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Abstract

Large language models (LLMs) have made a significant impact on the fields of general artifi-

cial intelligence. General purpose LLMs exhibit strong logic and reasoning skills and general

world knowledge but can sometimes generate misleading results when prompted on spe-

cific subject areas. LLMs trained with domain-specific knowledge can reduce the generation

of misleading information (i.e. hallucinations) and enhance the precision of LLMs in special-

ized contexts. Training new LLMs on specific corpora however can be resource intensive.

Here we explored the use of a retrieval-augmented generation (RAG) model which we

tested on literature specific to a biomedical research area. OpenAI’s GPT-3.5, GPT-4,

Microsoft’s Prometheus, and a custom RAG model were used to answer 19 questions per-

taining to diffuse large B-cell lymphoma (DLBCL) disease biology and treatment. Eight inde-

pendent reviewers assessed LLM responses based on accuracy, relevance, and

readability, rating responses on a 3-point scale for each category. These scores were then

used to compare LLM performance. The performance of the LLMs varied across scoring

categories. On accuracy and relevance, the RAG model outperformed other models with

higher scores on average and the most top scores across questions. GPT-4 was more com-

parable to the RAG model on relevance versus accuracy. By the same measures, GPT-4

and GPT-3.5 had the highest scores for readability of answers when compared to the other

LLMs. GPT-4 and 3.5 also had more answers with hallucinations than the other LLMs, due

to non-existent references and inaccurate responses to clinical questions. Our findings sug-

gest that an oncology research-focused RAG model may outperform general-purpose LLMs

in accuracy and relevance when answering subject-related questions. This framework can

be tailored to Q&A in other subject areas. Further research will help understand the impact

of LLM architectures, RAG methodologies, and prompting techniques in answering ques-

tions across different subject areas.
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Author summary

Large language models (LLMs) have recently made a significant impact on the field of

general artificial intelligence and are beginning to be incorporated for a variety of tasks

across industries. Their utility in generating precise information pertaining to specific

subject areas is actively being explored. Here we presented application of a retrieval-aug-

mented generation (RAG) LLM, which utilizes literature specific to cancer research, and

compared its performance to three other general purpose LLMs (e.g. GPT-4) in answering

questions specific to cancer research. We found that the RAG model produced generally

more accurate and relevant answers to questions about treatment and biology of a specific

blood cancer, while general purpose LLMs GPT-4 and GPT-3.5 had generally more read-

able answers but with more instances of incorrect information (i.e. hallucinations). This

work showcases a practical application of LLMs in cancer research and attempts to evalu-

ate how augmenting LLMs with credible source information can help improve their utility

in a research setting.

Introduction

The development of large language models (LLMs), such as bidirectional encoder representa-

tions from transformer (BERT) and generative pre-trained transformer (GPT) models, has

revolutionized the field of natural language processing [1–4]. Applications of these LLMs have

ranged from sentiment analysis and machine translation to code generation and question

answering across different areas of focus (domains) [5–9]–all demonstrating remarkable per-

formance. However, despite their impressive execution and widespread use, LLMs are

designed for general purpose use and often lack domain-specific knowledge and vocabulary.

They can also perpetuate biases based on skewed content in the data they were trained on, and

need to be further refined through reinforcement learning and alignment approaches to

understand user intentions while making them more truthful and less toxic [10,11]. Further-

more, concerns have been raised about the potential for LLMs to generate misleading informa-

tion, or hallucinations, which can have severe implications in areas such as scientific research

and healthcare, among others. These issues can severely hamper the utility of these models, as

was seen with Meta’s Galactica [12,13]. In biomedical and clinical research, accuracy and

reproducibility of research methods and results and appropriate sourcing of information are

key tenants. The generation of false or misleading information in response to scientific or clin-

ical questions presents a roadblock in the broader utility and adoption of these models in a

research or clinical setting and would need to be addressed for further application of LLMs in

these areas.

