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Abstract

Few studies examining the patient outcomes of concurrent neurological manifestations dur-

ing acute COVID-19 leveraged multinational cohorts of adults and children or distinguished

between central and peripheral nervous system (CNS vs. PNS) involvement. Using a feder-

ated multinational network in which local clinicians and informatics experts curated the elec-

tronic health records data, we evaluated the risk of prolonged hospitalization and mortality in

hospitalized COVID-19 patients from 21 healthcare systems across 7 countries. For adults,

we used a federated learning approach whereby we ran Cox proportional hazard models

locally at each healthcare system and performed a meta-analysis on the aggregated results

to estimate the overall risk of adverse outcomes across our geographically diverse popula-

tions. For children, we reported descriptive statistics separately due to their low frequency of

neurological involvement and poor outcomes. Among the 106,229 hospitalized COVID-19

patients (104,031 patients�18 years; 2,198 patients <18 years, January 2020-October

2021), 15,101 (14%) had at least one CNS diagnosis, while 2,788 (3%) had at least one

PNS diagnosis. After controlling for demographics and pre-existing conditions, adults with

CNS involvement had longer hospital stay (11 versus 6 days) and greater risk of (Hazard

Ratio = 1.78) and faster time to death (12 versus 24 days) than patients with no neurological

condition (NNC) during acute COVID-19 hospitalization. Adults with PNS involvement also

had longer hospital stay but lower risk of mortality than the NNC group. Although children

had a low frequency of neurological involvement during COVID-19 hospitalization, a sub-

stantially higher proportion of children with CNS involvement died compared to those with

NNC (6% vs 1%). Overall, patients with concurrent CNS manifestation during acute COVID-

19 hospitalization faced greater risks for adverse clinical outcomes than patients without

any neurological diagnosis. Our global informatics framework using a federated approach

(versus a centralized data collection approach) has utility for clinical discovery beyond

COVID-19.

Author summary

Patients hospitalized with acute COVID-19 may concurrently develop central (CNS) or

peripheral (PNS) nervous system manifestations that worsen clinical outcomes. Few stud-

ies have explicitly distinguished between CNS and PNS involvement when evaluating

risks of adverse outcomes. We examined how CNS versus PNS involvement during acute

COVID-19 affects patient outcomes by developing a methodological framework to har-

ness the diverse multi-national health records for clinical discovery while preserving

patient confidentiality. We applied federated learning methods and rigorous local data

quality control to study over 100,000 adults and children hospitalized with acute COVID-

19 from 21 healthcare systems spanning 7 countries while ensuring that individual-level

patient data remain at the respective healthcare system. We found that adults with CNS or

PNS involvement had longer hospitalizations than patients without neurologic involve-

ment. Adults with CNS involvement had an increased risk of death, and the frequency of

death was likewise higher in children with CNS involvement. This large study of a
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geographically diverse cohort of adult and pediatric patients highlights the need for vigi-

lance and prompt treatment of acute COVID-19 patients with CNS involvement. Our

global informatics framework using a federated approach (versus a centralized data collec-

tion approach) has utility beyond clinical investigation pertaining to COVID-19.

Introduction

After exposure to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), both

adults and children experience a wide range of acute neurological manifestations. Following

the start of the pandemic, early case series [1–5] and small cohort studies from single health-

care systems [6–9] reported the occurrence of acute neurological manifestations in adults with

Coronavirus-19 (COVID-19). Neurological diagnoses during acute COVID-19 such as ische-

mic stroke [10], intracranial hemorrhage [3], seizures [4], or meningoencephalitis [5] were

associated with adverse clinical outcomes in adults, including higher rates of in-hospital mor-

tality [6,9,11] and lower rates of home discharge [6]. Additionally, altered mental status and

stroke significantly increased in-hospital mortality regardless of disease severity [9]. Similar

findings have since been confirmed by larger multicentered studies [12–14]. Taken together,

these studies highlight the importance of early recognition and treatment of concurrent neuro-

logical manifestations during acute COVID-19.

While less common than adults, prior case series and small multicentered studies docu-

mented rare life-threatening neurological manifestations in children with acute COVID-19,

including severe encephalopathy, infectious encephalitis, acute disseminated encephalomyeli-

tis, and ischemic or hemorrhagic stroke [15–19]. In one multinational study examining acute

COVID-19 hospitalization, adults and children were found to have different neurological

manifestations and outcomes, though the study did not stratify the analysis by more granular

age groups (e.g., younger vs. older children) and focused primarily on comparing critically ill

patients versus otherwise [20]. Thus, there is a need to validate these findings in additional

cohorts of adults and children.

We previously leveraged the scalable, federated, multinational network of the Consortium

for Clinical Characterization of COVID-19 by Electronic Health Records (EHR) [21–23]

(4CE; www.covidclinical.net) to assess the incidence of neurological diagnoses in hospitalized

acute COVID-19 patients [24,25]. Central to the 4CE federated approach and distinguishing

from other COVID-19 research using EHR data is the critical data quality control performed

by local clinician and informatics experts following the adoption of a standardized data collec-

tion approach by each healthcare system. Our approach enables large-scale, multinational

study design without compromising data quality or patient confidentiality. In this study, we

aimed to evaluate the risk of adverse clinical outcomes in hospitalized adults and children with

acute COVID-19 and concurrent neurological manifestations across age groups using the 4CE

network.

For all hospitalized patients with acute COVID-19, we categorized neurological status

based on involvement of the central nervous system (CNS) versus peripheral nervous system

(PNS), which differ in pathophysiology, diagnosis, treatment, and prognosis. We assessed

adult and pediatric patients separately. In the larger adult population, we performed covariate-

adjusted survival analyses to assess the risk of prolonged hospitalization or mortality in

patients who experienced concurrent neurological diagnoses during acute COVID-19 hospi-

talization when compared to those who did not. In the smaller pediatric population, we pre-

sented descriptive statistics with respect to adverse clinical outcomes. Finally, to our
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knowledge, we have curated and made available one of the largest multinational datasets con-

taining the aggregated counts, proportions, and clinical trajectories of hospitalized COVID-19

adults and children with and without concurrent CNS and PNS diagnoses.

Methods

Ethics statement

Each participating healthcare system obtained Institutional Review Board (IRB) approval from

local governing ethics committee, each with an approval of a waiver of informed consent for

both adults and children, because access of de-identified data and external sharing of summary

statistics (without interaction with the patients) are deemed minimal risk.

IRB Approval was obtained at Assistance Publique—Hôpitaux de Paris, Boston Children’s

Hospital, Bordeaux University Hospital, Great Ormond Street Hospital for Children, ASST

Papa Giovanni XXIII Bergamo, Istituti Clinici Scientifici Maugeri, Hospital Universitario 12

de Octubre, Madrid, Spain, Massachusetts General Brigham, National University Hospital,

Northwestern University, Medical Center at University of Freiburg, University of Kentucky,

University of Pittsburgh/UPMC, VA North Atlantic, VA Southwest, VA Midwest, VA Conti-

nental, and VA Pacific. An exempt determination was made by the IRB at University of Cali-

fornia Los Angeles, University of Michigan, and University of Pennsylvania.

Patients and data

In March 2020, the 4CE consortium began assembling EHR data from hospitalized patients

with positive SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) tests.

Following consortium guidelines, participating healthcare systems collected patient-level clini-

cal data, including demographics, medical history, admission, and discharge dates. Data

underwent standardized quality control checks by local clinicians and informatics experts. In

this study, we analyzed COVID-19 hospitalization data from January 2020 to October 2021

from 21 healthcare systems, encompassing 293 hospitals, across 7 countries. October 2021 was

chosen as a cutoff date to focus on the pre-Omicron periods and to reduce the potential

confounding effects of vaccine boosters on the analysis. Each participating healthcare system

(S1 Table) received local Institutional Review Board approval. We provided details on health-

care system-specific measures to protect patient confidentiality in the Supporting Information

(S1 Methods).

