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Abstract

Artificial Intelligence (AI), encompassing Machine Learning and Deep Learning, has

increasingly been applied to fracture detection using diverse imaging modalities and data

types. This systematic review and meta-analysis aimed to assess the efficacy of AI in

detecting fractures through various imaging modalities and data types (image, tabular, or

both) and to synthesize the existing evidence related to AI-based fracture detection. Peer-

reviewed studies developing and validating AI for fracture detection were identified through

searches in multiple electronic databases without time limitations. A hierarchical meta-anal-

ysis model was used to calculate pooled sensitivity and specificity. A diagnostic accuracy

quality assessment was performed to evaluate bias and applicability. Of the 66 eligible stud-

ies, 54 identified fractures using imaging-related data, nine using tabular data, and three

using both. Vertebral fractures were the most common outcome (n = 20), followed by hip

fractures (n = 18). Hip fractures exhibited the highest pooled sensitivity (92%; 95% CI: 87–

96, p< 0.01) and specificity (90%; 95% CI: 85–93, p< 0.01). Pooled sensitivity and specificity

using image data (92%; 95% CI: 90–94, p< 0.01; and 91%; 95% CI: 88–93, p < 0.01) were

higher than those using tabular data (81%; 95% CI: 77–85, p< 0.01; and 83%; 95% CI: 76–

88, p < 0.01), respectively. Radiographs demonstrated the highest pooled sensitivity (94%;

95% CI: 90–96, p < 0.01) and specificity (92%; 95% CI: 89–94, p< 0.01). Patient selection

and reference standards were major concerns in assessing diagnostic accuracy for bias

and applicability. AI displays high diagnostic accuracy for various fracture outcomes, indicat-

ing potential utility in healthcare systems for fracture diagnosis. However, enhanced trans-

parency in reporting and adherence to standardized guidelines are necessary to improve

the clinical applicability of AI.

Review Registration: PROSPERO (CRD42021240359).

Author summary

Artificial Intelligence (AI) is increasingly employed to detect fractures by using various

imaging modalities and data types. Our search of Medline (via PubMed), Web of Science,
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and IEEE revealed numerous primary studies demonstrating AI’s superior performance

in fracture detection. This systematic review and meta-analysis is the first to assess and

compare the diagnostic accuracy of AI models across different imaging modalities and

data types for various fracture outcomes. We found that AI models achieve high accuracy

in fracture detection, particularly with radiograph images. However, we identified signifi-

cant flaws in study design and reporting, limiting real-world applicability. Few studies

provided patient characteristics, and only half reported the hyperparameter selection pro-

cess. Our findings underscore the benefits of using AI models with radiographs for frac-

ture detection, as they outperform other imaging modalities. Despite similar results across

modalities, inadequate methodology and reporting in AI model evaluations call for

improvement. Considering AI’s high diagnostic performance, integrating it into existing

fracture risk assessment tools could enhance patient identification and enable early

intervention.

Introduction

Bone fractures represent a significant public health concern globally [1], particularly for indi-

viduals with osteoporosis [2]. Fractures contribute to work absences, disability, reduced quality

of life, health complications, and increased healthcare costs, affecting individuals, families, and

societies [3,4]. A meta-analysis of 113 studies reported the pooled cost of hospital treatment

for a hip fracture after 12 months as $10,075, with total health and social care costs amounting

to $43,669 per hip fracture [5].

Artificial Intelligence (AI), encompassing Machine Learning (ML) and Deep Learning

(DL), has been extensively employed for fracture outcome prediction due to technological

advancements and accessibility. Various imaging modalities, including X-rays [6,7], computed

tomography (CT) [8,9], and magnetic resonance imaging (MRI) [10,11], have been used in

fracture diagnosis and detection. AI can also predict fractures using tabular data, such as elec-

tronic medical records (structured patient-level data). However, few studies [12–14] have

applied AI with tabular data in fracture prediction despite its growing importance over the

past decade. Recent systematic reviews and meta-analyses have reported high accuracy for AI

in fracture detection and classification. Kuo et al. [15] summarized 42 studies with 115 contin-

gency tables, finding pooled sensitivity of 92% (95% CI: 88, 94) and specificity of 91% (95% CI:

88, 93). Yang et al. [16] reviewed 14 studies on orthopedic fractures, reporting pooled sensitiv-

ity and specificity of DL models as 87% (95% CI: 78, 93) and 91% (95% CI: 85, 95),

respectively.

