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Abstract

Locomotive Syndrome (LS) is defined by decreased walking and standing abilities due to

musculoskeletal issues. Early diagnosis is vital as LS can be reversed with appropriate inter-

vention. Although diagnosing LS using standardized charts is straightforward, the labor-

intensive and time-consuming nature of the process limits its widespread implementation.

To address this, we introduced a Deep Learning (DL)-based computer vision model that

employs OpenPose for pose estimation and MS-G3D for spatial-temporal graph analysis.

This model objectively assesses gait patterns through single-camera video captures, offer-

ing a novel and efficient method for LS prediction and analysis. Our model was trained and

validated using a dataset of 186 walking videos, plus 65 additional videos for external valida-

tion. The model achieved an average sensitivity of 0.86, demonstrating high effectiveness in

identifying individuals with LS. The model’s positive predictive value was 0.85, affirming its

reliable LS detection, and it reached an overall accuracy rate of 0.77. External validation

using an independent dataset confirmed strong generalizability with an Area Under the

Curve of 0.75. Although the model accurately diagnosed LS cases, it was less precise in

identifying non-LS cases. This study pioneers in diagnosing LS using computer vision tech-

nology for pose estimation. Our accessible, non-invasive model serves as a tool that can

accurately diagnose the labor-intensive LS tests using only visual assessments, streamlin-

ing LS detection and expediting treatment initiation. This significantly improves patient
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outcomes and marks a crucial advancement in digital health, addressing key challenges in

management and care of LS.

Author summary

Locomotive syndrome (LS) is a condition in which problems with bones, joints, muscles,

and nerves cause a decline in the ability to walk and stand. It is estimated that more than

45 million people in Japan have LS. Early detection is vital because LS can be reversed

with early treatment. Detecting LS using widely used diagnostic criteria is easy but labor-

intensive and time-consuming and, therefore, not widespread enough. To solve this prob-

lem, we developed an artificial intelligence model to detect LS by capturing gait videos.

Our artificial intelligence model performed as well as or better than orthopedic surgeons

in diagnostic accuracy (accuracy: 72% in our artificial intelligence model vs 52% in the

average of 6 different orthopedic doctors’ clinical diagnosis), but often diagnosed non-LS

cases as LS. This non-invasive artificial intelligence model serves as an accurate and simple

diagnostic tool for the LS examination, thereby accelerating the timing of behavioral

change and treatment intervention. Our model will significantly improve patients’ quality

of life and enhance the management and care of LS.

Introduction

Locomotive Syndrome (LS) is defined by decreased walking and standing abilities due to mus-

culoskeletal issues including bones, joints, muscles, and nerves [1]. This decline in musculo-

skeletal and neurological function significantly impacts daily life activities and independence

[2], and the mean prevalence of LS was reported to be 69.8% among the Japanese population

[3]. LS is increasingly recognized as a major public health concern due to its impact on reduc-

ing physical mobility and function [4]. This condition is prevalent among the elderly and

those leading sedentary lifestyles [5,6] and appears earlier in life than frailty [7,8]. When LS

progresses, and the decline in physical ability becomes noticeable with symptoms, it is consid-

ered physical frailty [7,8]. The stage corresponding to this physical frailty can be described as

“LS Stage 3,” where the decrease in mobility function hinders social participation [9]. Impor-

tantly, the systematic review found that the prevalence of physical frailty is estimated to be

12% in the global population aged over 50 years [10]. Unaddressed, LS can lead to reduced

quality of life, higher medical costs, and a greater risk of falls and injuries, placing a significant

strain on individuals and healthcare systems worldwide [11].

Management strategies for LS range from pharmacological treatments and surgical inter-

ventions for associated musculoskeletal disorders to physical rehabilitation aimed at improv-

ing muscle and balance strength [1]. Additionally, addressing symptoms such as pain and

numbness, along with correcting nutritional imbalances, forms part of the comprehensive

approach to LS treatment [1]. LS is notable for its potential reversibility with appropriate inter-

vention, even conditions associated with late stage of LS may be reversible, underlining the

importance of prompt and accurate diagnosis [12]. Although the process for diagnosing LS

seemed straightforward by following standardized charts, simpler than using the general Short

Physical Performance Battery [13], it requires subjective patient self-report and clinical evalua-

tions by healthcare professionals [14]. This labor-intensive and time-consuming process leads

to a gap in routine clinical diagnosis, preventing its wide implementation. Consequently, there
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is a growing demand in the medical field for the development of an automated, objective, and

cost-effective tool that could improve the efficiency of the LS screening and diagnosis process,

thereby mitigating the reliance on manual processes.