COVID-19 hospitalization was defined as the first hospital admission that occurred

between 7 days before and up to 14 days after the first positive SARS-CoV-2 PCR test. For all

hospitalized COVID-19 patients, we collected International Classification of Diseases (ICD)-

10 and/or ICD-9 codes depending on the healthcare system, as previously described [24]. The

dataset included pre-admission diagnoses defined by all ICD codes that occurred -365 to -15

days before the first (index) COVID-19 hospital admission date as well as post-admission diag-

noses defined by ICD codes that occurred anytime on or after the index admission date. Fol-

lowing the pre-planned consortium-wide guideline, we excluded ICD codes within 14 days

preceding the index admission date as a conservative approach to mitigate inflation or uncer-

tainty regarding whether these codes might represent early symptoms or signs of COVID-19.

To address potential variability in coding practices across diverse multinational healthcare

systems, diagnoses were represented by the major (or parent) ICD category codes (first three

alphanumeric characters before the decimal point). As a part of the initial 4CE guideline, the

use of the parent ICD category codes harmonized broader diagnosis capture despite documen-

tation and practice differences among the participating healthcare systems. The parent ICD

category codes also helped reduce statistical testing burden by grouping patients with similar
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diagnoses (under the same parent category) that may have similar clinical presentations and

pathology.

Neurological status during COVID-19 hospitalization

To classify patient-level neurological status during the first acute COVID-19 hospitalization,

we assessed the occurrence of 21 ICD-10 (and 29 corresponding ICD-9) codes representing

neurological diagnoses during acute COVID-19. Two neurologists (JS, ZX) compiled the list at

study inception after reviewing the existing COVID-19 literature up to that point. We catego-

rized neurological diagnosis codes as either CNS or PNS (S2 Table). We designated a patient’s

neurological status during the first COVID-19 hospitalization as “CNS” or “PNS” if they had

at least one ICD code in the respective category. A patient without a consensus neurological

diagnosis code during the first COVID-19 hospitalization was designated as “NNC” for having

no neurological condition. We excluded patients with both CNS and PNS diagnoses during

acute COVID-19 hospitalization (<2% of the total patients) from the analysis due to potential

confounding of exposures.

Covariates

Pre-existing health condition or comorbidity estimation. We used the icd package [26]

to map each patient’s prior diagnosis codes (-365 to -15 days preceding the index admission

date for COVID-19 hospitalization) to the 29 pre-admission health conditions or comorbidi-

ties comprising the Elixhauser Comorbidity Index (ECI) [27,28] (S3–S4 Tables). Each comor-

bidity of the ECI was used as an individual covariate in our downstream survival models to

adjust for a patient’s pre-existing comorbidity burden. We also calculated a weighted score for

each patient’s overall pre-admission comorbidity burden (Table 1) using Van Walraven

weights (S3 Table) [29].

Prior neurological conditions. To better account for each patient’s pre-existing neuro-

logical burden (i.e., neurological conditions not otherwise captured by the ECI), we first

counted the total number of occurrences (z) of pre-admission neurological diagnosis codes

for each patient in the period (-365 to -15 days) preceding the index admission date for

COVID-19 hospitalization. We curated pre-existing CNS and PNS diagnoses (S2 Table) as two

separate covariates for downstream survival analysis by transforming the total number of code

occurrences (z) for a patient as log(z+1) to normalize the data.

Other covariates. Downstream survival models were also adjusted for age group, sex, and

race/ethnicity (Table 1). Following 4CE guidelines, age was categorized into groups (0–2 years

old, 3–5, 6–11, 12–17, 18–25, 26–49, 50–69, 70–79, 80+, “unknown” if not recorded). Race and

ethnicity were considered as one variable and categorized as American Indian, Asian, Black,

Hawaiian/Pacific Islander, Hispanic/Latino, White, and Other/Not recorded. Race and ethnic-

ity are not available in certain countries outside of the United States (US).

Primary outcomes

The primary endpoints were the time to two clinically important endpoints: hospital discharge

and death. Patients met the endpoint if the event occurred within 90 days of the first COVID-

19 hospitalization or were otherwise censored. We chose 90 days to capture events during the

acute phase rather than the post-acute or long COVID phase, consistent with the World

Health Organization guideline [30]. For the mortality outcome, we considered all-cause mor-

tality due to the difficulty of distinguishing death directly due to COVID-19 versus a neurolog-

ical complication [31].
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Table 1. Study Population Characteristics.

Entire Cohort NNC 1 CNS 1 PNS 1 P-value 2

All Patients, N (% of cohort) 106229 (100%) 88340 (83.1%) 15101 (14.2%) 2788 (2.6%)

Sex, N (%) < .001*
Female 37590 (35.4%) 32399 (36.7%) 4247 (28.1%) 944 (33.9%)

Male 68638 (64.6%) 55940 (63.3%) 10854 (71.9%) 1844 (66.1%)

Unknown Sex 1 (0%) 1 (0%) 0 (0%) 0 (0%)

Age, N (%)

0–2 769 (0.7%) 747 (0.8%) 22 (0.1%) 0 (0%) < .001*
3–5 275 (0.3%) 251 (0.3%) 24 (0.2%) 0 (0%) < .001*
6–11 403 (0.4%) 368 (0.4%) 33 (0.2%) 2 (0.1%) < .001*
12–17 707 (0.7%) 637 (0.7%) 60 (0.4%) 10 (0.4%) < .001*
18–25 2328 (2.2%) 2138 (2.4%) 145 (1%) 45 (1.6%) < .001*
26–49 17799 (16.8%) 16122 (18.3%) 1166 (7.7%) 511 (18.5%) < .001*
50–69 36885 (34.7%) 31556 (35.7%) 4169 (27.7%) 1160 (41.9%) < .001*
70–79 24860 (23.4%) 19672 (22.3%) 4508 (30%) 680 (24.6%) < .001*
80+ 22094 (20.8%) 16813 (19%) 4920 (32.7%) 361 (13%) < .001*

Race, N (%)

American Indian 350 (0.3%) 295 (0.3%) 55 (0.4%) 0 (0%) .01*
Asian 1694 (1.6%) 1464 (1.7%) 205 (1.4%) 25 (0.9%) < .001*
Black 16815 (15.8%) 13368 (15.1%) 2995 (19.9%) 452 (16.5%) < .001*
Hawaiian / Pacific Islander 297 (0.3%) 255 (0.3%) 41 (0.3%) 1 (0%) .054

Hispanic / Latino 870 (0.8%) 819 (0.9%) 29 (0.2%) 22 (0.8%) < .001*
White 41871 (39.4%) 33360 (37.8%) 7401 (49.1%) 1110 (40.5%) < .001*
Other / Not Recorded 44220 (41.6%) 38750 (43.9%) 4336 (28.8%) 1134 (41.3%) < .001*

Pre-admission Elixhauser score, Mean (SD) 3 0.3 (0.7) 0.2 (0.5) 1.4 (2) 0.6 (1.7) .014*
Pre-admission Conditions (Selected), N (%) 4

Hypertension 35587 (33.5%) 27323 (30.9%) 7277 (48.2%) 987 (35.4%) < .001*
Alcohol abuse 30130 (28.4%) 23065 (26.1%) 6194 (41%) 871 (31.2%) < .001*
Drug abuse 26596 (25%) 20287 (23%) 5528 (36.6%) 781 (28%) < .001*
Diabetes 21969 (20.7%) 16905 (19.1%) 4429 (29.3%) 635 (22.8%) < .001*

Number of pre-admission CNS codes, Mean (SD) 3 0 (0) 0 (0) 0 (0) 0 (0) .192

Number of pre-admission PNS codes, Mean (SD) 3 0 (0) 0 (0) 0 (0) 0 (0.1) .062

Severe Status, N (%) < .001*
Non-Severe 66252 (62.4%) 57771 (65.4%) 7007 (46.4%) 1474 (52.7%)