However, existing systematic review and meta-analysis studies focused solely on image-

based analyses, neglecting comprehensive examination of various imaging modalities and data

types (image, tabular, or both). Despite the superior performance of AI for medical image anal-

ysis and using tabular data, a critical gap exists in the current literature concerning the optimal

choice of image modalities and the choice between image, tabular, or combined data types.

There is a lack of comprehensive guidance on the most effective selection of image modalities

and data types for fracture diagnosis. This gap in knowledge underscores the need for system-

atic investigation to determine which image modality, and by extension, which data type,

yields the highest diagnostic accuracy and clinical relevance in AL algorithms. Addressing this

gap will not only optimize the design of AI-based diagnostic tools but also enable healthcare

practitioners to make informed decisions when selecting appropriate imaging modalities and

data types for improved patient care.
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Thus, this study primarily aims to evaluate the diagnostic accuracy of AI in fracture detec-

tion using diverse imaging modalities and data types, reflecting AI’s growing role in health-

care. Additionally, we seek to synthesize current evidence on AI-based fracture detection,

offering a concise overview and discerning the strengths and limitations of various data types,

whether image, tabular, or combined.

Materials and methods

Identification and selection of studies

This systematic review, registered with PROSPERO (CRD42021240359), follows PRISMA

guidelines (S1 PRISMA Checklist) [17]. We searched Medline (via PubMed), Web of Science,

and IEEE. The last search was conducted on December 15, 2022, and we manually searched

bibliographies, citations, and related articles of included studies. S1 Text lists each search

term. Two independent reviewers (JJ and JD) assessed study eligibility, resolving disagree-

ments through discussion or involving a third author (BL) if necessary.

Eligible studies predicted fracture outcomes using structured patient-level health data (elec-

tronic health records and cohort studies data) and image-related data (MRI, DXA, and X-ray).

We excluded reviews, gray literature, non-human subject studies, studies without machine

learning or deep learning models, fracture outcomes, AUC, accuracy, sensitivity, specificity,

validation, and insufficient algorithm development details. We only considered studies pub-

lished in English without time restrictions.

Data extraction

All three categories of data were considered: image-related, tabular, and both. Image-type

studies used MRI, DXA, CT, or X-ray; tabular-type studies used structured electronic health

records data; image and tabular studies used both data types. Two investigators (JJ and JD)

independently evaluated study eligibility, extracting relevant data for articles meeting inclusion

criteria. A structured data collection form was used to capture general study characteristics,

population, data preprocessing, clinical outcomes, analytical methods, and results. A third

author (BL) resolved discrepancies if necessary. We constructed the contingency table (true

positive, true negative, false positive, and false negative) based on the provided information of

sensitivity, specificity, positive predictive value, and negative predictive value for each study

(S4 Table). If the study reported multiple sensitivity and specificity, we used the highest sensi-

tivity and specificity.

Statistical analysis

Meta-analyses were performed using a random-effects model to calculate the pooled sensitivity

and specificity based on logit transformation [18,19], using the Clopper-Pearson interval to

calculate 95% confidence intervals for each study [20]. We used a unified hierarchical sum-

mary receiver operating characteristic curve (HSROC) to investigate the relationship between

logit-transformed sensitivity and specificity. We calculated the diagnostic odds ratio and used

inverse variance weighting for pooling with random effect models [21].