Recent progress in deep learning (DL) within the field of computer vision presents new

strategies for overcoming diagnostic challenges [15]. Motion analysis, which previously

required attaching numerous sensors for full motion capture, has become more convenient

through pose estimation models applied to recorded video footage [16]. Innovations in this

area have shown that computer vision systems can effectively authenticate individuals based

on their walking patterns [17,18]. Moreover, these systems have broadened their utility by esti-

mating age and fatigue levels by analyzing walking videos [19–21]. This technological progress

can potentially revolutionize the detection and assessment of human movement disorders,

including LS [16].

This study aimed to develop and validate a DL-based computer vision model that identified

LS from walking videos recorded with a single camera. By offering an accessible, non-invasive

model capable of instantly diagnosing the labor-intensive LS tests through visual assessments

alone, we sought to streamline LS detection and accelerate the initiation of treatment.

Results

Demographics

Table 1 presents the baseline characteristics of the study participants. In the model creation

group, out of 66 participants, 42 (63.6%) were female. The median age for this group was 70

years. In terms of LS classification, the distribution was as follows: 24 participants were identi-

fied with stage-3 LS, 9 with stage-2 LS, 15 with stage-1 LS, and 18 were determined to be non-

LS. For the external validation group, there were 65 participants, of which 43 (66.2%) were

female, with a median age of 69 years. Within this cohort, LS staging was reported as 5 partici-

pants with stage-3 LS, 4 with stage-2 LS, 35 with stage-1 LS, and 21 classified as non-LS.

Detailed characteristics of the participants in the model creation and external validation

groups are shown in the S3 and S4 Appendix, respectively. Across both groups, the predomi-

nant age range was 70–79 years old.

Table 1. Baseline characteristics of the participants.

Model Creation (n = 66) n (%) External Validation (n = 65) n (%)

Age (y) <40 9 (13.6) 8 (12.3)

40–49 7 (10.6) 5 (7.7)

50–59 7 (10.6) 9 (13.8)

60–69 9 (13.6) 11 (16.9)

70–79 20 (30.3) 25 (38.5)

> = 80 14 (21.2) 7 (10.8)

Gender Female 42 (63.6) 43 (66.2)

Male 24 (36.4) 22 (33.8)

LS Stage 0 n, (%) 18 (27.3) 21 (32.3)

1 n, (%) 15 (22.7) 35 (53.8)

2 n, (%) 9 (13.6) 4 (6.2)

3 n, (%) 24 (36.4) 5 (7.7)

LS; Locomotive Syndrome

https://doi.org/10.1371/journal.pdig.0000668.t001
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Model Creation and Internal Validation

The data sets for model creation, internal validation, and external validation using a different

dataset are described in Fig 1.

In the development and subsequent internal validation of our computer vision model, tai-

lored for LS screening, a strategic emphasis was placed on optimizing the model’s sensitivity.

This focus is pivotal for a screening instrument intended for the early detection of potential LS

cases, ensuring a high degree of accuracy in identifying true positives. The validation process

employed a structured cross-validation (CV) methodology, encompassing three distinct seg-

ments: CV1, CV2, and CV3, to rigorously assess the model’s diagnostic performance. The

results are summarized in Table 2.

Our findings reveal notable sensitivity across the CV iterations, with CV1 achieving a sensi-

tivity of 0.81, and both CV2 and CV3 displaying enhanced sensitivity at 0.89. These results

yield an average sensitivity of approximately 0.86, illustrating the model’s proficiency in accu-

rately detecting LS cases, which is critical for a reliable screening tool. Conversely, specificity

scores exhibited considerable variability, with CV1 demonstrating a high specificity of 0.87,

contrasted by the reduced specificity observed in CV2 (0.27) and CV3 (0.38), averaging 0.51

across the evaluations. This variability underscores the model’s inconsistent ability in identify-

ing true negatives across diverse data sets.