Popular LLMs with billions of parameters such as GPT-3 [14], PaLM [15], OPT [16], and

LLaMA [17] are typically trained on vast amounts of information collected from the Internet

(e.g. the Common Crawl dataset [18]) and capture a diverse range of language patterns and

knowledge. In the simplest terms, LLMs are deep neural networks that use prior knowledge

from training data to predict the next set of words constituting a response. They are built on

principles of the transformer architecture [4] first introduced by Google in 2017. LLMs break

down words or word fragments into units referred to as tokens. They use models called token

embeddings as a way to convert tokens to a numerical vector representation that captures

semantic meanings in a high-dimensional space. Additionally, positional embeddings are cre-

ated to contain positional information about each input token. These token and positional

embeddings are combined and fed into a portion of the architecture called an encoder, which
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understands the context of the embeddings based on data it has been trained on. The decoder

portion of the architecture then generates an output based on what has been processed in the

encoder. Within the encoder and decoder, the attention mechanism allows the model to

understand how tokens are related to one another. Depending on the implementation, some

models use the encoder-decoder architecture (e.g. T5 [19]) while most others use only the

decoder (e.g. the GPT family models). Furthermore, the encoder architecture can be used to

generate text embeddings (hereafter simply referred to as embeddings) to numerically repre-

sent the concepts of full sentences, paragraphs, or documents for applications such as semantic

search, text clustering, topic modeling, and classification [20].

As the size and complexity of language usage in a corpus increases [21–23], LLMs can learn

to capture the diversity of language usage across different domains and genres and generate

natural language responses when prompted on scientific literature, social media, or news arti-

cles, with equal ease [24]. With increasing size, a wide-ranging corpus can inadvertently incor-

porate a significant amount of noise or irrelevant data, resulting in a reduced signal-to-noise

ratio [25]. This may adversely affect the generated text’s quality, leading to decreased coher-

ence, meaning, or accuracy. As LLMs use transformer architectures to understand context and

generate responses, if the broad corpus has inherent biases which affect how information is

contextualized, the responses will subsequently reflect these biases as well. A corpus that pre-

dominantly features one type of language or cultural context may display bias towards that

specific domain or culture [26].

One approach to addressing these limitations is to retrain or finetune an LLM with a focused

corpus tailored to a specific domain [25,27], thereby reducing the risk of generating irrelevant or

misleading information and enhancing the reliability and precision of the LLM’s outputs in spe-

cialized contexts. Numerous publications have highlighted the efficacy of domain specific LLMs

in their respective fields. For example, BioBERT [28] targets biomedical text mining tasks, Sci-

BERT [29] and PubMedBERT [30] address scientific literature, and LEGAL-BERT [23] specializes

in legal text processing. However, retraining LLMs to encompass new documents might be

impractical due to the cumulative computational and data scientist resources required per update.

The LLM architecture might also need to be updated to incorporate more parameters to memo-

rize more facts [31]. As LLMs have demonstrated extraordinary abilities to learn in-context infor-

mation purely from its prompt [14], retrieval-augmented generation (a.k.a. RAG) approaches

have proven promising [27,32]. RAG models utilize a domain-specific corpus created along with

the lexical indices or embeddings. When a user enters a prompt or query, these models retrieve

relevant context from the corpus using lexical search (e.g. BM25 [33]) or a pretrained/fine-tuned

semantic retriever (e.g. Spider [34], OpenAI embeddings [20]), and then seed a pre-trained LLM

with such context to then generate a response to the query. The LLM here is only being used to

understand context and generate a response, therefore avoiding the prohibitive time and cost of

retraining the LLM. The use of domain-specific corpora allows RAG models to source from both

relevant and recent information. In the context of scientific research, the ability to use recent and

specific content (e.g. articles from peer reviewed journals) provides a source of “ground truth”

from which the model can extract information, while avoiding the computational and financial

costs associated with continuous retraining of models [35].