Sensitivity analysis

The logit transformation does not consider the correlation between sensitivity, specificity, and

threshold effects; another model is desired to capture this missing part. Barendregt et al. [22]

recommend using the Freeman-Tukey double arcsine transformation instead of the logit
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transformation. Hence, we used the Freeman-Tukey double arcsine transformation as a sensi-

tivity analysis [22] for a random-effects model.

Subgroup analysis

Two subgroup analyses were conducted: 1) three data types (images, tabular, or images and

tabular) and 2) different image modalities among image data used in AI. Statistical analysis

was performed using R [23], with ‘meta’ [24] and ‘mada’ [25] packages. A p-value of< 0.05

was considered statistically significant.

Publication bias

We utilized the contour-enhanced funnel plot [26] to illustrate the assessment of publication

bias for each fracture outcome and data type used. Each data point in the contour-enhanced

funnel plot represents an individual study, and the plot incorporates contour lines that delin-

eate expected areas of symmetry in the absence of bias. The plot provides insights into poten-

tial publication bias, with asymmetry suggesting a deviation from expected publication

patterns. We employed the trim-and-fill method to address publication bias [22] further. This

statistical approach helps adjust for the potential missing studies due to publication bias by

imputing hypothetical “filled” studies and recalculating the effect size accordingly.

Risk of bias and applicability

Two reviewers (JJ and JD) independently evaluated the risk of bias in each study using Quality

Assessment of Diagnostic Accuracy Studies (QUADAS-2) [27], assessing four domains:

patient selection, index test, reference standard, and flow and timing. The risk of applicability

was evaluated with the first three domains.

Results

Study selection and characteristics

Our search identified 1,128 studies, yielding 717 unique ones after removing duplicates (Fig

1). We screened titles and abstracts and selected 496 studies for full-text review based on our

inclusion criteria. We then excluded 254 studies for lacking sensitivity and specificity informa-

tion (149 studies), not having fracture-related outcomes (75 studies), not using ML models (28

studies), or being survey or review articles (2 studies). We further removed 176 studies because

no contingency table could be calculated from the provided information. Ultimately, 66 stud-

ies were included in our systematic review and meta-analysis.

The selected studies were published between 2007 and 2022, with 73% (48 studies) pub-

lished in the last three years (Table 1). The studies were conducted in various countries,

including Asian countries (26 studies) [6,9,11,28–50], North American countries (19 stud-

ies) [14,34,36,51–66], European countries (14 studies) [13,59,67–78], Australia (1 study)

[79] and Brazil (2 studies) [10,80] (Table 1). Four studies did not provide the country infor-

mation [81–84].

Fracture identification was performed using imaging-related data in 54 studies, tabular data

in nine studies, and imaging and tabular data in three. Of the 57 studies using imaging-related

and combined data, 33 analyzed radiograph images [6,7,28–31,35–38,40–42,45,47–49,52–

57,59,61,62,66–68,72–74,78], 12 analyzed computed tomography (CT) images

[8,9,39,43,50,63,65,69,75,81–83], and the remaining studies analyzed other imaging modalities

(S1 Table, and S2 Table). The most common fracture outcome was vertebral fracture (20
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studies) [8,10,11,28,31,34,35,38,44,46,50,51,58,59,65,72,77,80,83,84], followed by hip

[6,13,29,32,33,37,39–43,48,53,62,64,66,68,79], and other fracture types (Table 1).

AI algorithms summary

Among the 54 studies that utilized imaging-related data, convolutional neural networks

(CNN), a deep learning approach, emerged as the predominant choice, followed by instances

where transfer learning was adopted. In some cases, the limited availability of labeled image

data prompted the utilization of transfer learning [53,69], and certain studies incorporated

pre-trained CNNs with non-fracture-related radiological images [6,28,85]. The prevailing pref-

erence was for fully connected artificial neural networks within the subset of nine studies

involving tabular data. Logistic regression and ensemble learning models were commonly

employed, including Random Forest, Gradient Boosting, and XGBoost. Among the three stud-

ies that harnessed both image and tabular data, a notable trend was the adoption of the support

vector machine with various kernel models [57,68].

