric Long COVID has been associated with a wide variety of symptoms, condi-

tions, and organ systems, but distinct clinical presentations, or subphenotypes, are still
being elucidated. In this exploratory analysis, we identified a cohort of pediatric (age

<21) patients with evidence of Long COVID and no pre-existing complex chronic condi-
tions using electronic health record data from 38 institutions and used an unsupervised
machine learning-based approach to identify subphenotypes. Our method, an extension of
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the Phe2Vec algorithm, uses tens of thousands of clinical concepts from multiple domains
to represent patients’ clinical histories to then identify groups of patients with similar
presentations. The results indicate that cardiorespiratory presentations are most common
(present in 54% of patients) followed by subphenotypes marked (in decreasing order of
frequency) by musculoskeletal pain, neuropsychiatric conditions, gastrointestinal symp-
toms, headache, and fatigue.

Author summary

Long COVID in children can have many different symptoms and clinical presentations.
Understanding these differences may be important for both Long COVID research and
patient care. We used an algorithm, applied to the Electronic Health Record (EHR) data
of pediatric patients with evidence of Long COVID, to identify and characterize distinct
presentations of Long COVID in kids. We found cardiorespiratory presentations are
most common, followed by musculoskeletal pain, neuropsychiatric conditions, gastroin-
testinal symptoms, headache, and fatigue.

Introduction

Long COVID [or the closely related post-acute sequelae of COVID-19 (PASC)] is a condi-
tion characterized by persistence or development of symptoms or health conditions after
SARS-CoV-2 infection; the initial CDC definition set a threshold of 4 or more weeks from
acute infection [1]. Incidence estimates among pediatric patients who have had COVID vary
substantially, depending on factors such as breadth of symptoms considered and how long
they persist [2,3]. Studies of the clinical manifestations and underlying mechanisms of Long
COVID point to a wide variety of symptoms, conditions, and body systems affected [2-10],
and understanding of the specific subtypes is still developing.

Presentations of Long COVID may differ by both disease-specific and patient-specific fac-
tors, and accounting for these differences may be important for both Long COVID research
and patient care. Long COVID studies in adult populations may not apply to children due
to several factors, including symptom expression and attribution, marked age-related differ-
ences in the maturation and biology of the immune system, patterns of healthcare use, burden
of comorbidities, and impact of social influences of health. At the variable level, symptoms
and conditions affecting the respiratory, circulatory, nervous, musculoskeletal, and digestive
symptoms have been shown to occur significantly more frequently in the post-acute period
following SARS-CoV-2 infection as compared with SARS-CoV-2 negative control cohorts.
While this heterogeneity has been well-documented, less is known about patient-level
co-occurrences of these symptoms and conditions in pediatric populations. Such an analysis
would point to clinical subphenotypes of Long COVID. The benefits of elucidating subphe-
notypes will add to our growing understanding of clinical manifestations of patients which
will assist with care customized to patients’ needs, refinement of the clinical definition and
description of Long COVID, hypothesis generation regarding alternative pathophysiological
mechanisms, and use in evaluations of treatment responses.

Electronic Health Records (EHRs) provide a useful source of data for identifying Long
COVID subphenotypes as they capture clinically relevant information for a large and longi-
tudinal cohort of patients. Furthermore, the heterogeneity of Long COVID signs, symptoms,
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and health-related conditions suggests that subphenotypes may need to be identified by
incorporating many potentially relevant variables, including diagnoses, procedures, and med-
ications. EHR-based studies have identified Long COVID subphenotypes in adult populations
[11,12]. Subphenotypes have also been characterized in children with Multisystem Inflamma-
tory Syndrome in Children (MIS-C), a form of Long COVID by definition that is considered a
distinct entity [13,14].

The goal of this study is to identify subphenotypes in a large cohort of pediatric patients
with evidence of non-MIS-C Long COVID [15]. Prompted by the need to analyze a wide
range of clinical variables to detect the many potential manifestations of Long COVID as
well as their co-occurrences, we employ an unsupervised machine-learning method based on
clinical concept embeddings, an extension of the Phe2Vec automated disease phenotyping
algorithm, which is an adaptation of a natural language processing method to clinical data
[16]. The foundation of our method is a concept embedding model trained from the clinical
facts of 9.8 million patients to produce high-dimensional numeric representations of over 70
thousand unique diagnosis, procedure, and medication concepts. We then apply this model to
represent and cluster the clinical trajectories of a cohort of pediatric patients with evidence of
Long COVID.

Methods and materials
Data source

This retrospective cohort study is part of the NIH Researching COVID to Enhance Recovery
(RECOVER) Initiative, which seeks to understand, treat, and prevent the post-acute sequelae
of SARS-CoV-2 infection (22). The RECOVER EHR population includes clinical data for
patients at 38 hospital systems across the United States. Data were extracted from version 11
of the pediatric RECOVER database, comprising 9,835,122 patients with evidence of testing
or immunization for SARS-CoV-2 or diagnoses of COVID-19 or other respiratory illnesses
between January 2019 and December 2022. Institutional Review Board (IRB) approval was
obtained under Biomedical Research Alliance of New York (BRANY) protocol #21-08-508. As
part of the BRANY IRB process, the protocol has been reviewed in accordance with institu-
tional guidelines. BRANY waived the need for consent and HIPAA authorization.