Severe 39985 (37.6%) 30576 (34.6%) 8084 (53.6%) 1325 (47.3%)

Time to severe status, Mean days (SD) 3 0.6 (1) 0.8 (1.3) 0.4 (0.7) 0.8 (1.1) .503

Survival, N (%) < .001*
Alive 87376 (82.3%) 74389 (84.2%) 10392 (68.8%) 2595 (93.1%)

Deceased 18849 (17.7%) 13953 (15.8%) 4705 (31.2%) 191 (6.9%)

Time to death, Mean days (SD) 3 15.3 (6.4) 15.9 (5.8) 22.4 (32.5) 36.9 (41.4) .54

Time to discharge, Mean days (SD) 3 8.4 (4.2) 6.5 (3.6) 12.8 (6.1) 14.5 (18.3) < .001*
Readmission, N (%)

Not Readmitted 91646 (86.3%) 76877 (87%) 12435 (82.4%) 2334 (83.4%) < .001*
Readmitted 14569 (13.7%) 11456 (13%) 2650 (17.6%) 463 (16.6%)

Time to first readmission, Mean days (SD) 3 28.1 (20.3) 26.4 (17.6) 31.9 (33.7) 38.1 (28.4) .504

(Continued)
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Due to the low frequency of pediatric patients in our cohort with pre-existing health condi-

tions and adverse clinical outcomes during acute COVID-19 hospitalization, we included only

adults�18 years in the survival and comorbidity analysis. We assessed the descriptive statistics

of the pediatric patients as stratified by neurological status during acute COVID-19

hospitalization.

Primary statistical analyses

Population characteristics. We stratified the study population by neurological status to

evaluate baseline demographics, pre-existing burden of neurological and other health condi-

tions (i.e., comorbidity burden), and clinical characteristics during the acute COVID-19 hospi-

talization (Table 1). For each continuous variable, we report the overall mean and standard

deviation (SD) of the median value recorded at each healthcare system. Categorical variables

were assessed using chi-square tests, while continuous variables were evaluated using a Krus-

kal-Wallis one-way ANOVA. All p-values were adjusted with the Benjamini-Hochberg

method to control the false discovery rate.

Local healthcare system-specific survival analysis of adult patients. At each healthcare

system, we examined the association of concurrent neurological status during the first

COVID-19 hospitalization with each clinical endpoint (in adults) using covariate-adjusted

Cox proportional hazard models to evaluate time to hospital discharge and to death. We

assessed the time to discharge alive using a competing risk model to control for death [32].

Importantly, we excluded patients who reached either clinical endpoint (discharge or death)

on the first day of hospitalization. For each model, we controlled for pre-admission comorbid-

ity burden by including each of the 29 health conditions of the ECI as individual covariates in

the model, the number of pre-admission CNS and PNS diagnosis codes, and demographic var-

iables (i.e., age group, sex, race/ethnicity). After each participating healthcare system deployed

the patient-level analysis locally through a customized R (http://www.R-project.org) package

deployed through Docker [33], we aggregated the summary statistics across all healthcare sys-

tems and performed a meta-analysis (Fig 1).

At each healthcare system, we estimated covariate-adjusted Kaplan-Meier time to event

curves for each health outcome and neurological group. Specifically, for each outcome, we fit

the Cox proportional hazards model to the patient cohort and estimated each patient’s survival

rate, which is 1 minus event rate. Importantly, the survival rate was estimated for each patient

by holding each patient’s covariates constant except for the neurological status. Thus, we

Table 1. (Continued)

Entire Cohort NNC 1 CNS 1 PNS 1 P-value 2

Number of readmissions, Mean (SD) 3 0.1 (0.3) 0 (0) 0.1 (0.3) 0.1 (0.3) .098

Notes

1. Neurological status during acute COVID-19 hospitalization: NNC = No Neurological Condition; CNS = Central Nervous System diagnosis; PNS = Peripheral

Nervous System diagnosis.

2. P-values were adjusted with the Benjamini-Hochberg method to control the false discovery rate when evaluating the distribution (categorical variables) or means

(continuous variables) of characteristics stratified by neurological status. P-values < .05 were deemed significant and designated with asterisk (*).
3. Continuous variables reflect the overall cohort mean and standard deviation (SD) of the median values reported by each healthcare system.

4. We report the top four most frequent pre-admission health conditions (i.e., comorbidities) in the adult population. Please see S7 Table for all pre-admission health

conditions stratified by neurological status during acute COVID-19 hospitalization for both adult and pediatric populations.

5. Please see S9 Table and S10 Table for separate demographic tables as stratified by adult and pediatric populations, respectively.

https://doi.org/10.1371/journal.pdig.0000484.t001
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estimated the survival rate for each neurological group, independent of the effect of additional

covariates. Lastly, for each neurological group, we averaged all patients’ estimated survival

rates to generate the overall survival curve.

Meta-analysis of hospitalized adults. We conducted a random-effects meta-analysis on

locally generated results to compute the overall effect size of neurological status during acute

COVID-19 hospitalization for each clinical endpoint. The use of the random-effects compo-

nent controlled for the expected variation in patient population and clinical practice across

healthcare systems. Separate random-effects models were constructed to compare the CNS

group to the NNC group, and the PNS group to the NNC group. The generic inverse variance

method was used to pool estimates across healthcare systems and the DerSimonian-Laird

method was employed to estimate the between-health system variance (τ2) [34]. The global

estimate of the association between neurological status during the first COVID-19 hospitaliza-

tion and clinical endpoints was reported as hazard ratios (HR). Meta-analysis and forest plots

were constructed using the meta [35] and forester [36] packages, respectively. Two healthcare

systems with adult patients (NUH, UKFR) were excluded from the meta-analysis (but included

for all other analyses) due to exceedingly low frequency of neurological diagnoses (<1% of

adult patients). Healthcare systems with only pediatric patients were also excluded (BCH,

GOSH) for the same reason. For the meta-analysis, results were deemed significant when

p-values were below the Bonferroni-corrected threshold (p-value< .013 given four separate

tests, Table 2).

When generating the pooled covariate-adjusted Kaplan-Meier survival curves for each clin-

ical endpoint, we weighed each healthcare system by the average weights derived from both

Fig 1. Study design and federated learning approach. A. We constructed Cox proportional hazard models to evaluate clinical endpoints in acute COVID-19

patients with concurrent neurological diagnoses. Patients were followed up to 90 days after the first acute COVID-19 hospital admission. Models were adjusted

for pre-existing comorbidity burden and prior neurological conditions as well as baseline demographics, including age group, sex, race/ethnicity. B. The

analysis plan was provided as a standardized R package and containerized with Docker to facilitate local deployment at each participating healthcare system.

Cox proportional hazards statistics (summary.coxph) were extracted from the analysis at each healthcare system and included in a random-effects meta-

analysis to pool the summary statistics. NNC: No Neurological Condition; CNS: Central Nervous System diagnosis; PNS: Peripheral Nervous System diagnosis.

https://doi.org/10.1371/journal.pdig.0000484.g001
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the CNS and PNS random-effects meta-analysis models, where the weight of each healthcare

system k, was calculated as the inverse of the estimated variance (s2) + τ2, or:

wk ¼
1

s2 þ t2

Secondary statistical analyses

Pre-existing health condition and risk of neurological diagnosis. To assess the contri-

bution of pre-existing comorbidity on neurological status during acute COVID-19, we evalu-

ated the relative risk of having a concurrent CNS or PNS diagnosis during the acute COVID-

19 hospitalization for each of the pre-admission health conditions that constitute the ECl. The

relative risk of having a CNS or PNS diagnosis was calculated for each pre-admission health

condition by dividing the proportion of patients with the condition who developed a neurolog-

ical diagnosis (CNS or PNS) during acute COVID-19 hospitalization, by the number of

patients without the condition who developed a neurological diagnosis during COVID-19 hos-

pitalization. We included all adult patients in this analysis.