Handling imbalanced data and data augmentation

Imbalanced fracture outcomes were reported in 48 studies (S3 Table). Only 12 studies

addressed the handling of imbalance outcomes during model development, using Synthetic

Minority Over-sampling Technique (SMOTE) [86] or undersampling [35]. Data

Fig 1. Flow chart of the literature selection in PubMed, Web of Science, and Institute of Electrical and Electronics

Engineers (search conducted on December 15, 2022). *IEEE: Institute of Electrical and Electronics Engineers.

https://doi.org/10.1371/journal.pdig.0000438.g001
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Table 1. Fracture detection of 66 selected studies using machine learning and deep learning models and general characteristics of the study.

First author (Year

published)

Country Data type Outcome Model

Almog et al. (2020) [12] USA Tabular Osteoporotic Fracture XGBoost, Ensemble

Bae et al. (2021) [7] Canada Image Femoral Neck CNN, Four Different Convolutional Block Attention

Modules

Beyaz et al. (2020) [67] Turkey Image Femoral Neck CNN

Burns et al. (2017) [8] USA Image Vertebral SVM

Chen et al. (2021) [28] Taiwan Image Vertebral CNN

Chen et al. (2022) [46] China Image Vertebral CNN, Other: Used ResNetSt-50 as the backbone network

of the baseline model

Cheng et al. (2019) [6] Taiwan Image Hip CNN

Cheng et al. (2020) [29] Taiwan Image Hip CNN

Cheng et al. (2021) [30] Taiwan Image Hip CNN

Choi et al. (2020) [47] South Korea Image Supracondylar CNN

Chou et al. (2022) [31] Taiwan Image Vertebral CNN, Transfer Learning, Ensemble model (ResNet34,

DenseNet121, DenseNet201)

Chung et al. (2018) [45] Korea Image Proximal humerus CNN

Derkatch et al. (2019)

[51]

Canada Image Vertebral CNN

Galassi et al. (2020) [68] Spain Tabular

+Image

Hip LR, SVM, Decision Trees, Random Forest

Guermazi et al. (2022)

[52]

USA Image Hip, Wrist, Pelvic, Thoracolumbar, Foot,

Ankle, Arm, Shoulder, Rib

Detectron2

Gupta et al. (2020) [53] USA Image Hip Transfer Learning: used VGG16 architecture with pre-

trained weights using the ImageNet

Hayashi et al. (2022)

[54]

USA Image Hand, Elbow, Shoulder, Foot, Leg Detectron2

Ho-Le et al. (2017) [79] Australia Tabular Hip ANN, KNN, SVM

Inoue et al. (2022) [9] Japan Image Pelvic, Spine, Rib CNN

Kim et al. (2018) [69] England Image Wrist Inception v3 CNN model (transfer learning, trained in

non-fracture images)

Kitamura et al. (2020)

[55]

USA Image Hip CNN

Korfiatis et al. (2018)

[81]

NA Image Trabecular bone Multilayer Perceptron

SVM

Kruse et al. (2017) [13] Denmark Tabular Hip Twenty-four statistical models were built

Del Lama et al. (2022)

[80]

Brazil Tabular

+Image

Vertebral CNN, Multilayer Perceptron

Lemineur et al. (2007)

[70]

France Tabular Osteoporotic Fracture ANN

Lindsey et al. (2018)

[56]

USA Image Wrist CNN

Liu et al. (2015) [32] Taiwan Tabular Hip ANN

Liu et al. (2022) [48] China Image Hip CNN

Mawatari et al. (2020)

[37]

Japan Image Hip CNN

Mehta et al. (2020) [57] USA Tabular

+Image

Lumbar Spine SVM with a different kernel

Minonzio et al. (2020)

[71]

France Image Hip SVM, LR

Monchka et al. (2021)

[58]