In this study, several LLMs were evaluated to investigate if a RAG approach on a focused

corpus could improve the accuracy of an LLM’s applications in biomedical Q&A. Three scor-

ing metrics were utilized to compare outputs between models using a set of evaluation-based

questions focused on disease characterization, genetic subtypes, treatment options, and clinical

outcomes in diffuse large B-cell lymphoma (DLBCL). This exercise demonstrates a practical

use case of applying LLMs in facilitating scientific research, and highlights the pros and cons

of LLMs based on the information they are drawing from.
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Results

The performance of the LLMs varied across the questions tested and metrics assessed. In terms

of accuracy, the RAG model built using GPT-3 on DLBCL publications outperformed the

other LLMs tested. Across the 19 questions tested, the RAG model had the highest average

score (2.46), followed by GPT-4 (2.26), GPT-3.5 (1.82), and Prometheus (1.74) (Fig 1A).

When looking at the number of questions with high accuracy scores for each model (Table 1),

the RAG model had the highest proportion of questions scoring above 2.5 on average (12/19).

GPT-4 had the next highest proportion (7/19), followed by Prometheus (4/19) and GPT-3.5

(2/19). When accounting for each individual reviewer score on accuracy across all questions

asked (57 total scores from three reviewers across 19 questions), the RAG model again had the

highest proportion of 3-point scores (36/57) compared to the other models, which did not

yield more than 22 3-point scores (Fig 2A). Conversely, Prometheus had the lowest average

accuracy across questions and the highest number of 1-point scores across all questions and

reviewers (29/57). Prometheus and GPT-3.5 had the lowest number of questions scoring

above 2.5 (4 and 2, respectively).

Interestingly, Microsoft’s Prometheus was the only model to not score a value of 1 on accu-

racy for question #6 (“What is the overall response rate of DLBCL patients treated with glofita-

mab?”). Numerical overall and complete response rates (ORR and CRR, respectively) reported

by GPT-3.5 (ORR = 65.1%, CRR = 35.1%) and GPT-4 (ORR = 62.7%, CRR = 39.2%) were not

Fig 1. Average (A) accuracy, (B) relevance, and (C) readability scores across 19 questions/queries answered, per LLM. Each bar represents the average score

across 19 questions for the three metrics (error bars represent standard error of the mean).

https://doi.org/10.1371/journal.pdig.0000568.g001

Table 1. Number of questions scoring at least 2.5 or more per metric (Accuracy, Relevance, Readability).

Number of questions averaging score above 2.5

LLM Count (Accuracy) Count (Relevance) Count (Readability)

GPT-4 7 10 17

GPT-3.5 2 7 16

Prometheus 4 2 6

RAG 12 14 11

https://doi.org/10.1371/journal.pdig.0000568.t001
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consistent with their references cited and had either fabricated or provided incorrect refer-

ences. Microsoft’s Prometheus model scored a value of 2 because there was a mixture of accu-

rate and inaccurate answers to the question, i.e., this model accurately captured the ORR value

of glofitamab treatment (52%) in the Dickinson et al, NEJM reference [36], but also incorrectly

used the median duration of objective response rather than median duration of CR. The RAG

model result was not accurate in answering this question because the official glofitamab trial

Fig 2. Histogram of (A) accuracy, (B) relevance, and (C) readability scores for each LLM. Bars represent the count of 3-point, 2-point, and 1-point scores

from each of the three reviewers for each of the 19 questions (57 scores in total per LLM).

https://doi.org/10.1371/journal.pdig.0000568.g002
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efficacy paper [36] was not available on PubMed Central (https://www.ncbi.nlm.nih.gov/pmc/)

and therefore not included in the corpus.

In terms of relevance, the RAG model performed slightly better than GPT-4 and GPT-3.5.

The RAG model had the highest average relevance score (Fig 1B) across the 19 questions

(2.61) which was slightly higher than the average relevance scores from GPT-4 (2.51) and

GPT-3.5 (2.30), with Prometheus performing worst on average (1.70). The RAG model again

had the most questions scoring above 2.5 (Table 1) on average for relevance (14/19) compared

to GPT-4 (10/19), GPT-3.5 (7/19) and Prometheus (2/19). When looking at all individual

reviewer scores for relevance across all questions (Fig 2B), the RAG model had the highest

proportion of 3-point scores (38/57), with GPT-4 having slightly fewer (31/57). Both the RAG

model and GPT-4 had the lowest proportion of 1-point scores (3/57 and 2/57, respectively),

suggesting that the attempted answers from these two LLMs was generally inferring the proper

context. Prometheus conversely had the highest proportion of 1-point scores (24/57) suggest-

ing that the LLM may have in several instances misconstrued what the question was asking in

generating its answers.