Study sample

Although there is a single ICD-10-CM code (U09.9) for post COVID-19 condition, unspec-
ified (introduced 1 October 2021), it is not consistently applied in pediatrics. Consequently,
use of the diagnosis code alone may not produce a representative cohort of patients with Long
COVID. To define a larger and more representative cohort of patients with evidence of Long
COVID, we used the PEDSnet rules-based computable phenotype for Long COVID [15]. The
algorithm selects SARS-CoV-2 positive patients who had diagnoses during the 28-to-179-day
post-acute period following infection of either direct clinician-diagnosed Long COVID (ICD-
10-CM U09.9), or incident diagnoses associated with Long COVID in prior studies [5,17].
SARS-CoV-2 positive patients are identified by PCR, antigen and serology testing as well as
the presence of COVID diagnosis codes and prescriptions of the COVID-specific medications
nirmatrelvir/ritonavir and remdesivir. The index date of SARS-CoV-2 positivity is defined as
the date of first positive test or COVID diagnosis. For patients who only had a diagnosis of
Long COVID (U09.9) or Sequelae of other specified infectious and parasitic diseases (B94.8) or
a positive serology test with no prior SARS-CoV-2 viral test or COVID-19 diagnosis, the index
date is imputed as a random date between 28 and 90 days prior to U09.9, B94.8 diagnosis, or
positive serology test. Finally, due to the difficulties in attributing symptoms to Long COVID
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among patients with complex chronic conditions (as computed by Version 2.0 of the Pediatric
Medical Complexity Algorithm (PMCA) [18]), patients with evidence of a complex chronic
condition in the three years prior to cohort entry were excluded from the cohort. A flowchart
describing the cohort definition is shown in Figure 2 of reference [15] and the full set of Long
COVID-associated features used in the phenotype is listed in the supplementary appendix. We
refer to the cohort of patients with evidence of Long COVID as identified by this algorithm

as the ‘Long COVID cohort! Clinical histories of patients in this cohort were studied during
the 28-to-179-day period following the SARS-CoV-2 positivity index date; we use ‘post-acute
period’ to refer to this time period relative to infection throughout the manuscript.

For model validation, we used a 50/50 random split of our cohort into cohorts A (training
cohort) and B (validation cohort); to better control for site-heterogeneity in code usage, we
used a site-stratified split (i.e., resulting in equal distributions of patients across sites in the
two groups). A control cohort of patients with no evidence of COVID-19 was matched to
cohort B and is further described in the supplement.

Long COVID subphenotype pipeline

The unsupervised machine learning-based pipeline used to identify Long COVID subphe-
notypes in our cohort is outlined in Fig 1. Below, we give brief descriptions of the main
steps; a more technical description, including hyperparameters and methods for validation,
is included in S1 Text. The first two steps follow the approach of the Phe2Vec algorithm for
EHR-based automated phenotyping.

Concept embedding model. Due to the large number of potentially relevant variables
across the condition, drug, and procedure domains, we began by constructing numerical
(vector) representations of the relevant clinical concepts. In the field of natural language
processing, word embedding models are often used to produce such representations of
words in such a way that the sematic relationships between words are encoded in their vector
representations (e.g., words with similar meanings are represented by vectors that are close
together). The Phe2Vec algorithm adapts these models, particularly the Word2Vec algorithm
[19], to structured clinical data. In this analogy, words correspond to clinical concepts
(represented by domain-specific structured codes, e.g., ICD10 CM codes for diagnoses) and
sentences correspond to concatenations of clinical concepts that are recorded in patients’
clinical histories over a given time period.

We trained the concept embedding model from the clinical histories of 9,168,152 patients
in the pediatric RECOVER EHR data source. Our model uses codes from the following
domains and vocabularies: conditions (ICD10 CM), drugs (RxNorm Clinical Drug Forms),
and procedures (ICD10PCS, HCPCS, CPT4). We constructed for each patient and each
month-long period of their clinical history, a sentence consisting of the codes which occurred

for that patient during that time period arranged in randomly permuted order. This resulted
in a corpus of 99,413,139 sentences and yielded vector representations for a combined vocab-
ulary of 77,337 concepts.

Patient clinical history embeddings. Equipped with the vectors representing structured
clinical concepts, the next step in our approach was to extend this model to produce similar
representations for the post-acute clinical histories of our Long COVID cohort. To construct
these, we first identified the codes in our vocabularies that occurred in this cohort during the
28 to 179 day period following the index date. We restricted attention to only those codes
that did not occur previously in the 7 day to 6 month washout period prior to the index date.
We then assembled these codes for each patient in random order into sentences of codes.

To construct vector representations of these sentences from the already-learned vector
representations of codes (corresponding to words) we used the Simple but Tough-to-Beat
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Fig 1. Subphenotype model flowchart.

https://doi.org/10.1371/journal.pdig.0000747.9001

Baseline for Sentence Embeddings [20]. The resulting 200-dimensional vectors represent the

post-acute clinical histories of our cohort.

At this point, our approach deviated from that of Phe2Vec; while the goal of Phe2Vec is to
phenotype patients by computing similarity between patient clinical trajectories and a given
set of seed codes, our next step consisted of clustering the Long COVID cohort.

Dimensional reduction and clustering. While 200-dimensional space is more
appropriate for embedding the full set of codes in our vocabulary, we found that the sparsity
of representations of the post-acute histories of our smaller cohort of Long COVID patients
impeded effective clustering (‘the curse of dimensionality’). As a result, prior to clustering we
applied the UMAP algorithm [21] to embed the 200-dimensional vector representations of
our cohort into 2-dimensional space; we additionally chose 2-dimensional space to facilitate
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visualization of the embedded representations. The irregular shapes and varying densities of
clusters produced by the UMAP algorithm were not well-suited for k-means or hierarchical
clustering algorithms; as such, we elected to use the density-based clustering algorithm
HDBSCAN [22] to identify clusters in the embedded vector representations of the post-acute
clinical histories of our cohort after their index infection. Because HDBSCAN does not always
assign a cluster and allows some data to remain unclustered, we assigned unclustered patients
to the cluster whose centroid was nearest to them. Thus, in our main analysis, each patient
was assigned to (exactly) one cluster. We also conducted a sensitivity analysis in which we
allowed patients to remain unclustered.

Hyperparameters, model selection, and validation. Pipeline hyperparameters were
selected by running the pipeline and by comparing output on Cohort A (described further in
S1 Text). The final pipeline was then run on both cohorts.