Canada Image Vertebral CNN

(Continued)
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Table 1. (Continued)

First author (Year

published)

Country Data type Outcome Model

Monchka et al. (2022)

[59]

Switzerland,

Canada

Image Vertebral CNN, Active Learning

Mu et al. (2021) [49] China Image Femoral Neck CNN

Murata et al. (2020) [38] Japan Image Vertebral CNN

Mutasa et al. (2020) [60] USA Image Femoral Neck CNN

Nguyen et al. (2022)

[61]

USA Image Foot, Ankle, Knee, Leg, Hand, Wrist, Elbow,

Arm, Shoulder, Clavicle

CNN

Nishiyama et al. (2014)

[39]

Japan Image Hip SVM

Nissinen et al. (2021)

[72]

Finland Image Vertebral CNN

Oakden-Rayner et al.

(2022) [62]

USA, Australia Image Hip CNN

Ozkaya et al. (2022) [73] Turkey Image Scaphoid CNN

Raghavendra et al.

(2018) [82]

NA Image Thoracolumbar CNN

Raisuddin et al. (2021)

[74]

Finland Image Wrist CNN

Ramos et al. (2022) [10] Brazil Image Vertebral CNN, SVM, KNN, ExtraTrees, QDA

Regnard et al. (2022)

[75]

France Image Pelvic, Limbs CNN

Rosenberg et al. (2022)

[76]

Italy Image Thoracolumbar CNN

Salehinejad et al. (2021)

[83]

NA Image Vertebral CNN with ResNet-50+BLSTM layer

Sato et al. (2021) [40] Japan Image Hip CNN with EfficientNet-B4 model (a pre-trained

ImageNet model)

Small et al. (2021) [63] USA Image Cervical Spine CNN

Su et al. (2019) [64] USA Tabular Hip Classification and regression tree

Tomita et al. (2018) [65] USA Image Vertebral CNN

Tseng et al. (2013) [33] Taiwan Tabular Hip LR, Ensemble ANN

Ulivier et al. (2021) [77] Italy Tabular Vertebral ANN

Urakawa et al. (2019)

[41]

Japan Image Hip Transfer learning of CNN (VGG_16 network)

Ureten et al. (2022) [78] Turkey Image Hand Transfer Learning

Wang et al. (2022) [84] NA Image Vertebral CNN

Wu et al. (2020) [14] USA Tabular Major Osteoporotic Fractures LR, GB, RF, ANN

Yabu et al. (2021) [11] Japan Image Vertebral CNN

Yamada et al. (2020)

[42]

Japan Image Hip CNN

Yamamoto et al. (2020)

[43]

Japan Image Hip CNN

Yeh et al. (2022) [34] Taiwan, USA Image Vertebral Transfer Learning

Yi-Chu Li et al. (2021)

[35]

Taiwan Image Vertebral Transfer learning, Ensemble model

Yoda et al. (2022) [44] Japan Image Vertebral CNN, Transfer Learning

Yoon et al. (2021) [36] Taiwan, USA Image Scaphoid CNN

Yu et al. (2020) [66] USA Image Hip Transfer Learning

(Continued)
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augmentation was frequently utilized in image studies, including horizontal and vertical rota-

tion [45,50,58,67,69,72], adding Gaussian noise [67], random rescaling and flipping [30,53],

mirroring, and lighting and contrast adjustments [56].

Hyperparameter optimization

Thirty-six studies reported the detailed process for optimizing hyperparameters in the final

selected models (S3 Table). Beyaz et al. utilized genetic algorithms to identify the optimal

hyperparameters for their CNN architecture [67]. Liu et al. explored the impact of varying the

number of hidden neurons in the output layer [32]. Nissinen et al. [72] employed two

approaches for hyperparameter searches: random search [87] and hyperband [88].

