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Abstract

Longitudinal electronic health records (EHR) can be utilized to identify patterns of disease

development and progression in real-world settings. Unsupervised temporal matching algo-

rithms are being repurposed to EHR from signal processing- and protein-sequence align-

ment tasks where they have shown immense promise for gaining insight into disease. The

robustness of these algorithms for classifying EHR clinical data remains to be determined.

Timeseries compiled from clinical measurements, such as blood pressure, have far more

irregularity in sampling and missingness than the data for which these algorithms were

developed, necessitating a systematic evaluation of these methods. We applied 30 state-of-

the-art unsupervised machine learning algorithms to 6,912 systematically generated simu-

lated clinical datasets across five parameters. These algorithms included eight temporal

matching algorithms with fourteen partitional and eight fuzzy clustering methods. Nemenyi

tests were used to determine differences in accuracy using the Adjusted Rand Index (ARI).

Dynamic time warping and its lower-bound variants had the highest accuracies across all

cohorts (median ARI>0.70). All 30 methods were better at discriminating classes with differ-

ences in magnitude compared to differences in trajectory shapes. Missingness impacted

accuracies only when classes were different by trajectory shape. The method with the high-

est ARI was then used to cluster a large pediatric metabolic syndrome (MetS) cohort (N =

43,426). We identified three unique childhood BMI patterns with high average cluster con-

sensus (>70%). The algorithm identified a cluster with consistently high BMI which had the

greatest risk of MetS, consistent with prior literature (OR = 4.87, 95% CI: 3.93–6.12). While

these algorithms have been shown to have similar accuracies for regular timeseries, their

accuracies in clinical applications vary substantially in discriminating differences in shape

and especially with moderate to high missingness (>10%). This systematic assessment

also shows that the most robust algorithms tested here can derive meaningful insights from

longitudinal clinical data.
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Author summary

Clinical data is regularly recorded in patients’ health records by healthcare institutions

and is becoming increasingly available for research to identify clinically meaningful sub-

groups, that can help drive developments in precision medicine. Clustering methods from

other domains, such as audio signal processing, are being repurposed for these tasks how-

ever, clinical data has its own unique characteristics, such as missing data and specific cor-

relation structures, that may impact the performance of certain clustering methods. Here,

using a large, simulated dataset we developed from real patient data, our objective is to

establish which approaches are best at stratifying patients using longitudinal clinical data.

We identified dynamic time warping (DTW) and its lower-bound variants as highly

robust clustering algorithms that showed impressive performance at classifying patients

based on variations in trajectory shapes and trajectory magnitudes. We also demonstrate,

using a real cohort of>43,000 pediatric patients, that DTW can classify BMI trajectories

to identify patients at elevated risk of developing pediatric metabolic syndrome. Our

study provides insights in the robustness of algorithms and their use in identifying novel

pattens in clinical domain.

Introduction

The application of unsupervised machine learning algorithms to longitudinal electronic health

records (EHRs) offers unprecedented opportunities to identify patterns of clinical biomarkers

that can improve health and derive new insights in disease progression from real world cohorts

[1–6]. Historically, timeseries matching algorithms, such as dynamic time warping (DTW),

have shown immense potential where timeseries intervals are regular, such as speech recogni-

tion, audio signal processing, and protein sequence alignments [7–10]. Timeseries matching

algorithms can be used to measure similarity between patient’s longitudinal data. These simi-

larity measures can then be used to identify clusters of patients with similarly trajectories, lead-

ing to new clinical insights [11,12]. However, the longitudinal data captured in the EHR differs

substantially from the types of data traditionally used to evaluate these methods. For example,

a patient’s clinical data is greatly influenced by many factors [5,6], resulting in non-random

data missingness and irregular sampling that are not routinely seen in the other data types

used to develop these methods. Systematic investigation of these algorithms using real-world

clinical lab measurements is needed to determine which methods are the most accurate and

robust for deriving clinically meaningful insights [13].