Concurrence with COVID-19 severity. As a secondary outcome, we evaluated the risk of

COVID-19 severity in our adult population. COVID-19 severity was defined as a binary vari-

able based on a published EHR-based severity phenotype derived from diagnosis codes, labo-

ratory orders, medication orders, and procedure codes that are proxies for respiratory distress

and shock [37]. In our study, severe COVID-19 status also included death. Pediatric patients

were excluded in this analysis due to the low incidence of neurological diagnoses and the lack

of a validated severity phenotype in this population.

To evaluate the association between the occurrence of a neurological diagnosis and severe

COVID-19 during acute COVID-19 hospitalization, we first fit a series of logistic regression

models to predict the probability of a patient having the following events: a CNS diagnosis, a

PNS diagnosis, severe COVID-19, CNS diagnosis and severe COVID-19, as well as PNS

diagnosis and severe COVID-19. All models were adjusted for the same covariates used in the

primary Cox-proportional hazards model.

Predicted probabilities were further evaluated using pointwise mutual information (PMI)

to evaluate the association between the occurrence of a neurological diagnosis and severe

COVID-19. Using CNS diagnosis and severe COVID-19 as an example, the joint probability

of a patient having both CNS diagnosis and severe COVID-19 is divided by the product of the

individual probabilities of a patient having CNS diagnosis and having severe COVID-19. With

log(PMI(CNS,Severe)) > 0, a CNS diagnosis co-occurs with severe COVID-19 more fre-

quently than expected under an independence assumption.

PMI CNS; Severeð Þ ¼ log
pðCNS; SevereÞ

pðCNSÞ∗pðSevereÞ

� �

The PMI(CNS, Severe) and PMI(PNS, Severe) were computed for each healthcare system

individually. Confidence intervals were estimated with 500 bootstraps.

Model sensitivity analysis. We performed several sensitivity analyses to evaluate the per-

formance of our Cox proportional hazard models. First, we constructed several models to

compare the performance of three different comorbidity adjustment methods: 1) inclusion of

the 29 comorbidities of the ECI as individual covariates, 2) the weighted ECI summary score

as a single covariate, and 3) reducing the dimensionality of each healthcare system’s comorbid-

ity matrix into the top 10 principal components [38,39] (S2 Methods). Additionally, we con-

structed models to evaluate the risk of adverse clinical outcomes within 30, 60, and 90 days
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after the index COVID-19 hospitalization admission date. We compared all models by evaluat-

ing the corresponding model concordance and hazard ratios (S4–S5 Figs). To further evaluate

the age groups and the risk of adverse outcomes, we performed an additional random-effects

meta-analysis using the locally estimated hazard ratios for each age group, which were used as

covariates in the primary Cox-proportional hazards models.

Code Availability

The R package used for deploying the analyses locally at each healthcare system is publicly

available (https://github.com/covidclinical/Phase2.1NeuroRPackage/). The meta-analysis code

and results are available in browsable and interactive R notebooks (https://github.com/

covidclinical/Phase2.1NeuroAnalysis). All analyses were conducted using R (http://www.R-

project.org) [40]. Fig 1 was created using Biorender (Biorender.com), while all other figures

were created using ggplot2 [41].

Results

Patient characteristics

Demographics. We analyzed data from 106,229 PCR-confirmed hospitalized patients

with acute COVID-19 from 21 healthcare systems across 7 countries (Table 1, Fig 2, S1 Table).

The US Veterans Affairs hospital system (comprising 170 hospitals) was divided into five

regional healthcare systems, capturing broad geographic representations within the US. Males

represented 65% of the overall study population. While 79% of the patients were 50 years or

older, the study included 2,198 (2%) patients who were younger than 18 years of age. The

study included 39% White, 16% Black, and 2% Asian as well as 42% “other/not recorded”

since most non-US countries did not record race or ethnicity.

Frequency of neurological diagnosis during acute COVID-19 hospitalization. During

the index COVID-19 hospitalization, 14,938 (14%) of adult patients had at least one CNS diag-

nosis code and 2,772 (3%) of adult patients had at least one PNS diagnosis code (S9 Table).

The frequency of neurological diagnoses in the pediatric population was much lower: 163 (7%)

pediatric patients had at least one CNS diagnosis, while only 16 (<1%) had a PNS diagnosis

(S10 Table). The most frequent CNS diagnoses among all patients included symptoms and

signs involving cognitive functions and awareness (e.g., altered mental status) (7.1%), disorders

of the brain (e.g., encephalopathy, post viral fatigue syndromes, and anoxic brain injury)

(5.2%), and epilepsy and recurrent seizures (2.3%). The most frequent PNS diagnoses among

all patients included “dizziness and giddiness” (1.2%), “disturbances of smell and taste” (0.8%)

and “myopathies” (0.4%). The most frequent diagnoses largely remained consistent when

stratified by age groups or clinical outcome (Fig 3, S1 Fig, S5 Table). S2 and S5 Tables provide

more detailed descriptions of the specific diagnosis codes for classifying the neurological diag-

nosis as either CNS or PNS.

Pre-existing comorbidity burden. In the adult population, the pre-existing comorbidity

burden (pre-admission ECI score) was the highest in the CNS group (mean = 1.4, SD = 2),

followed by the PNS group (mean = 0.6, SD = 1.7), and the lowest in the NNC group

(mean = 0.2, SD = 0.5) (p = 0.074) (S9 Table). When assessing the relative risk (RR) of a CNS

or PNS diagnosis during acute COVID-19 hospitalization, we found most pre-existing condi-

tions increased the RR of a CNS diagnosis during COVID-19 hospitalization (Fig 4, S6 Table).

In contrast, most pre-existing conditions decreased or had no effect on the RR of a PNS diag-

nosis during COVID-19 hospitalization. In adults, the pre-existing conditions with the highest

risk for a CNS diagnosis during COVID-19 hospitalization included pre-existing neurological

conditions (RR = 3.23, 95%CI: 3.13–3.33), paralysis (RR = 2.55, 95%CI: 2.38–2.74), and
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psychosis (RR = 2.25, 95%CI: 2.13–2.37) (Fig 4A) despite wide variation in the proportion of

patients with pre-existing conditions across healthcare systems (Fig 5, S3 Fig). S4 Table lists

the diagnoses captured by “neurological disorders” in ECI, which largely pertain to neurode-

generative diseases. The pre-existing conditions with the highest risk for a PNS diagnosis

during acute COVID-19 hospitalization in adults included depression (RR = 1.25; 95%CI:

1.14–1.36), obesity (RR = 1.18, 95%CI: 1.06–1.32), and liver disease (RR = 1.17; 95%CI:

1.02–1.34) (Fig 4B, S6 Table).

In the pediatric population, the frequency of pre-existing health conditions was overall

lower than that of adults. Notably, the mean pre-admission ECI score was higher in the CNS

(mean = 4.4, SD = 9.2) and PNS (mean = 2.5, SD = 3.6) groups than the NNC group

(mean = 0, SD = 0) (S10 Table). The overall counts and percentages of both adult and pediatric

patients with pre-existing health conditions as stratified by neurological status are detailed in

S3 Fig and S7 Table. For example, 25.2% of pediatric patients (as compared to 23.2% of adult

patients) in the CNS group had a pre-existing neurological disorder, and likewise 11% of the

pediatric patients (as compared to 3.4% of adult patients) in the CNS group had pre-existing

paralysis (S7 Table).