Moreover, the model’s Positive Predictive Value (PPV) recorded robust outcomes, with

scores of 0.96 (CV1), 0.78 (CV2), and 0.81 (CV3), leading to an aggregate PPV of 0.85. These

PPV metrics signify that the model’s predictions regarding LS presence are generally precise,

Fig 1. Data sets for model creation and external validation.

https://doi.org/10.1371/journal.pdig.0000668.g001
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denoting a high level of diagnostic accuracy. However, the Negative Predictive Value (NPV)

presented variability and identified areas for improvement, with an average NPV of 0.52 across

the CV phases, reflecting the model’s fluctuating capability in accurately ruling out non-LS

cases.

The accuracy assessments, indicating the model’s overall efficacy in correctly classifying LS

and non-LS instances, were documented at 0.82 (CV1), 0.73 (CV2), and 0.77 (CV3), with an

overall average accuracy of 0.77.

External Validation

Upon completing the model’s development and internal validation, we proceeded with exter-

nal validation using an independent dataset. This step was crucial for evaluating the model’s

generalizability and accuracy in a different clinical setting. A Receiver Operating Characteristic

(ROC) curve was constructed to provide a detailed assessment of the model’s diagnostic per-

formance. The Area Under the Curve (AUC), illustrated in Fig 2, was calculated at 0.75, dem-

onstrating the model’s predictive accuracy.

Next, subgroups analysis was conducted to compare patients accurately diagnosed (Accu-

rate) by our developed DL-based model with those inaccurately diagnosed (Inaccurate)

(Table 3). The distribution of LS stage differed significantly between the two groups

(p< 0.001). Further examination of each LS stage revealed that diagnostic accuracy was nota-

bly lower for non-LS cases compared to LS stages 1 and above (Fig 3).

Furthermore, we evaluated the diagnostic performance of our DL-based model against the

collective judgment of six certified orthopedic surgeons with over ten years of clinical experi-

ence. Each doctor independently assessed the same video dataset for the presence of LS in an

external validation process. The average diagnostic metrics derived from the doctors’ assess-

ments are summarized in Table 4.

Our developed DL-based model exhibited a higher sensitivity (89%) than the average doc-

tors (40%), indicating superior effectiveness in identifying affected patients. However, the doc-

tors demonstrated greater specificity (77% vs 38%), suggesting the DL-based model’s higher

tendency for false positives. In terms of predictive values, the DL-based model’s PPV was

slightly lower (75% vs 84%), but its NPV was higher (62% vs 38%) compared to the average of

doctors. Overall accuracy favored the DL-based model (72% vs 52%), underscoring its poten-

tial to more accurately diagnose LS, despite its limitation in specificity.

Discussion

This study aimed to develop and validate a DL-based computer vision model for diagnosing

LS by analyzing gait patterns in single-camera video recordings using pose estimation (Open-

Pose) and graph-structured data through a spatial-temporal graph convolutional network

(MS-G3D).

Table 2. Internal validation by cross-validation.

Sensitivity Specificity PPV NPV Accuracy

CV1 0.81 0.87 0.96 0.56 0.82

CV2 0.89 0.27 0.78 0.46 0.73

CV3 0.89 0.38 0.81 0.54 0.77

average 0.86 0.51 0.85 0.52 0.77

PPV; Positive Predictive Value, NPV; Negative Predictive Value, CV; Cross-Validation

https://doi.org/10.1371/journal.pdig.0000668.t002
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This study introduces the pioneering integration of OpenPose and MS-G3D for the detec-

tion of LS, marking a significant advancement in medical diagnostics by combining Open-

Pose’s precise pose estimation from video data with MS-G3D’s sophisticated analysis of

Fig 2. Area under the curve (AUC) for external validation performance.

https://doi.org/10.1371/journal.pdig.0000668.g002

Table 3. Comparison between accurate and inaccurate groups by DL-model for external validation.

Accurate (n = 47) Inaccurate (n = 18) P-Value

Age (y) mean, (SD) 65.8 (15.3) 57.4 (19.1) 0.07

Gender Female n, (%) 32 (68.1) 12 (66.7) 0.99

LS Stage Stage distribution <0.001

0 n, (%) 8 (17.0) 13 (72.2)

1 n, (%) 32 (68.0) 3 (16.7)

2 n, (%) 3 (6.4) 1 (5.6)

3 n, (%) 4 (8.5) 1 (5.6)