The challenge with using real-world data for comparing methods is that the true signal can-

not be known, therefore we can never truly know what class a patient actually belongs to when

clustered. The value of using simulated datasets is that we can identify and modulate the true

signal, providing the ability to systematically compare clustering algorithms under different

experimental conditions. However, simulated datasets need to be representative of real-world

observations to make their findings generalizable. Here, we generated simulated datasets from

real-world routine clinical measurements—body mass index (BMI), systolic blood pressure

(SBP) and random glucose. This approach provides the advantage of deriving simulated cohorts

with correlation structures and other key aspects that are observed in real EHR data, and

enabled us to 1) assess the impact of various parameters on the robustness of clustering algo-

rithms and 2) identify algorithms best suited for discovering clinical insights in EHR data[13].
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Unsupervised clustering algorithms aim to find clusters based on similarities within the

data, rather than supervised methods that try to learn clusters based on a set of pre-labeled

observations. These unsupervised algorithms can be divided into centroid-based approaches

and hierarchical approaches, both require a calculation of a similarity metric between the time-

series. Here, we focused on centroid-based approaches since hierarchical approaches require

substantially more computational time and resources, limiting their ability to scale [14]. Unsu-

pervised clustering algorithms can be separated into three major components: i) assignment

method: patient is assigned to either one cluster (partitional clustering) or all clusters with var-

ied probabilities (fuzzy clustering), ii) centroid computation: method to iteratively update the

centroid of clusters and iii) distance metric: method to calculate distance between centroids

and timeseries [14]. We evaluated different variations of assignment type, centroid computa-

tion and distance measures to form 30 unique clustering algorithms utilizing eight state-of-

the-art timeseries matching algorithms as distance measures and apply these to simulated data-

sets to determine the most suitable algorithms for longitudinal EHR data.

We then tested the utility of the most robust algorithm to examine childhood BMI patterns

associated with risk profiles of metabolic syndrome (MetS) in a large real-world pediatric

cohort (Fig 1). MetS is a combination of health conditions whose comorbidity has been linked

to greater risks of atherosclerosis, coronary heart disease and stroke [15]. Obesity is a major

driver of this condition, and with increases in childhood obesity, MetS warrants greater vigi-

lance [16]. Prior research has already established that subjects with high BMI values have

increased risk of being diagnosed with MetS, but how BMI trajectories contribute to this risk is

Fig 1. Study Design. Clinical data was randomly selected from patients’ electronic health record (EHR) data and used as basis

for simulation. Unsupervised machine learning algorithms were applied to simulated datasets and their accuracies were ranked.

The most suitable algorithm was then applied to a real-world pediatric cohort to identify BMI patterns with distinct risk of

metabolic syndrome (MetS).

https://doi.org/10.1371/journal.pdig.0000628.g001
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not well understood [15]. Here, we explored the extent to which clustering using the most

accurate and robust algorithm is congruent with earlier research and capable of uncovering

novel childhood BMI patterns linked with MetS.

Results

Overall results

The 30 clustering algorithms were formed by combining two clustering assignment methods,

six centroid computation methods and eight distance measures. Each method is described in

detail in the supplemental information (S1 Text). The accuracy of clustering algorithms was

assessed by calculating the Adjusted Rand Index (ARI) which ranges from -1 to 1 with values

closer to zero indicating random sorting. The majority of the algorithms had median ARI

closer to 1 indicating better cluster assignment than random chance (Fig 2).

Across all simulated datasets, algorithms with partitional clustering ranked higher than

fuzzy clustering (Fig 2A). Methods for computing centroids included those specifically devel-

oped for timeseries (e.g., DTW Barycenter Averaging (DBA)) and generalized methods used

Fig 2. Algorithm ranking based on results from both magnitude and shape cohorts. (A-B) and (C-D) show the average

rank and Adjusted Rand Index (ARI), respectively, for all 30 algorithms across all cohorts. Average ranks were obtained by

comparing all algorithm using Nemenyi tests in the R package mlr3benchmark, and lower average ranks indicate better

performance. ARI scale ranges between -1 to 1, and values closer to zero represent classification on par with random

assignment. (A) and (B) shows average ranks. Algorithms with similar accuracies are connected by black bars (dashed &

solid) in (A). These metrics are further subset by missingness in (B), (C) and (D). (C) and (D) show ARI distributions for

simulated datasets with no missingness and missingness > 10%.

https://doi.org/10.1371/journal.pdig.0000628.g002
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for many data types (e.g., partitioning around medoids (PAM)). Surprisingly, PAM was used

in three of the top five ranked algorithms, outperforming methods developed specifically for

timeseries.