In the adult population, concurrent neurological diagnoses assessed during acute

COVID-19 hospitalization often appeared to be new onset since the mean numbers of

Fig 2. Demographic profile for each participating healthcare system arranged by country. Cohort-wise breakdown of the number of patients, age

range, sex, severity status, mortality outcome, readmission status, and race at each healthcare system for each of the following neurological status during

acute COVID-19 hospitalization: no neurological condition (NNC), central nervous system (CNS) diagnosis, and peripheral nervous system (PNS)

diagnosis. Healthcare systems are arranged by country in descending order by the number of included participating healthcare systems. The stacked bar

charts indicate the normalized distribution of age and race. The nested pie-charts are stratified by the neurological status with the darker portion

representing the proportion of patients having the value of the binary variable for the given column header.

https://doi.org/10.1371/journal.pdig.0000484.g002

Fig 3. Frequency of neurological diagnosis codes by age group. For each age group, we report the total number and proportion of patients who had the

associated ICD-10 code. Neurological diagnoses are listed in descending order of overall frequency. Please refer to S1 Fig for the incidence of severe COVID-19

status and mortality as stratified by concurrent neurological status in adults and children. S5 Table details the total counts and percentages of patients with

ICD-10 (and ICD-9 codes) as stratified by adult and pediatric populations.

https://doi.org/10.1371/journal.pdig.0000484.g003
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pre-admission CNS and PNS diagnosis codes were 0 (S9 Table). Similarly, in children, the

mean number of pre-admission PNS diagnosis codes was also 0. However, children with a

CNS diagnosis had a slightly higher mean number of pre-admission CNS diagnoses

(mean = 1.9, SD = 3.9) compared to children in the PNS (mean = 0, SD = 0) or NNC groups

(mean = 0.1, SD = 0.2), though these differences were not significant (S10 Table).

Primary clinical outcomes in adults with a neurological diagnosis during

acute COVID-19 hospitalization: Meta-analysis results

Using adults in the NNC group as the reference, adult patients with at least one CNS diagnosis

during acute COVID-19 hospitalization had a lower risk of hospital discharge (HR = 0.54, 95%

CI: 0.48–0.60, p< .001) (Table 2, Fig 6, S2 Fig). A lower risk of hospital discharge should be

interpreted as longer hospital stay, as patients in the CNS group had a longer median hospital

stay before discharge as compared to patients in the NNC group (11 days vs 6 days) (Fig 6).

Adults with at least one PNS diagnosis during COVID-19 hospitalization also had a lower risk

of hospital discharge (HR = 0.70, 95%CI: 0.60–0.82; p < .001) and longer median hospital stay

before discharge (8 days vs 6 days) as compared to the NNC group.

The CNS group had a greater risk of death than the NNC group (HR = 1.78, 95%CI: 1.50–

2.11, p< .001) (Table 2, Fig 6, S2 Fig). 10% of the adult patients in the CNS group died within

12 days, compared to 24 days in the NNC group (Fig 6). In contrast, the PNS group had a

Fig 4. Relative risk of a neurological diagnosis in the adult patient population during acute COVID-19 hospitalization for each pre-admission health condition.

We calculated the relative risks (with 95% confidence intervals) of any central nervous system (CNS) diagnosis (A) and any peripheral nervous system (PNS) diagnosis

(B) during acute COVID-19 hospitalization for each pre-existing health condition (in the Elixhauser Comorbidity Index) by dividing the proportion of patients with the

condition who developed a neurological diagnosis (CNS or PNS), by the number of patients without the condition who developed a neurological diagnosis. Pediatric

patients were excluded from the analysis due to their low frequency of pre-admission health conditions. S3–S4 Tables provide detailed descriptions of the ICD codes

comprising each component of the Elixhauser Comorbidity Index.

https://doi.org/10.1371/journal.pdig.0000484.g004
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lower risk of death (HR = 0.46, 95%CI: 0.38–0.56, p< .001). Indeed, 6.9% of PNS patients (ver-

sus 31.4% CNS patients) in the study cohort died (S9 Table).

Supplementary analyses

The estimated concordances of the locally run Cox proportional hazard models were similar

among models with increasing censor cutoff windows (30, 60 and 90 days after the index

COVID-19 hospital admission) and across different adjustment methods for pre-existing

Table 2. Random-effects meta-analysis of the risk of adverse clinical outcomes in adults with concurrent CNS or PNS diagnosis during the acute COVID-19 hospi-

talization from the Cox-proportional hazard models locally run at each healthcare system.

Clinical Outcome 1 Neurological Status 2 Hazard Ratio 95% CI 3 P-value 4

Discharge CNS 0.54 (0.48, 0.60) < .001*
PNS 0.70 (0.60, 0.82) < .001*

Mortality CNS 1.78 (1.50, 2.11) < .001*
PNS 0.46 (0.38, 0.56) < .001*

Notes

1. Please refer to Fig 6 for sample size of the analysis of each outcome. We excluded two healthcare systems (NUH and UKFR) from the meta-analysis due to low

frequency of neurological diagnoses (< 1% of adult patients).

2. Concurrent neurological status during the acute COVID-19 hospitalization was categorized based on having at least one diagnosis code for central nervous system

(CNS) or peripheral nervous system (PNS) diagnosis versus no neurological condition (NNC).

3. The hazard ratio above 1 indicates an increased risk for an event using the group of patients without any neurological condition during the acute COVID-19

hospitalization as the reference.

4. P-value with asterisk (*) denotes significance below the Bonferroni-corrected threshold for multiple testing (p-value threshold of < .013) given four separate tests.

5. An equivalent meta-analysis with pediatric patients could not be performed due to the small sample size of neurological diagnoses.

https://doi.org/10.1371/journal.pdig.0000484.t002

Fig 5. Pre-admission health conditions with the highest risk for a central nervous system diagnosis during acute COVID-19 hospitalization. Each petal plot

represents the normalized distribution (%) of patients with a pre-admission health condition (as components of the Elixhauser Comorbidity Index: e.g., neurological

disorders, paralysis, or psychoses) at each healthcare system for each neurological status during acute COVID-19 hospitalization: no neurological condition (NNC),

central nervous system (CNS) diagnosis, and peripheral nervous system (PNS) diagnosis. Each nested petal represents a healthcare system. The colors within each petal

are sorted based on their value: the outermost color indicating the neurological status with the highest portion of patients and the innermost color indicating the

neurological status with the lowest portion at each healthcare system. With nk indicating the number of patients from healthcare system k for condition c, and n1, n2, and

n3 indicating the number of patients from the NNC, PNS, and CNS group, respectively, we summed patients at each system as nk = n1+n2+n3. Missing petals indicate no

patient for the pre-admission health condition at a healthcare system (nk = n1 = n2 = n3 = 0). A petal containing only one color indicates that patients with a given pre-

admission health condition c at that healthcare system all had the same neurological status during acute COVID-19 hospitalization (e.g., nk = n1 or nk = n2 or nk = n3).

Using the pre-admission health condition ‘paralysis’ as an example, all patients with pre-admission paralysis at UCLA had a CNS diagnosis during acute COVID-19

hospitalization. Pediatric patients were excluded from the analysis due to low frequency of children with pre-admission health conditions.

https://doi.org/10.1371/journal.pdig.0000484.g005
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comorbidities (S4 Fig). The hazard ratios derived from random-effects meta-analysis were also

similar across censor windows and pre-existing comorbidity adjustment methods (S5 Fig).

Among the participating healthcare systems, we observed greater frequency of co-occur-

rence between a CNS diagnosis and severe COVID-19 than that of co-occurrence between a

PNS diagnosis and severe COVID-19 based on the PMI analysis (S8 Table).