The irrelevant answers (i.e. low scoring questions) across all LLMs were primarily due to ref-

erences to other diseases or treatment. For example, in question #14 (“Have checkpoint inhibi-

tor treatments in monotherapy or combination therapy settings shown efficacy in DLBCL

patients? Provide references.”), the GPT-4 model cited three references, one of which was in

Hodgkin’s lymphoma (DLBCL is a non-Hodgkin’s lymphoma) and another that discussed

CAR-T, which is not a checkpoint inhibiting drug agent, though the model associated this treat-

ment modality with immunotherapies and extended relevance to CAR-T therapies. GPT-3.5

also cited a reference evaluating a checkpoint inhibitor treatment in Hodgkin’s lymphoma.

When assessing readability, GPT-4 and GPT-3.5 performed better than the other two

LLMs. On average, readability scores (Fig 2C) were highest for GPT-4 (2.88) and GPT-3.5

(2.77) when compared to Prometheus (1.96) or the RAG model (2.46). GPT-4 and GPT-3.5

also had the highest proportion of questions with high readability scores (17/19 and 16/19),

respectively (Table 1) compared to the RAG model (11/19) and Prometheus (6/19). Across all

questions and reviewers, the proportion of 3-point readability scores were also highest for

GPT-4 (51/57) and GPT-3.5 (44/57), with the other two models not having more than forty

3-point readability scores (Fig 2C). Readability was particularly low scoring in the clinical cate-

gory of questions for the RAG model (S1C Fig), compared to accuracy (S1A Fig) and rele-

vance (S1B Fig) scores in the same question category. Microsoft’s Prometheus model once

again scored last in this category (18/57 3-point scores), primarily due to concise, yet vague

answers, often with little detail. For example, for question #7 (“What is a treatment to use in

DLBCL patients who have progressed on CAR-T?”), the Prometheus model simply reported

references without summarization, including one study where multiple drugs were approved,

and referenced only those of approved agents, ignoring studies evaluating investigational drug

agents. The readability of the answers produced by these LLMs, GPT-4 and GPT-3.5 in partic-

ular, speaks to the “generative” abilities of these models. GPT-4 was (at the time of writing) the

most advanced of the four models in terms of number of parameters and trained data, and the

readability of GPT-4 answers in this exercise is consistent with this idea.

Across the 19 questions, both the GPT-3.5 and GPT-4 LLMs generated a higher number of

answers with at least one hallucination (Table 2) (13/19 and 8/19, respectively) compared to

the RAG model and Prometheus (3/19 and 4/19, respectively). These hallucinations were pri-

marily associated with fabrication of both references and clinical results. Although LLMs are

known to be behind in mathematical capabilities [37], the inaccuracy of numerical results

appeared to be due to hallucinations or context understanding rather than limitations in math-

ematical reasoning.
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These results suggest that the performance of LLMs can vary widely depending on the spe-

cific task and domain. Overall, the RAG model enhanced with domain specific data outper-

formed other LLMs with respect to accuracy and relevance of answers, and produced answers

with the fewest observed hallucinations. The newest of the four general purpose LLMs (GPT-

4) outperformed the others in terms of readability of answers. It should be noted that this eval-

uation was limited to a specific set of questions and metrics using a one-shot (i.e. one prompt

and answer, no follow-up prompting), and further research is needed to fully understand the

strengths and limitations of different LLMs.

Discussion

The benefits and drawbacks of using LLMs trained on broad corpora versus a RAG approach

ultimately are dependent on the specific use case and desired outcomes. In biomedical and

healthcare research, it is important to have accurate, relevant, and unbiased information sup-

ported by published literature to address clinical and scientific questions. In this study, quanti-

fying the accuracy and utility of LLMs was conducted for answering qualitative and

quantitative biomedical questions related to the treatment and prognosis of patients with

DLBCL. Results here demonstrated that the RAG model performed better on biomedical-spe-

cific tasks than the other LLMs evaluated, specifically with respect to accuracy and relevance of

results. This suggests that RAG models can provide more accurate and reliable information for

specific fields, reducing the likelihood of generating irrelevant or misleading outputs, while

maintaining the flexibility and adaptability of a general purpose LLM.