DTW-lower bounding (LB) and LB-Improved distance metric tied for the first rank (mean

ranks = 4.19, P> .05) (Fig 2A–2B). DTW ranked third (mean rank = 5.53, Ps< .05). The top

three ranks belonged to the same three algorithms, i.e., DTW-LB, LB-Improved and DTW

with PAM centroids, when datasets were subset by clinical measurement types (i.e., BMI, ran-

dom glucose, SBP) (S8, S15 and S22 Figs).

As expected, accuracies decreased as missingness increased in the simulated cohorts (Fig

2B). Furthermore, as the overlap between classes increased, controlled by dispersion and effect

sizes, ARI for all algorithms showed a downward trend (Fig 2E). All five algorithms were better

at finding true patterns in cohorts with trajectory magnitude differences than cohorts with tra-

jectory shape differences (Figs 3 and 4). Methods were ranked consistent when simulated

cohorts had 2, 3 and 4 true classes (Fig 5A). Nearly, all distance measures ranked higher with

PAM centroids than with other centroids, with the only exceptions being Soft-DTW, which

was most robust when used with Soft-DTW centroids (Fig 5B).

Fig 3. Algorithm rankings for magnitude cohorts. (A-B) and (C-D) show the average rank and Adjusted Rand Index

(ARI), respectively, for all 30 algorithms across magnitude cohorts. Average ranks were obtained by comparing all

algorithm using Nemenyi tests in the R package mlr3benchmark, and lower average ranks indicate better performance.

ARI scale ranges between -1 to 1, and values closer to zero represent classification on par with random assignment. (A)

and (B) shows average ranks. Algorithms with similar accuracies are connected by black bars (dashed & solid) in (A).

These metrics are further subset by missingness in (B), (C) and (D). (C) and (D) show ARI distributions for simulated

datasets with no missingness and missingness> 10%.

https://doi.org/10.1371/journal.pdig.0000628.g003
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Magnitude simulation results

While differences in accuracies of top five algorithms were observed in the overall results, the

top five algorithms in magnitude cohorts were equally accurate (Mean ranks = 4.78–5.10) (Ps>
.05) (Fig 3). In order of mean ranks, DTW, LB-Improved and DTW-LB distance measures with

PAM centroids were the three most accurate methods. LB-Keogh was considerably more robust

in magnitude cohorts than in shape cohorts (ΔARI< -0.4) (Fig 5C). The subsequent fourth and

fifth ranks were Soft-DTW (Mean rank = 6.13) and LB-Keogh (Mean rank = 6.32), latter with

PAM centroids. It is noteworthy that the performance of these two algorithms varied such that

they also tied with LB-Improved with DBA centroids (Mean rank = 6.43) (Ps> .05). Increasing

missingness did not impact mean accuracies of any of these algorithms (Fig 3B).

Shape simulation results

Robustness of algorithms varied greatly in shape cohorts (Fig 4A–4D). Overall, algorithms had

lower accuracies in the shape cohorts than in the magnitude cohorts across every parameter,

indicating that clustering based on differences in shape is more challenging than clustering

based on differences in magnitude (Fig 4C). Missingness also had a greater impact on the

Fig 4. Algorithm rankings for shape cohorts. (A-B) and (C-D) show the average rank and Adjusted Rand Index

(ARI), respectively, for all 30 algorithms across shape cohorts. Average ranks were obtained by comparing all

algorithm using Nemenyi tests in the R package mlr3benchmark, and lower average ranks indicate better performance.

ARI scale ranges between -1 to 1, and values closer to zero represent classification on par with random assignment. (A)

and (B) shows average ranks. Algorithms with similar accuracies are connected by black bars (dashed & solid) in (A).

These metrics are further subset by missingness in (B), (C) and (D). (C) and (D) show ARI distributions for simulated

datasets with no missingness and missingness> 10%.

https://doi.org/10.1371/journal.pdig.0000628.g004
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accuracies in differentiating shapes compared to magnitudes (Fig 4B and 4D), with no algo-

rithms performing well on shape cohorts with>10% missingness.

DTW-LB and LB-Improved (Mean ranks = 3.29) distances with PAM centroids had the

greatest mean accuracies for the shape cohorts (Fig 4A–4D). DTW with PAM centroids was a

close third (Mean rank = 6.26, Ps<0.05). The same three timeseries matching algorithms occu-

pied three of next four ranks with DBA centroids. Shape-based DTW (SBD) was the only algo-

rithm with greater accuracies in shape cohorts compared to magnitude cohorts (Fig 5D),

however its overall ranking was low.