When comparing the estimated hazard ratios derived from a random-effects meta-analy-

sis assessing age groups and the clinical outcomes, we observed an incremental increase in

Fig 6. Covariate-adjusted Kaplan-Meier survival analysis to evaluate the time to event of each clinical endpoint stratified by neurological status during acute

COVID-19 hospitalizations in adults. At each healthcare system, we estimated covariate-adjusted Kaplan-Meier time to event curves for each health outcome and

neurological group. Specifically, for each outcome, we fit the Cox proportional hazards model to the patient cohort and estimated each patient’s survival rate, which is 1

minus event rate. Importantly, the survival rate was estimated for each patient by holding each patient’s covariates constant except for the neurological status. Thus, we

estimated the survival rate for each neurological group, independent of the effect of additional covariates. Lastly, for each neurological group, we averaged all patients’

estimated survival rates to generate the overall survival curve. Survival curves from each healthcare system were combined using a random-effects meta-analysis

weighted by the inverse of the variance derived at each participating healthcare system. Two healthcare systems (NUH and UKFR) were excluded from the meta-analysis

due to their low frequency of neurological diagnoses (< 1% of adult patients). For the discharge outcome, we demarcated the median hospital stay in days for each

neurological group. Due to a lower event rate for mortality, we demarcated the survival probability of the 90th percentile for both the CNS and NNC groups. As the PNS

group had<10% mortality, its survival probability was not demarcated. The table depicts the estimated total number of patients across all healthcare systems who were

at risk at 0, 30, 60 and 90-day timepoints, where day 0 is the index date of the first COVID-19 hospitalization. Risk = the total number of patients who were still at risk

for the event at a given time point. Event = total cumulative number of patients who experienced discharge or mortality by a given time point.

https://doi.org/10.1371/journal.pdig.0000484.g006
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the risk of longer hospital stay and death with older age groups (S6 Fig). Indeed, in our

cohort, patients 80 years and older were 13 times more likely to die than patients in the ref-

erence age group of 18–25 years (HR = 13.4, 95% CI: 9.6–18.7). As another example, patients

in the age group of 50–69 years and older groups were twice more likely to have longer hos-

pital stay (i.e., half as likely to be discharged) when compared to patients in the 18–25 years

age group.

Discussion

Leveraging a large, geographically diverse, multinational cohort, we investigated the clinical

outcomes of hospitalized COVID-19 patients with concurrent neurological diagnoses. Our

unique study design adopted a federated framework in which local clinician and informatics

experts at each participating healthcare system ensured critical EHR data quality control while

preserving data confidentiality. The consistent findings across geographically diverse health-

care systems support the generalizability and validity of our study.

To examine the association between neurological status during acute COVID-19 hospitali-

zation and the risk of prolonged hospital length of stay and mortality in adults, we compared

patients having CNS or PNS diagnoses during COVID-19 hospitalization with those without

(NNC) both at the individual healthcare system level and collectively using meta-analysis. Our

main finding was that adults with a CNS diagnosis had a greater risk for longer hospital stay

and mortality during acute COVID-19 hospitalization than the NNC group after accounting

for confounders, consistent with prior reports [6,9,11,42,43]. Our study differentiated from

prior studies not only by examining a large multinational cohort of geographically diverse

patient populations but also separately comparing the outcomes of two distinct groups of neu-

rological conditions, CNS versus PNS, both using NNC as the control. This categorization

allowed a broad comparison of the clinical outcomes of the distinct central versus peripheral

nervous system pathology during acute COVID-19 while greatly reducing multiple hypothesis

testing burden.

Indeed, the distinction between concurrent CNS and PNS involvement during acute

COVID-19 hospitalization was clinically meaningful since the two groups of adults differed in

clinical outcomes. One plausible explanation for the longer hospital stay of the CNS group was

that these patients were more likely to experience severe disease, relative to the PNS (or NNC)

group. Prior studies reported prolonged hospital course as secondary to complications of

COVID-19 rather than active or persistent SARS-CoV-2 infection [44–47]. We also found

that CNS diagnoses co-occur more frequently with other clinical characteristics of severe

COVID-19 such as a diagnosis of pneumonia and/or acute respiratory distress syndrome,

need for mechanical ventilation, sedation, and/or medication administration for shock [37]

than PNS diagnoses (S8 Table).

Adults in the CNS group had a higher risk of death, compared to patients in the NNC

group. In comparison, patients in the PNS group had a lower risk of death than the NNC

group. The difference in the risk of mortality between the CNS and PNS groups may have at

least two explanations. First, the most frequently observed CNS diagnoses in this study, includ-

ing disorders of consciousness (e.g., altered mental status), disorders of the brain (e.g., enceph-

alopathy), and seizure have all previously been reported in association with a greater risk of

death [9,42,48,49]. Thus, the CNS group in this study likely included more diagnoses associ-

ated with critical illness. For instance, acute encephalopathy is common among hospitalized

COVID-19 patients and known to cause greater need for critical care, intubation, severe dis-

ability and 30-day mortality [9,14,50]. Acute encephalopathy falls under the parent ICD-10

code G93, which was the second most frequently observed neurological ICD-19 code in our
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cohort. Acute encephalopathy could result from systemic dysfunction or neuropathologies

such as hypoxic ischemic brain injury [44]. In contrast, the PNS diagnoses in our cohort,

largely comprised less severe diagnoses (e.g., anosmia and dysgeusia, myopathies), likely con-

tributing to the observed inverse association between a PNS diagnosis and mortality. Second,

ascertainment bias might contribute to the lack of significant association between concurrent

PNS diagnosis and the potential for severe disease leading to mortality [43,51,52]. For example,

EHR data might contain incomplete documentation of certain PNS diagnoses such as anosmia

or dizziness in critically ill patients who would be less capable of reporting such symptoms and

whose diagnostic signs might not be easily recognizable and used for diagnosis coding. In sup-

port of our findings, prior studies also reported lower risk of mortality in hospitalized

COVID-19 patients with anosmia, ageusia, and syncope, though rationale beyond ascertain-

ment bias is unknown [43,51,52].

In our adult patient population, we also assessed the relative risk of developing a neurological

diagnosis during acute COVID-19 hospitalization for each of the pre-existing health conditions

that constitute the ECI. While pre-existing neurological conditions had been reported to increase

the risk of new neurological complications during acute COVID-19 [53], our study uniquely

identified the pre-existing health conditions that increased (or decreased) the risk of concurrent

CNS and PNS diagnoses in adults during acute COVID-19 hospitalization. Patients in the CNS

group had more pre-existing health conditions than the PNS group. Depression, drug and alco-

hol abuse, and diabetes were associated with higher risk of both CNS and PNS diagnoses during

COVID-19 hospitalization. Interestingly, certain pre-existing conditions were associated with

CNS and PNS diagnoses in opposite directions. For instance, coagulopathy, peptic ulcer disease,

pulmonary circulation disorders and weight loss were associated with higher risk of CNS diagno-

sis, but with lower risk of PNS diagnosis. Likewise, pre-existing neurological conditions (i.e.,

“neurological disorder” that includes primarily neurodegenerative diseases, “paralysis”, and “psy-

choses”), which all exhibited the strongest association with CNS diagnosis, were associated with

a lower risk of PNS diagnosis during acute COVID-19 hospitalization. These findings again

highlight the importance of separately assessing CNS and PNS diagnoses in COVID-19.

Finally, a key strength of the study is the inclusion of children hospitalized for acute

COVID-19, which we analyzed separately from adults. It is reassuring to replicate the lower

prevalence of acute COVID-19 hospitalization in children than adults [54]. However, pediatric

neurological manifestations, particularly CNS involvement (7.4% in children as compared to

14.4% in adults), were not infrequent in our study. Indeed, across the participating healthcare

systems that provided pediatric data, the frequency of children with any concurrent neurologi-

cal diagnosis during acute COVID-19 hospitalization ranged from 0% to 28.6%. Similar to pre-

vious studies [15,16,18,55], the most frequent concurrent neurological diagnoses during acute

COVID-19 hospitalization in our pediatric population included epilepsy and seizures, symp-

toms and signs involving cognitive function and awareness (e.g., altered mental status), and

disorders of the brain (e.g., encephalopathy), while ischemic and hemorrhagic strokes were

uncommon. Further, our findings were consistent with previous report of common pre-exist-

ing neurological conditions among children with neurological manifestations during acute

COVID-19 [19]. The mean time to discharge were slightly longer for children in the CNS and

PNS group than the NNC group, but these differences did not reach statistical significance as

in adults. Importantly, while the overall mortality rate was low in our pediatric population

(1.3% as compared to 18% in adults), a higher proportion of pediatric patients in the CNS

group died as compared to the NNC group (5.8% vs. 1% in children, compared to 31.4% vs.