LS; Locomotive Syndrome

https://doi.org/10.1371/journal.pdig.0000668.t003

PLOS DIGITAL HEALTH Screening of locomotive syndrome by computer vision

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000668 November 26, 2024 6 / 16

https://doi.org/10.1371/journal.pdig.0000668.g002
https://doi.org/10.1371/journal.pdig.0000668.t003
https://doi.org/10.1371/journal.pdig.0000668


spatial-temporal graph data. OpenPose’s application in our model is supported by its proven

effectiveness in various medical contexts, such as analyzing gait abnormalities in individuals

with lower limb dysfunction [22] and assessing joint alignment in knee osteoarthritis patients

through non-invasive measurement of hip-knee-ankle angles [23], thereby highlighting its

utility in clinical medicine and rehabilitation. The incorporation of MS-G3D enhances the

model’s diagnostic precision by processing the dynamic interactions between body parts dur-

ing movement, allowing for the detection of subtle gait anomalies indicative of LS. This syner-

gistic use of OpenPose’s and MS-G3D’s capabilities establishes a comprehensive framework

for the early detection and evaluation of LS, leveraging both technologies’ strengths to offer an

innovative approach to medical condition diagnosis.

The model was subjected to a comprehensive validation process, encompassing both rigor-

ous internal and external validation using an independent dataset, to evaluate its generalizabil-

ity and diagnostic efficacy across varied clinical environments. During the internal validation,

the model exhibited a notable average sensitivity of 0.86, showcasing its ability to accurately

identify individuals with LS effectively, which is critical for a screening tool designed for early

Fig 3. Proportion of diagnosis accuracy for external validation of DL-based model by LS Stage.

https://doi.org/10.1371/journal.pdig.0000668.g003

Table 4. The diagnosing performance between DL-based model and doctors’ visual examination.

Sensitivity Specificity PPV NPV Accuracy

DL 0.89 0.38 0.75 0.62 0.72

Doctors (n = 6) 0.40 0.77 0.84 0.38 0.52

DL; Deep-Learning based model, PPV; Positive Predictive Value, NPV; Negative Predictive Value

https://doi.org/10.1371/journal.pdig.0000668.t004
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detection. Despite achieving a commendable sensitivity, the model’s specificity presented less

consistency, averaging at 0.51, highlighting a necessity for enhancement in accurately distin-

guishing individuals without LS. The PPV remained strong at an average of 0.85, indicating

that most LS predictions by the model are precise. However, the lower NPV and the fluctuat-

ing specificity underscore a possible challenge in reliably excluding non-LS cases. An overall

accuracy rate of 0.77 confirmed the model’s substantial capability in differentiating LS from

non-LS conditions accurately. The development phase’s strategic focus on optimizing sensitiv-

ity aimed at enhancing the model’s application for early LS detection. Although specificity var-

ied, the solid PPV underscores the model’s dependable predictive performance, with the

synergy between high sensitivity and PPV emphasizing its aptness for early LS screening.

The external validation of our model using an independent dataset yielded an AUC of 0.75,

confirming the model’s reasonable predictive accuracy in distinguishing individuals with and

without LS, thereby verifying its effectiveness as a screening tool in various settings [24]. The

consistency of results between internal and external validations highlights the model’s stable

performance across diverse datasets and clinical environments, essential for its reliability and

broader clinical application. Subgroup analysis provided deeper insights into the model’s diag-

nostic accuracy, revealing significant differences in the distribution of LS stages between cor-

rectly and incorrectly diagnosed cases, especially noting the model’s lower accuracy in

identifying non-LS cases. Comparing our DL-based model with the collective judgment of six

experienced orthopedic surgeons revealed its high sensitivity (89%) in identifying LS patients,

substantially surpassing the doctors’ average sensitivity (41%), which is critical for early detec-

tion and treatment. However, the model’s specificity (38%) was lower than that of the doctors

(74%), indicating a tendency towards more false positives. Although the model’s PPV was

slightly below the doctors’ average (75% vs. 83%), its NPV was considerably higher (62% vs.

38%), bolstering its effectiveness in excluding non-LS cases. With an overall accuracy of 72%

compared to the doctors’ 52%, the model shows significant promise as a diagnostic tool,

though the specificity gap underscores the importance of integrating the model with clinical

assessment to avoid unnecessary interventions.