Clustering of real-world pediatric BMI trajectories from the MetS cohort

After preprocessing, the cohort consisted of 43,426 children between the ages of 2 and 18 who

were seen at Cleveland Clinic between 01/01/2000 and 12/31/2020 with at least one BMI

exceeding 95th percentile, the age-based criteria for obesity. The cohort was predominantly

male (55.7%) and Caucasian (73.9%) (Table 1). Approximately 3.4% (N = 1,474) of the cohort

either met the criteria for MetS or was diagnosed with MetS. Mean follow-up duration for the

cohort was 8.47 years (SD = 3.60), and was significantly different between children with MetS

and children without MetS (7.17 vs. 8.52, P< .001) (S3 Table). However, these differences

Fig 5. Impact of cohort type and number of classes on algorithms. Algorithm accuracies were compared using

Nemenyi tests in R package mlr3benchmark. Algorithms with similar accuracies are shown by the black bars in (A) and

(C). (A) Average rank of the algorithms across all datasets is shown by the number of classes. (B) Average ranks for

combinations of centroids and distance measures used. (C-D) Difference in median ARI between magnitude and

shape cohorts. ΔARI>0 indicates higher median accuracies in shape cohorts than magnitude cohorts. ΔARI is

stratified by number of classes in (C). (D) is annotated with “M” if the combination ranked significantly higher in

magnitude cohorts, “S” if it ranked significantly higher in shape cohorts and “B” if rankings did not differ between

magnitude and shape cohorts.

https://doi.org/10.1371/journal.pdig.0000628.g005
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were limited to the final follow-up age suggesting that children with and without MetS were

followed consistently through young ages (P = .81) (S3 Table). Encounters with weight mea-

surements were observed for 47.7% and 41.5% of children without and with MetS after World

Health Organization declared coronavirus disease 2019 (COVID-19) a public health emer-

gency of international concern. However, the percentage of MetS cases diagnosed in 2019 and

2020 were not significantly different (4.2% vs. 3.6%, P = 0.61).

Partitional clustering with DTW as the distance measure and PAM centroids was applied to

the pediatric BMI trajectories because i) along with LB-Improved, it was one of the three most

accurate algorithms in the overall tests, magnitude tests and shape tests and ii) unlike LB-Im-

proved, it is robust to variance in the length of trajectories. Since the true number of underly-

ing clusters in the cohort were unknown, we utilized internal validation metrics to determine

the optimal number of clusters (see Methods for details). Clustering identified by at least one

of three internal validation metrics as optimal and with average pairwise consensus greater

than 70% was selected for subsequent risk analysis. Dunn’s index identified five as the optimal

number of clusters (k). At k = 5, the average resampling consensus of the three clusters (i.e.,

C1-C3) was>70% (Fig 6A). C4 and C5 had low average consensus suggesting lack of a system-

atic pattern driving cluster formation.

Children in C5 maintained a more stable BMI over the age range, with a slight downward

trajectory at older age ranges (variance = 101.13). In contrast, children in C3 had consistently

higher BMI than children in other clusters and this cluster also had the greatest risk of MetS

(OR = 4.87, 95% CI: 3.93–6.12 compared to C5), consistent with prior literature [17,18]. Chil-

dren whose BMI increased with age, as seen in C1 and C2, were also at elevated risk of MetS

compared to children with stable lower BMIs in C5 (Fig 5B–5D). Compared to C5, C1 and C2

had odds ratios for developing MetS of 2.44 (95% CI: 1.92–3.13) and 2.60 (95% CI: 2.05–3.33),

respectively. The risk of MetS was also elevated in C4 compared to C5 (OR = 1.35, 95% CI:
1.05–1.75), and C4 demonstrated much greater BMI variation (variance = 437.41) (Fig 6B).

Discussion

Unsupervised machine learning algorithms have the potential to derive new insights in disease

development, progression, and response to treatment [11,12]. Established timeseries matching

algorithms have shown promise in fields such as signal processing and interest in their applica-

tion in clinical data is growing. However, the accuracies and robustness of these algorithms in

clinical data has not been systematically studied. Hence, our aim was to leverage simulated

datasets developed from a several common clinical measurements (i.e., BMI, SBP, random

Table 1. Descriptive statistics for pediatric metabolic syndrome cohort.