16.1% in adults). The CNS diagnoses most frequently associated with death in pediatric

patients included diagnosis under disorders of the brain (e.g., encephalopathy, anoxic brain

injury) (S1 Fig), consistent with prior reports [15,16]. Overall, our study replicates prior
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findings and adds to a limited body of literature evaluating the frequency of neurological man-

ifestations and their health outcomes in hospitalized children during acute COVID-19.

Limitations

The study has limitations primarily stemming from adopting a standardized strategy to ana-

lyze EHR data from geographically diverse multinational healthcare systems while preserving

patient confidentiality. First, the use of parent ICD codes at the categorical level (e.g., ICD-10

G93: “disorders of the brain”) was a tradeoff to mitigate noise from variations in billing docu-

mentation and clinical practices and enable data harmonization across all participating multi-

national healthcare systems, which served as a key strength of the study.

Second, we had limited ability to confirm whether neurological diagnoses during acute

COVID-19 hospitalization were new onset versus pre-existing. To reduce this concern, we

adjusted for the occurrence of pre-existing CNS and PNS diagnoses in addition to the overall

comorbidity burden in the survival analysis. It is worth noting that the mean numbers of pre-

admission CNS and PNS diagnosis codes in our entire cohort was 0. As the 4CE consortium

collected pre-existing conditions up to one year before the first COVID-19 hospitalization (as

a pragmatic decision to balance maximizing data collection versus minimizing past medical

conditions that might not be relevant), undercounting of pre-existing diagnoses might still

occur, particularly in situations where patients received care at outside facilities prior to

COVID-19 hospitalization.

Third, vaccination data capture for the study population was likely incomplete as the exist-

ing EHR data may not incorporate vaccinations administered at external hospitals, clinics, or

pharmacies [56]. Moreover, the availability and distribution of vaccines across our participat-

ing multinational healthcare systems were not standardized [57]. While vaccination status

influences the risk of hospitalization in acute COVID-19, our study design was standardized to

include only hospitalized patients. By evaluating only hospitalized patients in the pre-omicron

period, we reduced the potential unmeasured confounding from vaccination status. In future

studies, we will examine the outcomes of neurological manifestations during acute COVID-19

in sub-populations with confirmed vaccination status and across time periods to adjust for the

increasing frequency of vaccination over time.

Fourth, the sample size of children hospitalized with acute COVID-19 was relatively modest

(n = 2,198) but comparable to the only other known multinational study of neurological mani-

festations in both adults and children during acute COVID-19 hospitalization [20]. Reassur-

ingly, the frequency of neurological diagnoses in children versus adults are mostly consistent

between our two studies. Overall, the inclusion of pediatric patients enhanced the diversity of

our study population, permitted validation of the pediatric frequency of neurological condi-

tions, and provided a basis for future studies.

Fifth, the available data collection from the 21 participating healthcare systems does not

support a more rigorous subgroup analysis by age groups. While nearly 80% of the study popu-

lation was� 50 years of age, we acknowledge the possibility that the limited variation in the

age of our adult study cohort may have introduced biases that could possibly reduce the gener-

alizability of our findings. Study cohorts with even greater variation in age than the current

dataset would be necessary to examine the interaction between age and neurological diagnoses

with respect to adverse outcomes in hospitalized acute COVID-19 patients.

Finally, the pre-defined key aim of our study was to distinguish the risks between central

and peripheral nervous system diagnoses during acute COVID-19 hospitalization. Indeed, our

main findings of the higher risk for prolonged hospital stay and mortality among hospitalized

patients with acute COVID-19 and a concurrent central nervous system diagnosis are still
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clinically relevant. While the analysis of more granular neurological groups or individual neu-

rological diagnoses could be informative, additional stratified analyses would reduce statistical

power (given the fewer events per group) to draw clinically meaningful conclusions. To prop-

erly conduct stratified analyses leveraging clinically meaningful neurological diagnosis groups

or individual neurological diagnosis from the EHR data, we would require substantially larger

cohorts for future analyses.

Conclusion

In this large multinational and geographically diverse cohort with a federated framework for

leveraging locally curated EHR data for clinical discovery, we analyzed the clinical outcomes of

both hospitalized adult and pediatric COVID-19 patients with concurrent CNS or PNS diag-

nosis. Adults with concurrent CNS diagnosis during COVID-19 hospitalization harbored

greater burden of pre-existing health conditions and had greater risk of poor clinical outcomes

(prolonged hospitalization and death) when compared to those with PNS diagnosis or no neu-

rological diagnosis. We observed similar patterns in children though the overall low frequency

of events prohibited a formal survival analysis. Our study underscores the need for careful

evaluation and prompt treatment of neurological conditions, particularly those involving the

CNS, in hospitalized COVID-19 patients. Future investigation of the impact of the pre-existing

and concurrent neurological conditions during the acute phase of COVID-19 on post-acute

sequelae of COVID-19 will be crucial for both adults and children.

Supporting information

S1 Fig. Frequency of concurrent neurological diagnoses among hospitalized children (A)

and adults (B) with acute COVID-19 who reached severe status or died. For mortality and

severity, we reported the total number and proportion of patients who met the clinical end-

point and had the associated neurological diagnosis code (i.e., ICD-10 code). Neurological

diagnoses are listed in descending order of overall frequency.

(PDF)

S2 Fig. Meta-analysis of the risk of adverse clinical outcomes stratified by concurrent neu-

rological status and outcome during acute COVID-19 hospitalizations in adults. Adverse

outcomes include lower risk of hospital discharge and higher risk of mortality. Neurological

status during COVID-19 hospitalization included any central nervous system (CNS) diagnosis

(A, C) or any peripheral nervous system (PNS) diagnosis (B, D). Black circles indicate the

local healthcare system-level hazard ratio derived from the Cox proportional hazards model.

The red diamond represents the pooled effect size derived from the random-effects meta-anal-

ysis. The effect size and associated p-value derived from meta-analysis are reported in Table 2

of the main text. We also report the following metrics: I2 (95% CI), the estimated proportion

of variance due to differences among healthcare systems; (Tau) τ2, the between-healthcare sys-

tem variance; Prediction Interval, the predicted effect size if we were to add a new healthcare

system to the analysis. We excluded two adult healthcare systems (NUH and UKFR) from the

meta-analysis due to low frequency of neurological diagnoses in their patient populations

(< 1% of adult patients).

(PDF)

S3 Fig. Adult and pediatric pre-admission health conditions across healthcare systems.

Each grouped stacked bar chart represents the normalized distribution (%) of adults (A) or

children (B) with a specific pre-admission health condition (that collectively constitute the

Elixhauser Comorbidity Index) at each healthcare system for each neurological status during
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acute COVID-19 hospitalization. Neurological status included no neurological condition

(NNC), central nervous system (CNS) diagnosis, and peripheral nervous system (PNS) diag-

nosis. Each stacked bar represents a healthcare system. With nk indicating the number of

patients from healthcare system k for pre-admission health condition c, and n1, n2, and n3

indicating the number of patients from the NNC, PNS, and CNS group, respectively, we

summed patients at each system as nk = n1+n2+n3. Missing bars indicate no patients for the

given pre-admission health condition at a healthcare system (nk = n1 = n2 = n3 = 0). A bar

with a single color indicates that patients with a given pre-admission health condition c at that

healthcare system all had the same neurological status (e.g. nk = n1 or nk = n2 or nk = n3).

(PDF)

S4 Fig. Concordance of Cox proportional hazard models. Cox proportional hazard models

were constructed using three censor cutoff periods (30, 60, and 90 days) and three methods of

adjusting for pre-admission health conditions (i.e., pre-existing comorbidity burden): (1) the

inclusion of the 29 individual covariates (i.e., health conditions) comprising the Elixhauser

Comorbidity Index, (2) the Elixhauser summary score, and (3) the top 10 principal compo-

nents computed from logistic principal component analysis (LPCA). Violin plots represent the

distribution of concordance across healthcare systems (each black dot representing the con-

cordance from a specific healthcare system).