Descriptive and statistical analyses

To summarize the resulting clusters of patients in our cohort, we calculated, for each of 25
groups of Long COVID-associated conditions (each defined by a collection of diagnosis codes
chosen by investigators based on prior work [5,15,17]), the proportions of patients in each
patient cluster with an incident (using the same washout period above) diagnosis of that feature
during the post-acute period. We represented these proportions using heatmaps, limiting them
to groups of conditions which were represented in at least 20% of patients from at least one clus-
ter. To differentiate presentations represented by patient clusters, we used Bonferroni-adjusted
pairwise y” testing for each combination of condition group and patient cluster, presented in a
compact letter display (CLD) format superimposed over the heatmap. In this presentation, for
each Long COVID-associated feature (corresponding to a row in the heatmap), two patient clus-
ters (corresponding to columns) share a letter in common exactly when proportions of patients
with that feature did not significantly differ between the two patient clusters.

We further summarized the patient clusters by patient characteristics including age, sex,
and race/ethnicity. Additionally, we used the Pediatric Medical Complexity Algorithm to
compute presence of chronic conditions in the 3 years prior to index date; as complex chronic
patients were excluded, only non-complex chronic patients (e.g., those with non-progressive
and non-malignant conditions affecting only one body system, e.g., asthma) were summa-
rized. We computed the proportion of patients with presence of chronic condition across 17
body systems. We also employed the acute pediatric COVID-19 severity typology developed
in reference [23] to categorize patients’ acute infections as asymptomatic, mild (presence of
symptoms), moderate (moderately severe COVID-19-related conditions such as gastroenteri-
tis and pneumonia), and severe (unstable COVID-19-related conditions, ICU admissions, or
mechanical ventilation); we then summarized proportions of patients by severity of infection
in each cluster. We also summarized clinical trajectories by subphenotype over time by three
utilization-based metrics: number of distinct visits per month, number of distinct providers
seen per month, and number of body systems affected by month. Finally, we used the descrip-
tive analyses above—particularly the distinguishing groups of symptoms and conditions and
most common individual diagnoses in each cluster—to assign clinically descriptive names to
each of the clusters; additionally, we grouped clinically similar presentations represented by
the patient clusters into Long COVID subphenotypes.

Sensitivity analyses

To assess the effect of allowing some patients to remain unclustered, we conducted an addi-
tional sensitivity analysis in which patients not assigned a cluster by HDBSCAN were left
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unclustered; we reproduced the descriptive and statistical analyses above for this assignment
of clusters.

Code and availability

Analyses were conducted using R version 4.0 and Python version 3.8.16. We used the fol-
lowing Python libraries: Gensim [24] for training the concept embedding model using the
Word2Vec algorithm, UMAP [21] for dimensional reduction, and HDBSCAN [22] for clus-
tering. Sentence embeddings were computed using Python code accompanying A Simple but
Tough-to-Beat Baseline for Sentence Embeddings [20], and propensity score matching was
conducted using the R Matchlt package [25]. Code used to implement the subphenotype pipe-
line and produce the results of this manuscript is available at https://github.com/PEDSnet/
recover_pasc_subphenotype_manuscript.

Results
Long COVID cohort

There were 17,525 children and adolescents at 38 medical institutions identified for inclu-
sion in our Long COVID cohort. After site-stratified random splitting, this resulted in 8,757
patients in cohort A and 8,768 patients in cohort B, with similar distributions of all descriptive
variables (Table 1). A plurality of patients in the Long COVID cohort were in the age 16-20
group (30.4% overall) and a majority were female (54.5%). Patients in this cohort were more
likely to have been infected with SARS-CoV-2 during the November 2021-February 2022
period, coinciding with the Omicron wave, than in other time periods. Moderate and severe
acute COVID-19 presentations were uncommon (4.9% and 3.2%, respectively). Thirty-seven
percent of the cohort had evidence of at least one chronic disease that did not meet the defini-
tion of a complex chronic condition.

Subphenotype identification and characterization

The final model identified six Long COVID subphenotypes; for cohort B these are described
below and visualized in Fig 2, with results of descriptive analyses in Table 2 and Fig 3. The
supplementary materials include corresponding results for cohort A (S1 Fig), results of inter-
mediate steps (tuning of hyperparameters in S1 Text, description of more granular clusters in
cohorts A and B in S1 Table, S2 Table, S2 Fig, and S3 Fig), and additional summaries of medi-
cations and procedures by subphenotype (S3 Table), utilization patterns (54 Fig) and presence
of pre-existing (non-complex) chronic conditions (S5 Fig).

Cardiorespiratory presentations were most common, representing 53.8% of patients. This
subphenotype (“Respiratory/cardiac symptoms”) was characterized by a statistically signifi-
cantly greater proportion (56.7%) of respiratory diagnoses than in any other subphenotype
(Fig 3). The respiratory/cardiac subphenotype is further stratified into six cluster-specific
presentations differing by severity, age, post-acute utilization trajectories, and predominance
of upper versus lower respiratory diagnoses (52 Table, S3 Fig, 54 Fig).

Pain-related diagnoses distinguished a subphenotype (“Musculoskeletal pain”) represent-
ing 13.9% of patients, with “other chronic pain” as the most common diagnosis code. A third
subphenotype (“Neuropsychiatric conditions”, representing 10.9% of patients) was character-
ized by a statistically significantly greater proportion of neuropsychiatric condition diagnoses
than other subphenotypes, with anxiety disorder as the most common specific diagnosis.

A fourth subphenotype (“Gastrointestinal symptoms”, representing 9.3% of patients) was
characterized by a statistically significantly greater proportion of gastrointestinal diagnoses
than other subphenotypes. A fifth subphenotype, “Headache” (representing 7.1% of patients),
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Table 1. Characteristics of Study Sample.