N 43,426

Gender, Male (%) 24,195 (55.7)

Race (%)

American Indian or Alaska Native

Asians

Black race

Caucasian

Multiracial

Unknown

38 (0.1)

533 (1.2)

6,564 (15.1)

32,081 (73.9)

2,172 (5.0)

2,038 (4.7)

First age (mean (SD)) 4.99 (3.60)

Last age (mean (SD)) 13.46 (3.72)

Follow-up time, years (mean (SD)) 8.47 (3.54)

Metabolic Syndrome (%) 1,474 (3.4)

https://doi.org/10.1371/journal.pdig.0000628.t001
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glucose) to evaluate 30 unsupervised clustering algorithms composed, in part, of eight state-of-

the-art timeseries matching algorithms. DTW is well-established as the gold standard for time-

series classification [19,20]. Our findings support that DTW and its variants (i.e., LB-Improved

and DTW-LB) can more accurately identify underlying longitudinal patterns in clinical mea-

surements than the other methods evaluated here. The top three ranks were occupied by dis-

tance measures with PAM centroids in all simulated cohorts. Although DBA was originally

devised to calculate representative centroids with DTW [21], distance measures with DBA cen-

troids did not outperform the same distance measures with PAM centroids (Fig 4B). Partition-

ing methods ranked higher than fuzzy methods for all distance measures and centroid types.

We used ARI for hard partitioning clustering and soft ARI for fuzzy clustering. While both

ARI methods are identical in extreme cases of perfect classification and random assignment,

soft ARI tends to be lower as overlap between classes increases [22,23]. However, algorithm

rankings changed within fuzzy clustering suggesting that the centroid type impacted algorithm

performance as well. While we did not assess the contribution of centroid types in assignment

and degree of overlap on the soft ARI estimate, their impact should be considered in future

applications of these algorithms.

All algorithms were more accurate in finding clusters with distinct patterns of magnitude

than clusters with distinct patterns of shape. Notably, using PAM and DBA centroids in shape

Fig 6. MetS Clusters. (A) Average cluster consensus for different numbers of clusters. (B) Body-mass-index (BMI)

percentile distributions by age for each cluster. Horizontal boxplots show age distributions of MetS diagnoses in clusters.

(C) Odds ratio for each cluster obtained using logistic regression with C5 as the reference. (D) Results from logistic

regression models for association with MetS.

https://doi.org/10.1371/journal.pdig.0000628.g006
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cohorts, LB-Improved, DTW and DTW-LB were the only algorithms with high accuracies

(Fig 4A). DTW-LB leveraged LB-Improved for an initial estimate of similarity between time-

series which is followed by DTW to calculate similarities between timeseries [24]. LB-Keogh

was the only algorithm with similar accuracies for both centroids in the shape cohorts (Fig

4D). LB-Improved with DBA centroids was moderately to highly accurate in tests of both the

magnitude and shape datasets (Fig 2). DTW-LB and LB-Improved emerged as two of the most

accurate classification algorithms for classes differing in shape. However, their ability to derive

novel insights from the EHR may be limited, since these algorithms cannot accommodate tra-

jectories with varied lengths [24].

Non-random missing data due to varying health care utilization and social determinants

are common challenges for longitudinal data analyses in EHR [5,6]. Our findings suggest that

missingness as low as 10% greatly reduces the accuracies of these methods in clinical data

where differences in shape were the only difference between classes, and future studies using

these methods in an unsupervised framework should prioritize complete data with narrow

magnitude ranges. However, in cases aiming to predict classes, supervised deep learning mod-

els can be used as these have been found to be robust to data missingness as high as 50% [13].

In addition to partitional and fuzzy clustering methods, hierarchical clustering methods are

often used in conjunction with temporal matching algorithms [21]. Studies have reported

DTW with agglomerative hierarchical clustering to be highly accurate [12,25]. Hierarchical

clustering methods are computationally intensive because they require complete pairwise

comparisons of the trajectories. The utility of these algorithms relative to partitional and fuzzy

methods remains to be investigated.