(PDF)

S5 Fig. Hazard ratios of a random effects meta-analysis of locally estimated Cox propor-

tional hazard models. Cox proportional hazard models were constructed using three censor

cutoff periods (30, 60, and 90 days) and three methods of adjusting for pre-admission health

conditions (or comorbidity burden): (1) the inclusion of the 29 individual covariates (health

conditions) comprising the Elixhauser Comorbidity Index, (2) the Elixhauser summary score,

and (3) the top 10 principal components computed from logistic principal component analysis

(LPCA). A random effects meta-analysis was performed to determine the pooled hazard ratio

(HR) and 95% confidence intervals of each outcome. The meta-analysis was performed sepa-

rately for central nervous system (CNS) and peripheral nervous system (PNS) diagnosis during

acute COVID-19 hospitalization to evaluate the risk of each outcome with respect to patients

with no neurological condition (NNC).

(PDF)

S6 Fig. Estimated hazard ratios by age group. For each outcome (hospital discharge, death),

we conducted a random-effects meta-analysis to estimate the pooled hazard ratio and 95%

confidence intervals for each age group using patients in the age group of 18–25 years as the

reference group. The pooled hazard ratio for hospitalized patients with acute COVID-19 and

concurrent central (CNS) and peripheral (PNS) nervous system diagnoses are also plotted as a

reference. Dashed lines demarcate the hazard ratio at 1.

(PDF)

S1 Table. Description of participating healthcare systems.

(PDF)

S2 Table. Descriptions of the parent ICD-10 diagnosis codes for classifying concurrent

central or peripheral nervous system manifestations during acute COVID-19 and their

subcategory diagnosis codes.

(PDF)

S3 Table. List of the parent category ICD-10 diagnosis codes mapped to each condition of

the Elixhauser Comorbidity Index and its associated weight. Notes: 1. Complicated and
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uncomplicated diabetes were combined as one condition. Likewise, complicated and uncom-

plicated hypertension were combined as one condition.

(PDF)

S4 Table. Descriptions of the parent category ICD-10 diagnosis codes mapped to each

condition of the Elixhauser Comorbidity Index. Notes: 1. Complicated and uncomplicated

diabetes were combined as one condition. Likewise, complicated and uncomplicated hyper-

tension were combined as one condition. 2. ICD-10 descriptions were curated using the icd R

package [1]. Supplemental Citation 1. Wasey JO, Frank SM, Rehman MA. icd: Efficient Com-

putation of Comorbidities from ICD Codes Using Sparse Matrix Multiplication in R. Journal

of Statistical Software. 2018. Available: https://jackwasey.github.io/icd/articles/efficiency-

prebuilt.pdf

(PDF)

S5 Table. Major categories of ICD-10 and ICD-9 codes representing central or peripheral

nervous system diagnoses in descending order of frequency observed in the adult popula-

tion. Notes: 1. ICD-10 code R42 was listed as peripheral though certain dizziness symptoms

could be of central origin. 2. ICD-10 code H54 and ICD-9 code 369 were listed as central but

there could be peripheral causes for blindness.

(PDF)

S6 Table. Relative risk (RR) of a concurrent central nervous system (CNS) or peripheral

nervous system (PNS) diagnosis during acute COVID-19 hospitalizations with respect to

each pre-admission health condition in descending order of the RR for the CNS diagnosis

in adults.1 Notes: 1. We could not conduct similar analyses in children due to the low fre-

quency of pre-admission health conditions in pediatric patients. Refer to S7 Table for the over-

all count and percentage of adult and pediatric patients with pre-admission health conditions

as stratified by neurological status. 2. Refer to S3–S4 Tables for detailed descriptions of ICD

codes comprising each component of the Elixhauser Comorbidity Index. 3. Complicated and

uncomplicated diabetes were combined as one condition. Likewise, complicated and uncom-

plicated hypertension were combined as one condition.

(PDF)

S7 Table. Count and percentage of adult and pediatric patients with pre-admission health

conditions as stratified by concurrent neurological status during acute COVID-19 hospi-

talization 1. Notes: 1. Neurological status during acute COVID-19 hospitalization: central ner-

vous system diagnosis (CNS), peripheral nervous system diagnosis (PNS), no neurological

condition (NNC). 2. Refer to S3–S4 Tables for detailed descriptions of ICD codes comprising

each component of the Elixhauser Comorbidity Index. 3. N = the total number of adult or

pediatric patients with the pre-admission health condition; the corresponding percentage is

out of the total adult or pediatric population. 4. Percentages in the NNC, CNS, and PNS col-

umns reflect the percent of patients with the respective neurological status who have the indi-

cated pre-admission health condition. 5. Complicated and uncomplicated diabetes were

combined as one condition. Likewise, complicated and uncomplicated hypertension were

combined as one condition.

(PDF)

S8 Table. Pointwise mutual information (PMI) of a central nervous system (CNS) or

peripheral nervous system (PNS) diagnosis co-occurring with severe COVID-19 disease

during acute COVID-19 hospitalization. Notes: 1. We report each healthcare system’s total

number of severe and neurological patients used to calculate the PMI at each healthcare
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system. PMI >0 indicates more frequent co-occurrence (between a CNS or a PNS diagnosis

and severe COVID-19 status) than independent assumptions. 2. Severe COVID-19 status was

based on previously published computable phenotypes, including diagnosis of pneumonia

and/or acute respiratory distress syndrome, need for mechanical ventilation, sedation, and/or

medication administration for shock [1]. 3. 95% confidence intervals were estimated using 500

bootstrapped samples. 4. Bold findings indicate statistically significant results. Supplemental

Citation 1. Klann, J. G. et al. Validation of an internationally derived patient severity pheno-

type to support COVID-19 analytics from electronic health record data. Journal of the Ameri-
can Medical Informatics Association 28: 1411–1420 (2021).

(PDF)

S9 Table. Adult Population Characteristics. Notes: 1. Neurological status during acute

COVID-19 hospitalization: NNC = No Neurological Condition; CNS = Central Nervous Sys-

tem diagnosis; PNS = Peripheral Nervous System diagnosis. 2. P-values were adjusted with the

Benjamini-Hochberg method to control the false discovery rate when evaluating the distribu-

tion (categorical variables) or means (continuous variables) of characteristics stratified by neu-

rological status. P-values < .05 were deemed significant and designated with asterisk (*). 3.

Continuous variables reflect the overall cohort mean and standard deviation (SD) of the

median values reported by each healthcare system. 4. We report the top 4 most frequent pre-

admission health conditions (i.e., comorbidities) in the adult population. Please see S7 Table

for all pre-admission health conditions stratified by neurological status during acute COVID-

19 hospitalization. 5. We could not compute chi-square statistic for the mean number of pre-

admission CNS codes, due to every healthcare system having a median value of 0.

(PDF)

S10 Table. Pediatric Population Characteristics. Notes: 1. Neurological status during acute

COVID-19 hospitalization: NNC = No Neurological Condition; CNS = Central Nervous Sys-

tem diagnosis; PNS = Peripheral Nervous System diagnosis. 2. P-values were adjusted with the

Benjamini-Hochberg method to control the false discovery rate when evaluating the distribu-

tion (categorical variables) or means (continuous variables) of characteristics stratified by neu-

rological status. P-values < .05 were deemed significant and designated with asterisk (*). 3.

Continuous variables reflect the overall cohort mean and standard deviation (SD) of the

median values reported by each healthcare system. 4. We report the top 4 most frequent pre-

admission health conditions (i.e., comorbidities) in the pediatric population. Please see S7

Table for all pre-admission health conditions stratified by neurological status during acute

COVID-19 hospitalization.

(PDF)

S1 Methods. Protecting Patient Confidentiality.

(PDF)

S2 Methods. Logistic Principal Component Analysis.

(PDF)
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