Overall Cohort A Cohort B SMD!
N=17,525 N=8,757 N=8,768
Age group (n/%) <1 1716 (9.8) 873 (10.0) 843 (9.6) 0.028
1-4 2655 (15.1) 1346 (15.4) 1309 (14.9)
5-11 3823 (21.8) 1900 (21.7) 1923 (22.0)
12-15 4010 (22.9) 1963 (22.4) 2047 (23.4)
16-20 5321 (30.4) 2686 (30.6) 2635 (30.1)
Sex (n/%) Female 9555 (54.5) 4777 (54.5) 4778 (54.6) 0.002
Male/Other/Unknown 7970 (45.5) 3991 (45.5) 3979 (45.4)
Race/ethnicity (n/%) Hispanic 3956 (22.6) 2005 (22.9) 1951 (22.3)
Asian/PI 570 (3.3) 314 (3.6) 256 (2.9) 0.048
Black/AA 2394 (13.7) 1164 (13.3) 1230 (14.0)
Multiple 388 (2.2) 183 (2.1) 205 (2.3)
Other/Unknown 1481 (8.5) 730 (8.3) 751 (8.6)
White 8736 (49.8) 4372 (49.9) 4364 (49.8)
Cohort entry period (n/%) March-June 2020 356 (2.0) 167 (1.9) 189 (2.2) 0.056
July-October 2020 928 (5.3) 492 (5.6) 436 (5.0)
November-February 2021 2289 (13.1) 1092 (12.5) 1197 (13.7)
March-June 2021 1261 (7.2) 622 (7.1) 639 (7.3)
July-October 2021 2851 (16.3) 1477 (16.8) 1374 (15.7)
November-February 2022 6195 (35.3) 3111 (35.5) 3084 (35.2)
March-June 2022 2165 (12.4) 1076 (12.3) 1089 (12.4)
July-August 2022 1480 (8.4) 731 (8.3) 749 (8.6)
ICU (acute) (n/%) 305 (1.7) 147 (1.7) 158 (1.8) 0.010
Hospitalized (acute) (n/%) 1179 (6.7) 599 (6.8) 580 (6.6) 0.008
COVID-19 acute phase severity of illness (n/%) Asymptomatic 11093 (63.3) 5524 (63.0) 5569 (63.6) 0.035
Mild 5004 (28.6) 2540 (29.0) 2464 (28.1)
Moderate 865 (4.9) 444 (5.1) 421 (4.8)
Severe 563 (3.2) 260 (3.0) 303 (3.5)
Presence of existing chronic condition (n/%) 6491 (37.0) 3226 (36.8) 3265 (37.3) 0.010

!Standardized Mean Difference: for continuous variables, the SMD is computed as the absolute difference in means divided by the pooled standard deviation. For

categorical variables, SMD is calculated from a distance matrix on a vector difference between categories, normalized by a covariate matrix calculated from the rates of

categories in each of the two groups.

https://doi.org/10.1371/journal.pdig.0000747.t001

was characterized by a statistically significantly greater proportion of headache diagnoses

than other subphenotypes—neuropsychiatric diagnoses were relatively more common in this
subphenotype as well, and patients with this subphenotype had the highest volume of post-
acute utilization with the exception of a more severe lower respiratory cluster (S4 Fig). Finally,
a subphenotype (“Fatigue”, representing 5.0% of patients) was characterized by statistically
significantly greater proportions of both fatigue and malaise diagnoses (41.7%) as well as Long
COVID diagnoses (63.5%); diagnoses of chest pain, arrythmias, and respiratory signs and
symptoms were common in this subphenotype as well.

Comparison to cohort A and to a matched control cohort

Subphenotypes identified in cohort B resembled those in Cohort A (S1 Fig, SI Table). Cohort
A had five cardiorespiratory clusters constituting a respiratory/cardiac subphenotype rep-
resenting 50.8% of patients. At the more granular level, the clusters in cohort A had similar
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Fig 2. Subphenotype embeddings of PASC cohort B clinical histories.
https://doi.org/10.1371/journal.pdig.0000747.9002

characterizations (by severity, age, upper vs lower respiratory) as those in cohort B. Subphe-
notypes representing musculoskeletal pain, neuropsychiatric conditions, gastrointestinal
symptoms, headache, and fatigue were identified in similar proportions in cohort A. The
fatigue cluster in cohort A had a relatively smaller proportion of fatigue and malaise diagno-
ses than the corresponding cluster in cohort B and a great proportion of non-specific Long
COVID diagnoses; cardiac diagnoses were also relatively less common in this cluster than in
the corresponding fatigue cluster in cohort B.

In our matched control cohort consisting of patients with no evidence of COVID-19,
16 clusters were identified; S6 Fig shows proportions of diagnoses in each of the 25 Long
COVID-associated diagnosis groups. A visualization of cluster centroids as identified in
cohorts A, B, as well as the matched control cohort is shown in S7 Fig and enables comparison
of subphenotypes/clusters identified in the three cohorts.

Demographic characteristics of clusters

There were substantial demographic differences in our reported subphenotypes (Table 2),
most stark at the more granular cluster level (S2 Table). Patients younger than 4 years were
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Table 2. Demographic and Clinical Characteristics of Subphenotype Groups in Cohort B.