Recent advancements in deep learning and computer vision have revolutionized the study

of human movement disorders, enabling the automatic tracking and analysis of human move-

ment through video data, thus identifying key body landmarks for the quantitative evaluation

of motor functions, which is invaluable for individuals with musculoskeletal and neurological

impairments [25]. Markerless Motion Capture (MMC) technology allows for the non-invasive

analysis of human motion and has been shown to effectively distinguish between individuals

with conditions such as Parkinson’s disease and healthy subjects by evaluating symptoms like

bradykinesia and tremor [26]. MMC’s utility extends to three-dimensional gait assessment in

community settings, highlighting its practicality and integration into real-world applications,

thus enabling widespread clinical adoption and facilitating patient monitoring, which supports

personalized rehabilitation strategies [27]. Moreover, a novel video-based method employing

deep learning for the evaluation of bradykinesia in Parkinson’s disease, which assesses mobility

during daily activities with a focus on fine motor movements like the thumb-index finger dis-

tance, indicates enhanced accuracy compared to conventional clinical assessments [28]. This

method underscores the potential for advanced remote monitoring and the development of

more customized care plans for patients [28].

A recent study leveraging front-view video analysis to automatically classify gait severity in

Parkinson’s disease (PD) analyzed 456 videos from 19 PD patients and employed a support

vector machine to achieve an AUC of 80.88%, highlighting its effectiveness in identifying vari-

ous gait impairment levels in PD patients and suggesting its applicability in home settings for

PD assessments [29]. Similarly, another study developed a neural network model that used
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low-dimensional postural data from social interaction videos to identify autism in children

with an accuracy of 80.9%, a PPV of 0.784, and a sensitivity of 0.854, analyzing an initial sam-

ple of 136 children and an additional test set of 101 children with autism spectrum disorder,

utilizing an Long Short Term Memory (LSTM) network to interpret temporal sequences of

skeletal key points from short video segments [30]. The promising results of these studies par-

allel the validation outcomes of our model, which exhibits comparable accuracy, indicating its

efficacy for early detection of LS and suggesting its potential for widespread home-based

screening and clinical application in monitoring and early detection, similarly facilitating

timely interventions for individuals at risk.

Our DL-based computer vision model is the first of its kind, aimed specifically at detecting

LS, a condition notable for its potential reversibility with early and appropriate intervention,

allowing individuals to regain comfortable mobility [12]. Offering a non-invasive, efficient,

and accessible screening method, our model plays a crucial role in the early identification of

LS, facilitating faster initiation of treatment. Its introduction marks a substantial advancement

in managing LS, providing healthcare professionals with a vital tool for improving patient out-

comes and addressing healthcare challenges associated with the condition. Beyond LS, our

model has broader implications in digital health by enabling the diagnosis of various gait dis-

orders through walking video analysis, covering conditions like cervical myelopathy, lumbar

spinal stenosis, osteoarthritis, Parkinson’s disease, cerebrovascular disorders, and peripheral

artery diseases. These conditions, which affect gait and require assessments from multiple

medical specialties, complicate diagnosis and treatment. Our model’s ability to aid in the dif-

ferential diagnosis of diseases with unique gait patterns empowers general practitioners to effi-

ciently refer patients to specialized care, streamlining the diagnostic process and enhancing

patient care.

The primary limitation of our study is its relatively small participant base, potentially weak-

ening the conclusions’ strength and generalizability. Additionally, observed low value in the

model’s specificity and NPV raises concerns about its consistent performance in accurately

identifying individuals without LS. The imbalanced training dataset in our current study (non-

LS: LS = 52: 134) (Fig 1) could have a potential negative impact on our model, possibly leading

to the decreased specificity. Although external validation suggests the model’s broad applica-

bility, the utilized dataset’s lack of comprehensive demographic representation might limit our

findings’ universality. Addressing the model’s current shortcomings in distinguishing between

LS and non-LS cases is crucial. Future initiatives should focus on incorporating a wider array

of clinical parameters and training the model with datasets that cover a more extensive range

of LS stages and related conditions. Expanding the study to include a larger and more diverse

participant group will enhance the research’s integrity and the model’s relevance to various

populations. Conducting further validation studies in diverse clinical and demographic set-

tings is vital to ascertain the model’s effectiveness in global healthcare applications, thereby

ensuring its contributions to precision medicine are significant and widespread.