One major advantage of the RAG model is the easy integration of new domain knowledge

that the base LLM may not have been trained on. When a new document is added to the corpus,

the model only needs to calculate the embeddings to facilitate retrieval during future queries.

On the other hand, fine-tuning or retraining an LLM on a new corpus takes both time and

resources (computational and developer). Since the RAG model needs to prompt a pre-trained

LLM into performing specific tasks such as summarizing across relevant documents and

extracting information without using prior knowledge, the model typically uses a large amount

of tokens as input and multiple iterations of base LLM inference (i.e. text-completion API) calls,

which can increase the compute cost in its application. The dependence on a certain LLM (e.g.

OpenAI GPT-3) also implies that the desired prompt behavior needs to be closely monitored

when the LLM backend is updated with new training data, or when the user switches to a differ-

ent base LLM (e.g. GPT-4, Dolly 2 [38], Open Assistant [21], or RedPajama [39]).

The performance of the RAG is bound by the limitations of the base LLM’s vocabulary

(tokenizer) and internal representation of concepts (embeddings). For example, question #13

asked about minimal residual disease (MRD) in DLBCL, but the document retriever returned

articles about MRD in multiple myeloma and chronic lymphocytic leukemia—two distinct

hematological malignancies from DLBCL. The RAG model here relied on GPT-3 as the sum-

marization engine which failed to distinguish between the different disease types, leading to an

incorrect answer. These issues may be ameliorated by utilizing more sophisticated document

Table 2. Count of questions with at least one hallucination in answer across LLMs.

LLM No hallucinations in answer Answer contained at least 1 hallucination

GPT-4 11 8

GPT-3.5 3 13

Prometheus 15 4

RAG 16 3

https://doi.org/10.1371/journal.pdig.0000568.t002
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retrieval methods. For biomedical literature, domain specific models such as BioBERT and

PubMedBERT can be used for tokenization and embedding calculation; additional metadata

filters can also be used to improve relevance of retrieved documents. As an example, when the

retrieval method was modified in the RAG model to directly search on PubMed for supporting

articles by significance, the model provided informative and relevant answers detailing the

measurement of disease clones with V(D)J sequences, as well as the association with clinical

outcomes.

Overall, general LLMs provide highly readable and coherent text when answering questions

on various subjects. The performance of the RAG model demonstrated the utility of pre-

trained LLMs as a backend in performing various reasoning tasks through purposely crafted

prompts. Prompt engineering has been an active area of research that continues to expand the

capability of pre-trained LLMs through methods such as: zero-shot [40], few-shot [14], chain

of thought [41], tree of thoughts, self-ask [42], and ReAct [43] reasoning. These reasoning

properties allow LLMs to be used as programmable agents to orchestrate and perform tasks

across different domains (e.g. ToolFormer [44], Visual ChatGPT [45], Langchain [22], GPT

plugins [46]). Prompting approaches that decompose complex questions into smaller sub-

questions might help the RAG retrieve more relevant documents while maintaining specificity.

However, for simplicity of evaluation, this study only assessed performance of zero-shot

prompting (where only the answer to the initial prompt was evaluated).

Though findings from this study were informative, it had several limitations that need to be

considered. The assessment included only 19 questions which accounted for various clinical,

therapeutic, and biological content, attempting to address pertinent context in biomedical

research. The question set while relevant was certainly not exhaustive. The focus was on a sin-

gle disease (DLBCL), which may or may not be generalizable to other diseases or domains. In

addition, the scoring metrics selected included accuracy, readability, and relevance, which

might not have captured other important aspects of the text such as strength, completeness,

and consistency. For simplicity, the scoring was performed across the entire answer as opposed

to by sentence or phrase within an answer, which might have provided more granularity on