MetS causes substantial decreases in quality of life and increases in healthcare costs, and its

incidence has been increasing with the rising incidence of obesity in children [15]. Here, we

focus on identification of childhood BMI patterns with high risk of developing MetS. Since

BMI measurements are regularly recorded in clinical practice, these patterns may be useful to

inform the need for weight management interventions. We identified three algorithms suitable

for application in clinical data. DTW with PAM centroids repeatedly emerged as one of the

three most accurate algorithms and was applied to pediatric MetS cohort based on its ability to

handle non-uniform trajectory lengths. It optimized at five clusters, with three of these clusters

representing distinct BMI trajectories (average cluster consensus >70%) (Fig 5A). Consistent

with previous work [18], we also found elevated risk of MetS in the cluster with consistently

high BMI (C3) (Fig 6B–6D). While we did not observe differences in ages of the start of trajec-

tories between children with MetS and without MetS (S3 Table), the mean age for the start of

BMI trajectories in C3 was later (Mean = 6.29 years, SD = 3.90) suggesting access to healthcare

may have started later for this cluster than others. Prevalence estimates of MetS in females

tends to be higher than in males [18]. C3 also had highest proportion of females (N = 5,479,

50%) compared to other clusters (S4 Table). While C3 also had a greater percentage of non-

White individuals, this cluster was not overrepresented for non-White MetS cases (P = 0.06)

(S5 Table). C4 and C5 had similarly lower BMI profiles; however, C4 had higher risk of MetS

(OR = 1.35, 95% CI: 1.05–1.75). This may be due to higher BMI variability in C4 as evident in

the cluster’s low average consensus and high mean variance (Fig 6). All clusters, except C5,

had cases of MetS diagnosed by physicians before 8 years of age (Fig 6B). Lowest and later

MetS risk was associated with the C5 cluster with stable lower BMI percentiles over time.

Studying MetS is challenging due to the relative ambiguity of how MetS is diagnosed. Instead

of relying solely on ICD codes, we also incorporated lab measurements to reduce bias due to

underdiagnoses. However, there may still be undiagnosed cases in our cohort since lab mea-

surements may be ordered once MetS or another underlying condition is already suspected

[15]. Pediatric BMI trajectories were included if BMI measurements were recorded annually
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in the EHR, but this introduces a potential for selection bias by enriching the cohort with chil-

dren who had an overall greater health burden than the average pediatric population. Our

investigation into BMI patterns with modified risk of MetS leverages longitudinal data only.

These patterns were enriched for both MetS and certain demographic variables (e.g., sex) sug-

gesting that interactions between BMI history and demographics provide valuable information

important for studying the development of MetS. Future research should take demographic

and prior medical history into account for more comprehensive risk profiling. Prior research

has used this information in development of models of MetS in adults. These models used

genetic and/or clinical information to accurately discriminate 65% to 93% of the individuals

[26,27]. Important variables in these models included markers of dyslipidemia and hyperten-

sion prior to MetS diagnoses. However, it is important to note that these indicators are more

common in adult medical histories compared to pediatric medical histories [15]. Here, our

real-world application is important to show that longitudinal patterns of BMI are important

indicators of MetS and in our affiliated deep learning work, we show that incorporation of

these longitudinal features in prediction models greatly improve model accuracies [13,28].

We randomly selected six trajectories per clinical measurement type as basis for systematic

manipulation of signal and noise in our simulation workflow. This enabled us to compare

algorithm performance in a variety of scenarios where the underlying EHR-specific correlation

structure is preserved and ground truth is known however, it is important to note that these

trajectories do not represent all correlation structures observed in EHR and algorithm perfor-

mances may vary under other circumstances such as different clinical lab measurements.

However, it is important to note that the top algorithm performance ranks remained consis-

tent across clinical measurement types in our analyses (i.e., BMI, random glucose & SBP) (Figs

2, S8, S15 and S22). Many of the algorithms (e.g., DTW-LB) also required the same time inter-

vals for all trajectories and we used one of the simpler imputation methods, i.e., mean, to

accommodate this requirement in our simulation analyses. More sophisticated imputation

methods may improve the power of these algorithms in real world trajectories. While we

accounted for variation due to random initialization of centroids by fitting these algorithms

with five random seeds, we did not investigate the impact of initial conditions of the accuracies

of the algorithms. The impact of the interaction between initial conditions and class overlap

should be the evaluated in future studies. We accounted for initial conditions by taking con-

sensus of the partitions in the pediatric MetS cohort. Our simulations included three common

and representative clinical measurements (BMI, glucose, SBP), but these methods may per-

form differently on other clinical measurements.