Our developed computer vision model represents a significant advancement in the screen-

ing of LS, showcasing remarkable sensitivity and predictive accuracy, surpassing the diagnostic

capabilities of visual examinations by experienced doctors. This study is at the forefront of

employing computer vision technology for pose estimation to diagnose LS, introducing a

method that is both accessible and non-invasive. By facilitating early and efficient detection of

LS, our model enables quicker commencement of treatment, substantially enhancing patient

outcomes. This progress constitutes a pivotal development in digital health, tackling major

obstacles in the management and care of LS, and sets a new benchmark for leveraging technol-

ogy to improve healthcare delivery.
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Methods

Study design

This study aimed to develop an innovative DL-based computer vision model to identify LS

effectively. We developed this model by employing prospectively collected data. To evaluate

the effectiveness and broader applicability of our model, we carried out external validation

with a separate dataset, also collected prospectively, from an alternative institution.

The study received approval from the Regional Committee for Medical and Health

Research Ethics at Osaka Minami Medical Center (OMMC), ensuring compliance with eth-

ical standards and patient safety. Prior to inclusion in the study, all participants provided

written informed consent. Additionally, the Ethics Committee of OMMC granted specific

approval for this prognostic study (Approval code: R5-42). Consistent with the ethical stan-

dards, our study protocol was meticulously designed to align with the principles outlined in

the Declaration of Helsinki, guaranteeing respect for the rights and well-being of all

participants.

Participants

The study selected participants based on specific inclusion and exclusion criteria. To be eligible

for inclusion, participants were required to meet the following criteria: a minimum age of 20

years, voluntary participation, the ability to independently walk ten meters, consent to

undergo the LS risk test, and undergo a medical examination by a certified orthopedic surgeon

or neurologist. Individuals were excluded from the study if they were under the age of 20,

expressed unwillingness to participate, or were unable to independently walk 10 meters.

For model development, a total of 66 patients who visited the Department of Orthopedics

at OMMC between December 22, 2021, and February 21, 2022, were enrolled. Two-thirds of

the 66 participants in OMMC were randomly assigned to the model development sample, and

one-third were randomly assigned to the internal validation sample. Additionally, for the

external validation of the model, 65 participants from the Matsuzaka Health Festival 2023,

held in Matsuzaka City on September 10, 2023, were recruited.

Data collection

For the development of our model, we gathered 186 walking videos from individuals attending

the Department of Orthopedics at OMMC. Additionally, for the purpose of external valida-

tion, 65 walking videos were collected from attendees of the Matsuzaka Health Festival 2023.

For the video recording, we used a FLIR CHAMELEON3 camera (P/N: CM3-U3-13S2,

Edmund Optics Inc., Barrington, USA), with a resolution of 1288x964, 30 FPS, and 1.3 mega-

pixels, and the Edmund Optics UC Fixed Focal Length lens (#33–300) with a 4mm focal

length, 12-megapixel C-mount lens with an M61 x 75 filter size, and less than 17.5%

distortion.

Participants were instructed to walk down a designated ten-meter path three times. During

these walks, each participant was filmed from the right side, with the camera positioned four

meters away from the walking path to ensure clear lateral movement capture. The raw footage

was saved in MP4 format utilizing Advanced Video Coding (AVC). To specifically analyze sta-

ble walking patterns, only the walking sequences occurring between the four to seven-meter

marks of the ten-meter path were considered for detailed analysis. For technical reasons, some

of the videos recorded could not be played back, and in such cases, no more than two videos

per participant were employed as a training dataset.

PLOS DIGITAL HEALTH Screening of locomotive syndrome by computer vision

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000668 November 26, 2024 10 / 16

https://doi.org/10.1371/journal.pdig.0000668


LS risk test

The LS risk test comprises three components: a patient-reported outcome measure called the

GLFS-25, and two performance tests known as the two-step and stand-up tests. These tests have

been previously described in research papers [31]. In brief, the GLFS-25 questionnaire consists

of 25 questions, each rated on a Likert scale from 0 to 4, assessing difficulties related to mobility

in daily life. Higher scores on this scale indicate a worsening health condition, and the total

score, which ranges from 0 to 100, was used for analysis. The content of the GLFS-25 is shown

in S1 Appendix. The two-step test involves patients starting from a standing position and taking

two successive steps as far as they can. The distance covered by these two steps is divided by the

patient’s height for standardization. This test is performed twice, and the best result is recorded.

The stand-up test is conducted using stools of four different heights (10, 20, 30, and 40 cm). Par-

ticipants are required to stand up from these stools, either using one or both legs and maintain

their posture for 3 seconds after standing. A score between 0 and 8 is assigned based on success-

ful performance, with a higher score indicating better physical condition.