Subphenotype
Fatigue Gastrointestinal | Headache Musculoskeletal | Neuropsychiatric | Respiratory/car-
(441, 5.0%) symptoms (620, 7.1%) pain conditions (952, | diac symptoms
(810, 9.2%) (1218, 13.9%) 10.9%) (4716, 53.85%)
Age group (n/%) <1 0 (0%) 6 (0.7%) 0 (0%) 17 (1.4%) 2 (0.2%)* 816 (17.3%)
1-4 2 (0.4%)* 49 (6%) 16 (2.6%) 60 (4.9%) 23 (2.4%)* 1162 (24.6%)
5-11 90 (20.4%)* 233 (28.8%) 116 (18.7%) 315 (25.9%) 190 (20%) 978 (20.7%)
12-15 145 (32.9%) 206 (25.4%) 233 (37.6%) 419 (34.4%) 298 (31.3%) 746 (15.8%)
16-20 204 (46.3%) 316 (39%) 255 (41.1%) 407 (33.4%) 439 (46.1%) 1014 (21.5%)
Sex (n/%) Female 285 (64.6%) 536 (66.2%) 421 (67.9%) 610 (50.1%) 643 (67.5%) 2283 (48.4%)
Male/Other/ | 156 (35.4%) 274 (33.8%) 199 (32.1%) 608 (49.9%) 309 (32.5%) 2433 (51.6%)
Unknown
Race/ethnicity (n/%) Black/AA 3(9.8%) 105 (13%) 73 (11.8%) 177 (14.5%) 139 (14.6%) 693 (14.7%)
Asian/PI 1(2.5%) 19 (2.3%) 6 (1%) 22 (1.8%) 29 (3%) 169 (3.6%)
Hispanic 69 (15.6%) 183 (22.6%) 100 (16.1%) 193 (15.8%) 251 (26.4%) 1155 (24.5%)
White 264 (59.9%) 426 (52.6%) 368 (59.4%) 710 (58.3%) 457 (48%) 2139 (45.4%)
Multiple 9 (2%) 8 (2.2%) 6 (2.6%) 34 (2.8%) 15 (1.6%) 113 (2.4%)
Other/Unknown | 45 (10.2%) 59 (7.3%) 57 (9.2%) 82 (6.7%) 61 (6.4%) 447 (9.5%)
Cohort entry period (n/%) | Mar-Jun 2020 | 4 (0.9%)* 21 (2.6%) 10 (1.6%) 44 (3.6%) 19 (2%) 92 (2%)
Jul-Oct 2020 (3.9%)* 50 (6.2%) 38 (6.1%) 108 (8.9%) 52 (5.5%) 170 (3.6%)
Nov-Feb 2021 47 (10.7%) 148 (18.3%) 102 (16.5%) 239 (19.6%) 153 (16.1%) 508 (10.8%)
Mar-Jun 2021 33 (7.5%) 50 (6.2%) 43 (6.9%) 114 (9.4%) 62 (6.5%) 337 (7.1%)
Jul-Oct 2021 79 (17.9%) 113 (14%) 102 (16.5%) 172 (14.1%) 147 (15.4%) 761 (16.1%)
Nov-Feb 2022 155 (35.1%) 295 (36.4%) 220 (35.5%) 390 (32%) 346 (36.3%) 1678 (35.6%)
Mar-Jun 2022 | 59 (13.4%) 79 (9.8%) 59 (9.5%) 89 (7.3%) 112 (11.8%) 691 (14.7%)
Jul-Aug 2022 47 (10.7%) 54 (6.7%) 46 (7.4%) 62 (5.1%) 61 (6.4%) 479 (10.2%)
ICU (acute) (n/%) 0 (0%) 2(0.2%)* 5(0.8%) 7 (0.6%) 6 (0.6%) 139 (2.9%)
Hospitalization (acute) (n/%) 4(0.9%)* 56 (6.9%) 21 (3.4%) 40 (3.3%) 34 (3.6%) 425 (9%)

COVID acute phase severity | Asymptomatic | 336 (76.2%) 451 (55.7%) 404 (65.2%) 760 (62.4%) 624 (65.5%) 2994 (63.5%)
of illness (n/%)
Mild 89 (20.2%) 287 (35.4%) 184 (29.7%) 392 (32.2%) 290 (30.5%) 1222 (25.9%)
Moderate 1(2.5%) 62 (7.7%) 23 (3.7%) 49 (4%) 28 (2.9%) 248 (5.3%)
Severe 5(1.1%) 10 (1.2%) 9 (1.5%) 17 (1.4%) 10 (1.1%) 252 (5.3%)

Presence of existing chronic

condition (n/%)

160 (36.3%)

373 (46%)

250 (40.3%)

458 (37.6%)

428 (45%)

1596 (33.8%)

Most common diagnoses

U09.9: Post
COVID-19 con-
dition, unspeci-
fied (57.6%)
R53.83: Other
fatigue (30.8%)
U07.1: Emer-
gency use of
U07.1 | COVID-
19 (23.4%)
R51.9: Head-
ache, unspecified
(23.1%)

R42: Dizziness
and giddiness
(22.2%)

R10.9: Unspec-
ified abdominal
pain (45.6%)
R10.84: General-
ized abdominal
pain (28.8%)
R10.13: Epigastric
pain (21.2%)
K59.00: Constipa-
tion, unspecified
(21.2%)

R11.0: Nausea
(19.1%)

R51.9: Headache,
unspecified (37.9%)
U09.9: Post
COVID-19 condi-
tion, unspecified
(25.5%)

G89.29: Other
chronic pain
(18.1%)

R42: Dizziness and
giddiness (16.3%)
F41.9: Anxiety dis-
order, unspecified
(14.2%)

G89.29: Other
chronic pain
(19.4%)

M62.81: Muscle
weakness (gener-
alized) (14.1%)
M25.561: Pain in
right knee (14.0%)
B94.8: Sequelae
of other specified
infectious and
parasitic diseases
(13.1%)
M25.562: Pain in
left knee (13.1%)

U09.9: Post
COVID-19 condi-
tion, unspecified
(24.0%)

F41.9: Anxiety dis-
order, unspecified
(13.5%)

U07.1: Emergency
use of U07.1

| COVID-19
(13.0%)

R51.9: Head-

ache, unspecified
(12.2%)

R10.9: Unspecified
abdominal pain
(10.2%)

U09.9: Post
COVID-19 condi-
tion, unspecified
(28.3%)

U07.1: Emergency
use of U07.1

| COVID-19
(22.3%)

R05.9: Cough,
unspecified
(18.8%)

R50.9: Fever,
unspecified
(16.3%)

R09.81: Nasal con-
gestion (11.2%)

Note: Cells marked with an asterisk have been modified by a random count between 0 and 4 to prevent reidentification of that cell or a cell in the same group.

https://doi.org/10.1371/journal.pdig.0000747.t002
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primarily represented in the respiratory/cardiac subphenotype, particularly in the lower
respiratory, more severe and upper respiratory clusters. Conversely, older children were
primarily represented in the lower respiratory (0B, 6B), upper respiratory-inflammatory (7B),
and non-respiratory clusters. Female patients were relatively underrepresented in the respi-
ratory/cardiac and musculoskeletal pain subphenotypes and overrepresented in the fatigue,
headache, gastrointestinal, and neuropsychiatric subphenotypes. Relative to the full cohort,
Hispanic patients were overrepresented in the respiratory/cardiac subphenotype (particu-
larly upper respiratory, inflammatory-younger and lower respiratory, more severe clusters)
and the neuropsychiatric conditions subphenotype. Non-Hispanic Black/African-American
patients were overrepresented in the neuropsychiatric conditions, musculoskeletal pain, and
respiratory/cardiac subphenotypes (particularly the lower respiratory--more severe, upper
respiratory--obstructive, and upper respiratory—inflammatory, younger clusters). Non-
Hispanic Asian/Pacific-Islander patients were relatively overrepresented in the respiratory/
cardiac subphenotype. Non-Hispanic White patients were overrepresented in the fatigue,
headache, and musculoskeletal pain subphenotypes.