We systematically simulated datasets across multiple parameters to characterize how well

30 unsupervised clustering algorithm identify clusters. We then applied one of the most robust

algorithms identified to a real-world dataset to generate new insights into an increasingly

important pediatric disorder. As true class membership is not known in real-world data, utiliz-

ing methods that demonstrate robust classification accuracies in similar simulated datasets

provides additional confidence for finding cryptic substructure in clinical cohorts.

Methods

Data

Data from patients seen at Cleveland Clinic between 2000 and 2020 were extracted from the

EHR and used to generate the simulated datasets and to extract the pediatric MetS cohort

(Fig 1). We compiled timeseries from BMI, SBP and random glucose testing and randomly

selected timeseries from six patients per measurement type to generate simulated datasets

(Fig 1). These three different types of measurements were used as the basis for simulations to
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ensure representation of the varied longitudinal patterns observed in real-world clinical set-

tings. Only BMI timeseries were compiled for the pediatric MetS cohort. Details for simulated

datasets and MetS cohort are presented below.

Simulated datasets

We randomly selected six trajectories for each type of clinical lab type as basis for shape

cohorts and magnitude simulations (Fig 7). These clinical lab types were selected based on

their routine use for screening cardiometabolic conditions such as hypertension and diabetes

[15]. BMI was calculated from routine weight and height measurements captured during

encounters. Systolic blood pressure measurements were also captured during encounters.

LOINC code 2339–0 was used to retrieve random glucose level measured in whole blood.

Missing measurements were imputed using the mean values immediately before and after the

missing value resulting in each trajectory with yearly measurements spanning 16 years. This

ensured that the impact of missingness was explicitly manipulated in the simulation, as

described below. As previously described in Javidi et al [13], differences between the classes

were based on either magnitude, while holding trajectory shape constant (magnitude cohorts)

or shape, while holding magnitude constant (shape cohorts). Changes in magnitude were

introduced by randomly sampling from normal distributions of magnitudes. Changes in shape

were introduced by randomly sampling from normal distributions of what was determined to

be the most important shape parameter. The most important shape parameter was determined

by fitting a polynomial regression to each trajectory. Regression parameters were then substi-

tuted with permutated values to determine the standard error between the trajectory and the

polynomial regression. The most important parameter for influencing shape was determined

to be the one with the greatest standard errors upon permutation. Code to identify the most

important shape parameter has been made available: https://github.com/rotroff-lab/

unsupervised_EHR_clustering.

We also varied the number of true classes in the dataset (n = 3), effect sizes based on normal

distributions with prespecified means (n = 4), and dispersions based on standard deviations

(n = 4), which also led to differences in the proportion of overlap between the classes (Fig 7).

Overlap was higher for classes with greater dispersion and smaller effect sizes. The overlap was

calculated as the number of trajectories belonging to multiple classes divided by total number

of trajectories in the dataset and was assessed as a separate parameter. Effect sizes ranged from

0.60 to 1.65, and the dispersions were 0.75, 1.25, 1.75, and 2.25. The effect of missingness on

ARI was evaluated by simulating data with 0%, 10%, 25% and 50% missingness. The combina-

tion of all varied parameters resulted in 384 datasets per patient, or 2,304 datasets per measure-

ment type (i.e., BMI, SBP and glucose). Total number of simulated datasets was 6,912.

Pediatric metabolic syndrome (MetS) dataset

The real-world cohort consisted of pediatric patients (ages 2–18 years old) seen at Cleveland

Clinic between 01/01/2000 and 12/31/2020 with at least one BMI>95th percentile, represent-

ing obesity. BMI trajectories were utilized for the real-world analyses as obesity is a major

known driver of MetS and BMI, a marker of obesity, is routinely captured in EHR for children.

Children who had at least one weight and/or height measurement per year of age were

included and BMI percentiles were calculated and preprocessed using the R package growth-
cleanr [29]. Curated BMI measurements were then compiled from ages 2 up to 18 for patients

without MetS and from ages 2 up to the age at diagnosis for patients with MetS. Splines were

fit to smooth BMI trajectories and obtain BMI percentile annotations for each half year of age.