the LLMs performance. While scoring questions in this manner can be subjective, we adjusted

for this by using a set of multiple reviewers with varying degrees of research expertise to pro-

vide 3 independent reviews of each question, accounting for variance among reviewers. Ques-

tions were also specific enough such that available literature could be used to assess accuracy

of answers. A point of emphasis for the evaluation of responses was to look for factually incor-

rect answers (hallucinations), which were more likely to garner the lowest scores, as opposed

to answers which were factually correct but not exhaustive. Factual inaccuracy ranged from

incorrect statements to links or mentions of references which did not exist. The RAG model

included an arbitrary number of full-text articles (1,868), which might not have represented

the most relevant or comprehensive set of articles for the disease. It is possible that an optima

of accuracy, relevance, and readability can be achieved with a RAG model by increasing the

size and breadth of the corpus, and future work will be needed to test this hypothesis. This is

somewhat mitigated by the fact that the RAG model is only using papers from the corpus that

have the highest similarity score to the prompt, so as long as papers relevant enough to answer

the question are in the corpus, increasing the corpus size may only provide marginal improve-

ment. On the other hand, in a rapidly evolving field such as biomedical research, a larger cor-

pus with more recent research might present new theories or findings that contradict previous

beliefs. A RAG model with more sophisticated reasoning and information retrieval mecha-

nisms might be required to review relevant articles in the context of factors such as recency,

impact, quality of research, and source credibility.
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Another consideration when building the biomedical corpus for the RAG model and other

LLMs is proper representation of all demographic groups–particularly those from low- and

middle-income groups. A question such as “Is there a difference in biomarker testing for

DLBCL among Caucasian, Asian, and African American populations?” relies on the training

corpus used by these LLMs and the RAG model to be comprehensive enough to have informa-

tion available to answer this question. However, it is entirely possible that comprehensive stud-

ies on biomarker testing performed in DLBCL (or any other disease) do not adequately

account for variations in gender, ethnicity, or socioeconomic status of DLBCL patients overall.

As a result, any answer given by any LLM would either be deficient or incomplete in address-

ing this question. As LLMs become more pervasive and widely used, these AI models need to

address such biases in their training data for equitable application and effectiveness of the

models in global health contexts.

As the field of AI evolves at a rapid pace, the ability to apply these approaches to newer gen-

erations of these models needs to be constantly explored. Rapid advancement and develop-

ment of foundation models across text, image, video, and other data modalities necessitates

the adaptation of AI in a fair, accurate, and reliable fashion to maximize impact on healthcare

and drug development. Integration of generative AI into everyday clinical practices still faces

hurdles such as safety and effectiveness, liability, and data privacy [47,48], underscoring the

need for ongoing research to address these challenges and fully harness AI’s transformative

power in medicine. Despite the considerations mentioned, this study provides valuable

insights into the performance of LLMs on different types of corpora and highlights the impor-

tance of domain-specific knowledge in enhancing the accuracy and relevance of LLMs in their

application. This work also provides a practical example of how LLMs can be used to facilitate

and streamline common tasks associated with biomedical research.

Methods

Evaluation framework

The performance of generically trained LLMs was tested versus a retrieval-augmented genera-

tion (RAG) model in question answering (Q&A) tasks related to disease biology and drug

development. A set of 19 questions/queries (Table 1) focused on mechanisms and treatments

associated with diffuse large B-cell lymphoma (DLBCL) were provided to evaluate LLM per-

formance. The questions covered a broad range of topics related to DLBCL disease biology

including clinical and molecular subtypes, genetic subsets and relevant biomarkers, clinical

management, and standards of care and other available therapies. Questions were designed to

look for both qualitative and quantitative answers (e.g. overall response rate and prevalence of

genomic alterations). The questions were not chosen based on any pre-defined paradigms, but

rather to allow for generation of general and specific information on topics pertaining to

DLBCL biology and drug development. Each question was provided to four different LLMs:

Open AI’s general ChatGPT-3.5 [49], OpenAI’s general GPT-4 [49], Microsoft’s Prometheus

model (based on GPT-4 [50]), and a RAG model (based on GPT-3) using a custom set of full-

text publications associated with DLBCL. The queries intentionally varied in detail to assess

the ability of each LLM to infer the expected result. For example, question #15 provided a con-

cise query for DLBCL diagnosis and prognosis, while question #3 asked specific treatments for

a target in the disease with accompanying references to support the answer.