Sensitivity analyses

The results of a sensitivity analysis in which patients who were not assigned a cluster were left
unclustered (rather than assigned the cluster of the nearest centroid) are shown in S8 Fig.

Discussion

The heterogeneity of specific Long COVID features in pediatric populations has been cat-
alogued in a number of prior studies [5-7,9,17,26]. In this study, we extended this work by
characterizing patterns of symptoms, signs, medications, and procedures that suggest specific
subphenotypes of Long COVID in children and adolescents who do not have evidence of
existing complex chronic conditions. We applied and extended the Phe2Vec algorithm [16] to
the problem of subphenotyping, leveraging the high-dimensional nature of EHR data.

Our model identified six subphenotypes, with cardiorespiratory presentations identified in
about half of patients. Other common subphenotypes in order of frequency included mus-
culoskeletal pain, neuropsychiatric conditions, gastrointestinal symptoms, headaches, and
fatigue. Each subphenotype was well-differentiated by a specific group of diagnoses, suggest-
ing that distinct populations may manifest these specific Long COVID presentations. Within
the respiratory/cardiac subphenotype, we identified five more specific clusters, with presen-
tations differentiated by both clinical (upper versus lower respiratory, severe and less severe,
obstructive and inflammatory) as well as demographic characteristics (S2 Table). Interestingly,
patients with more severe acute infection were classified almost entirely in the respiratory/car-
diac subphenotype (specifically, within the lower respiratory, severe cluster).

The fatigue subphenotype was somewhat more heterogeneous; in addition to fatigue,
cardiac diagnoses (chest pain and arrythmias), headaches, musculoskeletal pain, neuropsy-
chiatric symptoms, and POTS-like symptoms such as dizziness and giddiness were relatively
more common, as well as non-specific Long COVID diagnoses. Although these more com-
mon groups of diagnoses did not always occur in the same sets of patients, this constellation
of diagnoses is suggestive of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CEFS)
[27]. Although specific diagnostic codes for ME/CES exist, and a new ICD-10-CM code was
introduced on 1 October 2023, the disease remains very likely to be under-diagnosed, particu-
larly in children [28-30]. In addition, because clinical criteria for ME/CFS require symptoms
to persist for a minimum of 6 months from onset before assigning the diagnosis, the use of
a 28-t0-179-day observational window following the index infection in this study made it
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impossible to strictly meet the 6-month criterion for establishing an ME/CFS diagnosis [31].
It is possible that our fatigue subphenotype identifies patients with ME/CFS from the above
non-specific diagnoses often associated with it. The heterogeneity of this subphenotype may
also be responsible for the proximity of this subphenotype to cardiorespiratory presentations
(S7 Fig) and the somewhat different characterization of this subphenotype in Cohort A (S1.
Fig). Further work is necessary to analyze the clinical characterization of this subphenotype
and its reproducibility.

While fatigue was the most commonly reported Long COVID feature in some studies
[6,7], we found cardiorespiratory presentations to be the most common subphenotype, with
the fatigue subphenotype above representing only about 5% of patients. However, diagnoses
of fatigue were present across multiple subphenotypes (particularly the headache and mus-
culoskeletal pain subphenotypes, in addition to the fatigue subphenotype). This suggests that
fatigue often presents not in isolation but in combination with other aspects of Long COVID
and may be present across multiple Long COVID manifestations. Other prospective studies
may be able to capture fatigue more reliably than EHR data sources.

Commonly reported Long COVID manifestations not clearly identified in this study
included a distinctly cardiac subphenotype and neurocognitive difficulties (commonly
referred to as brain fog). In the case of a cardiac subphenotype, as patients with Multisystem
Inflammatory Syndrome in Children (MIS-C) were excluded from analysis, this suggests that
uniquely cardiac presentations may have substantial overlap with the MIS-C-affected pop-
ulation. Reported Long COVID manifestations such as neurocognitive difficulties/so-called
“brain fog” lack a clear diagnosis and thus may be under-ascertained in EHR data, particularly
among children. Finally, as our analysis only identified clusters present in at least 2% of the
population, less common subphenotypes may have instead been grouped with others.

Compared to Long COVID subtypes identified in EHR-based studies in adult popula-
tions [11,12], we found both overlap and differences in Long COVID presentations. As in
both studies, we found a more severe cardiorespiratory cluster within our respiratory/cardiac
subphenotype with patterns of symptoms overlapping with the multisystem+lab cluster in
reference [11] as well as the cardiac/renal subtype in reference [12]. Manifestations observed
in specific subphenotypes in our study, particularly musculoskeletal, gastrointestinal, and neu-
ropsychiatric symptoms, were more likely to be part of composite subphenotypes in studies
in adult populations; for instance, the musculoskeletal pain subphenotype we observed is part
of composite subphenotypes, grouped with fatigue in reference [11] and with headaches and
sleep-wake disorders in reference [12]. This may be a result of different methods and partic-
ularly different levels of granularity in grouping similar presentations in the two studies but
may also point to more specific Long COVID manifestations in pediatric populations. Sim-
ilarly, the presence of multiple cardiorespiratory subtypes in this study may point to greater
heterogeneity in respiratory manifestations of Long COVID in pediatrics.