The severity of LS is categorized using LS staging criteria as follows: normal, Stage 1 (the

initial stage of decreased mobility defined by specific criteria for the two-step test, stand-up

test, and GLFS-25 score), and Stage 2 (an advancing stage of decreased mobility defined by dif-

ferent criteria for the same tests). Additionally, a more severe stage known as Stage 3

(advanced decrease in mobility, limiting social engagement) has recently been defined, with

specific criteria for the two-step test, stand-up test, and GLFS-25 score.

Deep learning-based locomotive syndrome prediction method

Our deep learning-based method for predicting LS is depicted in Fig 4 and encompasses four

main steps: video recording, pose estimation, model development, and prediction of LS. The

details of each step are described below.

1. Video recording: We recorded subjects walking sideways using a standard digital camera to

capture natural gait patterns, ensuring clear visibility of the full body in motion. Forty

frames from each video, which typically contain more than one gait cycle and allow for a

complete representation of the subject’s gait characteristics, were then processed.

2. Pose estimation: The recorded walking videos were processed using the OpenPose frame-

work [32], which provided 2D coordinates for 25 body key points as depicted in Fig 4. The

OpenPose simultaneously estimates the heatmap of each joint position and the Part Affinity

Fields that represent the relationship between joints by deep learning and estimates the 2D

coordinates of each key point using these maps.

3. Model development: The key point data obtained from the previous OpenPose were con-

verted into graph-structured format, representing the body’s joints and their connections.

We employed a deep learning model, MS-G3D [33], based on spatial-temporal graph con-

volution networks, to learn the LS prediction model. The MS-G3D model enhances feature

extraction by applying convolutions across both spatial and temporal dimensions, leverag-

ing skip connections to encapsulate spatial-temporal relationships effectively.

4. Prediction of LS: The trained model predicts LS by analyzing the subject’s gait captured in

the video. It outputs a probability score, PLS, indicating the likelihood of LS presence. For

classification, a threshold of 0.5 is applied; if PLS� 0.5, the gait is classified as indicative of

LS; otherwise, it is classified as non-LS. Sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), and accuracy were calculated following the equa-

tions shown in S2 Appendix.
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Visual diagnosis of doctors for walking videos from external validation

dataset

For the external validation dataset, we employed a visual diagnostic approach with six certified

orthopedic surgeons, each boasting over a decade of clinical experience. These doctors were

asked to evaluate 65 walking video clips, identical to those used in the external validation pro-

cess. These videos showcased individuals performing a ten-meter walk test, captured from a

lateral perspective. The task for each doctor was to determine whether the subjects

Fig 4. Deep learning-based locomotive syndrome prediction method. a. Steps involved in deep learning-based method for locomotive syndrome prediction.

Step 1: Video recording of the subject. Step 2: Pose estimation conducted using OpenPose. Step 3: Development of the LS prediction model utilizing MS-G3D.

Step 4: Final prediction of Locomotive Syndrome. LS stands for Locomotive Syndrome. b. Skeleton model generated by OpenPose. Depicts the 2D coordinates

for 25 key body points as identified by the OpenPose framework. c. Spatial-Temporal GCN-Based LS Prediction Model Utilizing MS-G3D. Diagram of the

Spatial/Temporal Graph Convolutional Network (GCN) component. d. Spatial-Temporal GCN-Based LS Prediction Model Utilizing MS-G3D. Enhanced

Spatial-Temporal GCN architecture incorporating skip connections.

https://doi.org/10.1371/journal.pdig.0000668.g004
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demonstrated symptoms of LS. To aid in their assessment, each video was made available for

replay up to three times, facilitating a thorough evaluation of potential LS indicators.

Statistical analysis

Statistical analyses were conducted using Python 3.8, specifically leveraging the SciPy library

for our calculations. To evaluate the diagnostic performance of our model, we generated a

Receiver Operating Characteristic (ROC) curve and calculated the Area Under the Curve

(AUC) as a measure of accuracy during external validation. For numeric variables, differences

in means were assessed using independent samples t-tests, allowing us to compare the average

values between two groups. For categorical variables, we applied Chi-square tests of indepen-

dence to determine if there were significant associations between the groups. This comprehen-

sive statistical evaluation was carried out over a period extending from November 11, 2023, to

April 3, 2024, ensuring thorough analysis and interpretation of our data.
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