The two general GPT-based LLMs from OpenAI were only trained on content up to Sep-

tember 2021 (OpenAI GPT-4 Technical Report [51]), as opposed to Microsoft’s Prometheus

and the RAG models. Release versions of GPT-4 and GPT-3.5 used to answer the questions
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were from 3/23/23 to 4/28/23 (updates were released on a weekly or bi-weekly basis and were

documented).

RAG model and dataset

Scientific papers were downloaded from PubMed Central (PMC [52]) using the Entrez E-utili-

ties [53]). Each of the following search terms was used to retrieve up to 500 articles (per term):

‘diffuse large b-cell lymphoma’, ‘follicular lymphoma’, ‘epcoritamab’, ‘glofitamab’, ‘minimal

residual disease’, ‘ctDNA’. By default, Entrez returns articles sorted by PMC identifier. The

search terms used were meant to generate a corpus specific to DLBCL, related biomarkers,

standards of care, and therapeutic options, not to specifically answer the questions used in this

evaluation. This created a unique dataset of 1,868 full-text articles, which constituted the cor-

pus used by the RAG model. The documents were first pre-processed to exclude potentially

unstructured or noisy text (e.g. figures, tables, references, author disclosure) and split into seg-

ments of 4,000 tokens. Embeddings were then calculated using the OpenAI model text-embed-

ding-ada-002 and stored in a local database. For each of the 19 questions in Table 3, the query

was transformed into an embedding vector and compared to the database of embeddings

Table 3. Questions used for LLM evaluation classified into group and scope categories.

Question

#

Question Group Scope

1 What is epcoritamab? Please provide sources for your answer. Drug information General

2 What are the subtypes of DLBCL? Please provide sources for your answer. Disease biology General

3 What are the antibody therapies targeting CD20 for treatment of DLBCL? Please provide sources for your answer. Drug information General

4 What is the standard of care for treatment of DLBCL? Clinical

information

Specific

5 What are the approved drugs for treatment of DLBCL? Clinical

information

Specific

6 What is the overall response rate of DLBCL patients treated with glofitamab? Clinical

information

Specific

7 What is a treatment to use in DLBCL patients who have progressed on CAR-T? Drug information General

8 What are common treatments used in patients who have relapsed or were refractory to standard of care treatments in

DLBCL?

Drug information General

9 Do any DLBCL patient subtypes respond more favorably to chemotherapy or CAR-T treatments? Clinical

information

Specific

10 What are the most common adverse events observed in DLBCL patients treated with R-CHOP? Clinical

information

Specific

11 What biomarkers in DLBCL have been reported to correlate with either response or progression following treatment with

R-CHOP?

Clinical

information

Specific

12 What treatment combinations have been shown to be effective in DLBCL patients who have progressed on CAR-T

treatment? Please provide sources for your answer.

Clinical

information

Specific

13 How can minimal residual disease (MRD) be used to understand clinical outcomes in DLBCL patients? Please provide

sources for your answer.

Disease biology General

14 Have checkpoint inhibitor treatments in monotherapy or combination therapy settings shown efficacy in DLBCL patients?

Provide references.

Drug information Specific

15 DLBCL diagnosis and prognosis. Clinical

information

General

16 Landscape of DLBCL treatment as SOC. Please provide sources for your answer. Clinical

information

Specific

17 Emerging novel treatment options for DLBCL patients. Drug information General

18 what is the importance of TP53 in DLBCL? Disease biology General

19 What is the prevalence of double hit mutations in lymphoma? Disease biology Specific

https://doi.org/10.1371/journal.pdig.0000568.t003
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(generated from the 1868 article corpus) using cosine similarity. The top k document segments

by similarity were retrieved and formed the knowledge context for the user query. The synthe-

sis of the answer to the query was achieved in two stages: in stage one, text-davinci-003 was

used to answer the query using each of the k context segments with prompt instructions to

minimize inclusion of non-factual information from the LLM. This generated k answers

which were combined into a final response in the second stage using another call to text-

davinci-003 with a summarization prompt (Tables 4–5). Various k values were explored; in

this paper we presented results from k = 5 to balance between corpus coverage and token

length limitation.