Clustering methods have also been applied to PASC-probable patients in school-age (6-11
years) and adolescent (12-17 years) prospective cohorts [32]. Compared to these results, we
also identified a cluster with high symptom burden (our lower respiratory-more severe cluster
within the respiratory/cardiac subphenotype) and a predominantly gastrointestinal subphe-
notype. A headache and fatigue cluster in reference [32] resembles both our headache and
fatigue subphenotypes. Differences include the predominance of a respiratory/cardiac subphe-
notype in our work which was not identified in reference [24]. We note that our respiratory/
cardiac subphenotype was effectively the only one identified in age 0-4 patients, a population
not included in [24]. Additionally, a subphenotype characterized by neuropsychiatric condi-
tions was identified in our work but not in reference [24]. Conversely, a cluster characterized
by loss of taste and smell was identified in the adolescent cohort and a cluster characterized by
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sleep impacts was identified in the school-age cohort in reference [24]. Differences between
our findings may be due to several factors: difference in age groups select (age 0-20 in our
study versus 6-17 years in [24]) and other cohort inclusion and enrollment criteria, granu-
larity and definitions of variables used in clustering (individual diagnosis, medication, and
procedure codes from EHR data versus presence of 89 symptoms collected by survey).

Our subphenotype classifications varied by age, sex, race, and ethnicity. Children younger
than 4 were almost exclusively assigned to the respiratory/cardiac subphenotype (Table 2
and S2 Table), mainly divided between a more severe lower respiratory cluster (characterized
by greater frequency of arrythmias, fluid and electrolyte disturbances, hospitalizations, and
ICU admissions) and a less severe upper respiratory cluster (characterized by cough, fever,
and nasal congestion). This may indicate that primarily respiratory manifestations of Long
COVID affect younger children, may reflect subsequent respiratory infections, or reflect
general patterns of utilization in younger children, or may be a consequence of limitations in
parental or child self-reporting of other kinds of symptoms (e.g., headaches or symptoms of
anxiety disorders). Further, Hispanic and non-Hispanic non-White patients were overrepre-
sented in the respiratory/cardiac subphenotype, a finding that has been corroborated in other
studies [33]. Further exploration of these differences in presentation by sociodemographic
characteristics is needed to determine whether patterns reflect differences in pathophysiology,
symptom reporting, healthcare access, or utilization.

Although patients with complex chronic conditions (e.g., patients with actively treated
cancer, muscular dystrophy, etc.) were excluded from this study due to the difficulties in
attributing post-acute symptoms to COVID-19 versus existing conditions, patients with an
existing non-complex chronic condition were overrepresented in the gastrointestinal and the
neuropsychiatric conditions subphenotypes (Table 2); this may be suggestive of specific, as
yet undetermined risk factors for these subphenotypes, or that these presentations manifest as
exacerbations of existing chronic conditions evidenced by incident post-acute diagnoses.

Results from Cohort A (development cohort) were largely similar to those in Cohort B
(validation cohort), with all six subphenotypes present in similar proportions in both cohorts
(Fig 3, S1 Fig), adding validity to our approach. At a more granular level, Cohort A exhibited
a similar stratification into cardiorespiratory clusters, though one additional cluster character-
ized by a high proportion of non-specific Long COVID diagnoses (96.1%) was also identified.
Other differences observed between the two cohorts were in the characterization of the fatigue
subphenotype noted above, as well as the presence of two distinct neuropsychiatric conditions
clusters in Cohort A versus one in cohort B, and the presence of two distinct musculoskeletal
pain clusters in Cohort B versus one in cohort A. The heterogeneity of diagnosis, procedure,
and medication codes associated with Long COVID together with relative overlap between
different subphenotypes (e.g., presence of fatigue diagnoses across multiple subphenotypes) as
well as potential difficulty in assigning subphenotypes to patients with less specific presenta-
tions may be responsible for these differences between the two cohorts.

The analysis of a matched control cohort with no evidence of SARS-CoV-2 infection
produced 16 clusters representing a variety of clinical presentations. These clusters repre-
sent common patterns of pediatric morbidity. Distances between centroids of clusters in the
control cohort compared to centroids of subphenotypes from the two Long COVID cohorts
in S7 Fig show that our neuropsychiatric and gastrointestinal subphenotypes appear relatively
near to clusters identified in the matched control cohort; conversely, the headache, fatigue,
and respiratory/cardiac subphenotypes are relatively further from any clusters in the matched
control cohort. It may be that the SARS-CoV-2 virus increases the frequency of common
gastrointestinal symptoms and mental health conditions. On the other hand, our findings
suggest that the headache, fatigue, and respiratory/cardiac subphenotypes of Long COVID

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000747 ~ April 10, 2025 13/18