Prior to smoothing, the median number of distinct encounters with weight measurements in
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the cohort were 30 (Interquartile range = 18–47). Based on standard guidelines, children (age

>8 years) with at least three of the following risk factors have MetS: i) obesity, ii) elevated

blood pressure, iii) low HDL-C, iv) high triglycerides levels and v) poor glycemic control

[15,30]. In this study, cases had MetS if i) the physician diagnosed the patient as having either

ICD-9 code 277.7 or ICD-10 code E88.81 regardless of age or ii) three of five conditions were

met in a health record age eight onwards. The measurement variables and criteria for these

conditions are listed in S1 Table. This study was approved by Cleveland Clinic Institutional

Review Board (IRB # 20–135).

Unsupervised machine learning

Centroid-based methods include both partitional and fuzzy clustering approaches. Partitional

clustering assigns a trajectory to a specific cluster, while fuzzy clustering produces probabilities

of the trajectory belonging to all clusters [14]. A variety of methods are used to compute cen-

troids (e.g., PAM, DBA) and distances of timeseries from the centroids (e.g., DTW, DTW-LB).

These methods are defined in S2 Table. In total, 29 clustering methods were applied to each

simulated dataset by combining two partitioning types, eight distance measures and six cen-

troid computation types. If a centroid computation method was developed for a specific dis-

tance measure, it was only applied in conjunction with that distance measure. The R package

dtwclust was used to implement these methods [24]. Additional details are provided in Supple-

mentary Methods (S1 Text).

Fig 7. Simulation Workflow. Six trajectories were randomly selected for each type of clinical measurements i.e., body-

mass-index (BMI), systolic blood pressure (SBP) and random glucose tests. The center panel shows the generation of

simulated datasets for one real trajectory. Simulated trajectories were derived from the original trajectory by modifying

its shape and magnitude separately. Effect size modulated the difference between the mean of the original and

simulated class distributions. Effect size, together with dispersion around mean, modulated the overlap between these

classes. Number of classes and data missingness were also simulated. This resulted in 384 simulated datasets per

randomly selected trajectory.

https://doi.org/10.1371/journal.pdig.0000628.g007
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Identification of most robust algorithm based on ranking of clustering

approaches

Accuracies of the algorithms were evaluated by calculating Adjusted Rand Index (ARI) for par-

titional clustering and soft ARI for fuzzy clustering. Both ARI and soft ARI range from -1 to 1

with values closer to zero indicating that the algorithm is on par with random assignment. ARI

and soft ARI tend to be identical in cases of perfect classification and random assignment [22].

The distributions of ARI across simulated datasets were compared for each pair of algorithms

using Nemenyi tests and performances were ranked. Nemenyi test [31] assumes a null hypoth-

esis of no difference between the accuracies of the compared approaches. Approaches were

compared across all simulated datasets as well as separately in the magnitude and shape simu-

lation datasets. Benjamini Hochberg method was used to adjust P values for multiple compari-

sons [32]. FDR-adjusted P values< .05 indicated significant differences. Tests were

performed, and an average ranking based on critical difference was computed, using the R

package mlr3benchmark [33]. The algorithm with consistently greater ARI was then applied to

the real-world cohort of pediatric BMI trajectories to identify patterns associated with

increased risk of MetS.

Real-world application in pediatric MetS dataset

The most robust algorithm identified in the simulated datasets was applied to the pediatric

MetS dataset. Unlike the simulated datasets, the classes in the real-world cohort were not

known and since ARI requires knowledge of true classes, it was replaced with internal valida-

tion metrics for real-world application. The dataset was clustered with five random seeds. The

optimal number of clusters (k) was identified using the following internal validation metrics:

Dunn’s index, Ibai Gurrutxaga (COP) index and Silhouette Index. Internal validation metrics

assess clustering partitions based on clustered data only with the objective of finalizing com-

pact clusters while maximizing differences between them. Consensus-based measures (i.e.,

average cluster consensus) were calculated to assess the stability of the clusters [34]. At each k,

the average number of times two individuals clustered together across five random seeds was

also calculated and K-modes was applied for final clustering assignments. We selected the clus-

tering with greatest number of clusters supported by at least one internal validation metric,

and with average pairwise consensus greater than 70%. Enrichment of MetS in each cluster

was investigated using logistic regression.
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