Evaluation metrics

Answers were scored for each question on a three-point scale (1–3, with 3 being highest) based

on three metrics: accuracy, relevance, and readability (Table 6) by eight independent review-

ers. Each reviewer was assigned to a subset of questions such that the metrics for the 19 ques-

tions were scored 3 times each, providing an average and variance for each metric and

question (e.g. the RAG model’s answer to question #3 could have an average accuracy score of

2.67 and variance of 0.33, based on reviewer scores of 3, 3, and 2). Answers to all questions

could be found via search. Accuracy and relevance assessments focused on factual correctness

of answers, correctness of references or links to references, or general pieces of knowledge

included or not included in an answer. The 3-point scale used for each evaluation category

also allowed for some granularity in scoring answers. For example, an answer might be given a

score of “2” if the result was factually correct but links to supporting references were broken or

incorrect. An answer which did not directly address the question being asked or contained fac-

tually incorrect information (i.e. hallucinations) might garner a score of “1” for accuracy. As

both the language model and oncology therapeutics fields are constantly evolving, there is

some recency bias associated with answers to questions and the data which LLMs are trained

on. This was in part accounted for through the types of questions chosen and the scale used to

assess responses. An emphasis of the evaluation was to specifically look for factually incorrect

answers, as opposed to incomplete answers which may be a result of recency bias. Reviewers

Table 4. Prompts for GPT3 in the retrieval-augmented workflow.

Stage Prompt

Stage

one

Instruction: You are a truthful AI assistant. You answer questions only based on provided context below.

If the context is not relevant to the question, say you do not know the answer. No need to explain why.

Context: {segment of article}

Question: {user query}

Answer:

Stage

two

Please combine the following paper’s summaries. Only use the context below and not incorporate any

prior knowledge.

Paper #1: {answer 1 based on segment 1}

Paper #2: {answer 2 based on segment 2}

https://doi.org/10.1371/journal.pdig.0000568.t004

Table 5. Workflow and LLM descriptions used in this study.

Workflow Evaluation Base LLM

RAG model Python workflow text-davinci-003

chatGPT3 OpenAI web chatGPT3 (gpt-3.5-turbo)

chatGPT4 OpenAI web chatGPT4 (gpt-4)

Prometheus Microsoft web Custom GPT4

https://doi.org/10.1371/journal.pdig.0000568.t005
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were all Ph.D. level scientists with an average of 8 years of biopharma industry experience and

11 years of post-doctoral work experience. The prompts were stratified into three high level

categories based on relevance to drug information, disease biology, and clinical information.

Questions were also grouped based on being general (i.e. high level) or specific (i.e. asking for

details) to assess performance between LLMs using questions answers requiring different levels

of detail. Complete information on questions, answers, and scoring of each question across the

four LLMs tested is provided in the Supplementary Data (S1 File) for this manuscript.

Supporting information

S1 Fig. Boxplot of average score per question for each LLM model. Each point represents the

average (A) accuracy, (B) relevance, and (C) readability score for a single question (out of 19

total). Points are colored by the question category.

(TIFF)

S1 File. Detailed breakdown of 19 questions, provided answers from LLM, three reviewer

scores for accuracy, relevance, and readability per question, notes from reviewers (where

relevant) explaining rationale for provided score, reviewer name, and annotation (1 = yes,

0 = no) for whether a hallucination was observed with an answer. This set of information is

provided for each of the for LLMs tested, one per worksheet. Also provided in a separate work-

sheet is the question grouping used to categorize questions in S1 Fig. The last worksheet con-

tains details of answers provided by the RAG model when varying the number of answers (k)

the model used to generate a final answer. Additional information on the papers used to gener-

ate answers and intermediate answers the model used to generate the final output are also

given.

(XLSX)
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