PLOS DIGITAL HEALTH

Pediatric Long COVID Subphenotypes: An EHR-based study from the RECOVER program

Condition group

Thrombophlebitis And Thromboembolism-
Skin-

Respiratory Signs and Symptoms -
POTS and POTS-like symptoms -
PASC Diagnosis-

Neuropsychiatric Conditions -
Neurodevelopmental Disorders -
Myositis -

Myocarditis -

Musculoskeletal -

Heart Disease -

Headache -

Hair Loss -

Generalized Pain-

Fluid And Electrolyte -

Fever And Chills-

Fatigue And Malaise -

COVID-19 Diagnosis-

Cognitive Function-

Chest Pain-

Changes In Taste And Smell -
Cardiovascular Signs and Symptoms -
Arrythmias -

Acute Respiratory Distress Syndrome -
Acute Kidney Injury -

Abnormal Liver Enzymes -

Abdominal Pain-

Subphenotype

Gastrointestinal Musculoskeletal

Neuropsychiatric

Respiratory/cardiac

Fatigue (5%) symptoms (9.2%) Headache (7.1%) pain (13.9%) conditions (10.9%) symptoms (53.8%)
0%30 0.7%2 0.2%3b 0.5%2 0.1%2 3%
8.8%0cd 8.4%° 13.9%2 9.4%:cd 16.8%2 14.1%%®
 serwe 15.4%¢ 15.3%¢ 13.5%¢ 28.9%2
30.8%9 8.4%3 23.5%4 3.4%¢ 10.4%2 5.6%5
11%¢ 29.4%3 18.6%d 27.7%3 33.2%3
20.6%¢d 21.4%¢ 31.5%¢ 14.3%bd 12.2%b
12%32 5.7%P 14.2%2 6.6%° 13.6%3 6.1%°
0%3 0.4%32 0.2%32 0.2%2 0%3 0.2%2
0.2%2 0%3 0.3%2 0%32 0.2%2 1.2%2
20.9%3¢ 15.9%2 30.3%° 19%3 5.7%b
2.9%"0 0.9%% 0.8%% 0.6%2 0.6%2 6.5%0
29.5%¢ 16.2%2 7.9%b 17.9%2 5.7%b —
1.1%b 1%b 1%b 0.2%b 4.7%3 0.5%b L
13.8%% 15.2%° 22.9%4 23.1%4 9.7%? 2.3%P I zj
0.5%320 3.1%2 0.5%b 0.3%b 1.3%2 6.5%¢ -
8.8%P 8.4%P 4.7%3 3.5%2 4.7%32® 18%° 00
11%3 22.3%¢ 18.6%° 12%3 9.9%2
23.6%P 8.9%% 10.8%%* 7.3%° 13%2 22.5%P
1.19%be 0.5%2¢ 2.6%b 0.4%¢ 2.3%2 2.7%b
26.8%° 9.6%3 9%32¢ 5.6%¢ 9.6%3 11.2%2
2.7%2 1920 1% 0.3%P 2.7%2 2.2%2
2.3%b¢ 2.3%¢ 1.6%C 1%¢ 11.9%2 5.9%b
28.8%° 8.5%2 10.3%2 3%9 8.5%2 14.3%P
0%3 0%3 0%32 0%32 0%3 0.8%2
0%2 0.6%2 0% 0.1%2 0.3%2 2.8%P°
0.5%2b 2.2%:2 1.1%3 0.2%b 3.3%2 2.6%2
17.29%3 12.79%¢ 7.19%P 21.3%2 7%b

Fig 3. Heatmap of incident post-acute diagnoses, cohort B. Legend Summary of clusters by presence of incident PASC-associated diagnoses. To be counted,
diagnoses in the respective clusters had to occur in the 28-179 post-acute period following infection and not have been present in the 18 months prior. Cells display
proportions of patients in the cluster with the corresponding PASC-associated diagnosis group, and the results of Compact Letter Display (CLD) analysis are repre-
sented in superscripts. For a given incident PASC-associated diagnosis group (row), two clusters share the same letter when proportions did not differ significantly
(via multiple-testing adjusted chi squared testing) between the two clusters.

https://doi.org/10.1371/journal.pdig.0000747.9003

are characterized by presentations that appear to be distinct and will thus be easier to detect
in clinical care and population studies. This finding may also be a result of the limited ability
of the diagnostic codes, prescriptions, and procedure codes that were used as input features to
our model to describe any differences between COVID-associated and non-COVID associ-
ated neuropsychiatric or gastrointestinal disease.

Strengths of this study include use of large multi-site longitudinal EHR data; this enabled
us to train a concept embedding model from a sufficiently large cohort so as to represent
the semantic content of tens of thousands of concepts based on the clinical data of 9.1 mil-
lion patients with greater generalizability than models trained on data from a single institu-
tion. Further, the novel concept-embedding-based methods for subphenotyping developed
in our study allow us to effectively leverage the great variety of data available in EHRs by
bringing it to bear on the study of pediatric Long COVID, a particularly heterogeneous
condition. In place of alternative approaches in which variable definitions and groupings in
the study of co-occurrence involve extensive curation of study variables which may be the
source of study bias, concept similarity is learned from context in tens of millions of clinical
encounters.

Our study has multiple limitations worth noting. First, the lack of a clinical case defini-
tion of Long COVID and corresponding ‘gold standard’ cohort meant we were reliant on
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the clinical rules-based phenotype developed in [15]. The Long COVID phenotype algo-
rithm may under-identify patients because of low rates of use (i.e., mild cases) or physician
underdiagnosis of symptoms, or it may produce false positives. The pattern of subpheno-
types we identified, however, is consistent with the most commonly reported Long COVID
symptoms in children [17,26], which lends plausibility to our findings. A second limitation,
related to the first, is our use of the 28-179 day period following infection for identifying
post-acute symptoms; symptoms of Long COVID can chance or first appear past the 6
month mark and may take longer to be captured in EHRs due to long waits to see a specialist.
Our choice of a 6 month cutoff was motivated by the increased risk of misattributing symp-
toms that occur more than six months after the index infection as evidence of Long COVID;
however, further research is necessary to understand how Long COVID presentations vary
over time and how these are captured in EHRs. Second, EHR data reflects symptoms and
conditions managed by clinicians, and if patients do not seek or have access to quality care,
those data will be missing. A third limitation is the absence of patient laboratory testing
results as an input to our pipeline; while results of laboratory testing may provide valuable
information about patients’ Long COVID trajectories, early attempts to use these data mainly
clustered patients by volume of utilization (grouping patients into those with high and low
frequency of labs) and further investigation is necessary to make effective use of laboratory
testing in concept embedding models. Fourth, as discussed above, subphenotypes which are
less common (present in less than 2% of our cohort) or poorly captured in EHRs (e.g., “brain
fog” or attentional problems, difficulties in school) are less likely to be detected. Augmenting
structured data with physician notes (i.e., text) is a promising direction for capturing these
symptoms and subtypes in the future. Fourth, the exclusion of patients with complex chronic
disease from this study due to difficulties in attribution of symptoms means that subtypes of
Long COVID defined by worsening of trajectories related to specific chronic conditions are
less likely to be detected.

Methodologically, our concept embedding pipeline is an unsupervised algorithm; the lack
of a gold standard dataset labeling patients with subtypes is a challenge for identifying the
accuracy of our approach. While tuning pipeline hyperparameters on cohort A and reproduc-
ing clinically similar clusters in cohort B adds plausibility to our results, data from ongoing
observational cohort studies has the potential to provide more accurate classification of Long
COVID into subtypes and is a promising area for future work.
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