Data split and validation in an external data set

Fifty-one studies reported the split sample for model development (training) and validation (test-

ing) (S3 Table). No universal rule of data separation was found. A different set of split samples was

utilized, e.g., 80% training and 20% testing [10,28,47,57,71], 90% training and 10% testing

[32,33,56,81], and 80% training, 10% validation, and 10% testing [40,41,65,69]. Twenty studies

reported the cross-validation with 20-folds [66], 10-folds [8,14,33,34,39,45,50,53,57,64,72,76,80,81],

5-folds [13,28,32,38,44,46,48,67,74,78,79], and 7-folds [83]. Thirteen studies performed an out-of-

sample external validation [6,7,29–31,35,47,49,56,59,62,72,74]. Choi et al. [47] performed external

tests using two types of distinct datasets: temporal data, which was obtained at a different period

from the model development, and other geographically separated data, which was collected from a

different center. Li et al. [35] utilized a dataset from another medical center that used a different

plain radiographic technique.

Meta-analysis

We extracted 66 contingency tables for each selected study (S4 Table). The overall pooled sen-

sitivity and specificity, calculated using logit transformation, were 91% (95% CI: 88, 93) and

90% (95% CI: 88, 92), respectively (Table 2). The pooled sensitivities for hip and vertebral frac-

tures were found to be 92% (95% CI: 87–96) and 86% (95% CI: 82–89), respectively, while the

pooled specificities for these fractures were 90% (95% CI: 85–93) and 86% (95% CI: 81–90),

respectively (Table 2). The unified hierarchical summary receiver operating characteristic

curve for different fracture types is shown in Fig 2. The area under the curve (AUC) was high-

est for femoral neck fractures at 0.98, followed by other fractures (0.97), multiple fractures

(0.93), hip fractures (0.91), wrist (0.86), and vertebral (0.84).

Sensitivity analysis

Arcsine transformation yielded similar results with the pooled sensitivity at 89% (95% CI: 87,

91) and specificity at 88% (95% CI: 86, 91). Among data types, studies using only image data

Table 1. (Continued)

First author (Year

published)

Country Data type Outcome Model

Yuan Li et al. (2021)

[50]

China Image Vertebral CNN (ResNet50)

CNN, Convolution Neural Network; SVM, Support Vector Machine; LR, Logistic Regression; RF, Random Forest; ANN, Artificial Neural Network; MLP, Multi Layers

Perceptron; KNN, K-Nearest Neighbors; GB, Gradient Boosting; NLP, Natural Language Processing; QDA, Quadratic Discriminant Analysis

https://doi.org/10.1371/journal.pdig.0000438.t001
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Table 2. Pooled Sensitivities, Specificities, and Diagnostic Odds Ratio for 60 studies in different fractures outcome. Studies with only one selected fracture outcome

(cervical spine, hand, lumber spine, proximal humerus, supracondylar, and trabecular bone) were omitted.

Outcome Sensitivity (%)1) Specificity (%)1) Sensitivity (%)2) Specificity (%)2) Diagnostic Odds Ratio No. of Studies included

Overall 0.91 (0.88, 0.93) 0.90 (0.88, 0.92) 0.89 (0.87, 0.91) 0.88 (0.86, 0.91) 81.14 (53.69, 122.63) 66

Vertebral 0.86 (0.82, 0.89) 0.86 (0.81, 0.90) 0.86 (0.82, 0.89) 0.86 (0.81, 0.90) 38.26 (21.36, 68.51) 20

Hip 0.92 (0.87, 0.96) 0.90 (0.85, 0.93) 0.90 (0.85, 0.95) 0.89 (0.85, 0.93) 99.50 (39.37, 251.48) 18

Multiple* 0.90 (0.81, 0.96) 0.92 (0.87, 0.95) 0.88 (0.81, 0.94) 0.91 (0.85, 0.95) 88.71 (33.54, 234.64) 11

Femoral Neck 0.94 (0.87, 0.97) 0.90 (0.64, 0.98) 0.93 (0.86, 0.98) 0.85 (0.68, 0.97) 125.82 (10.96, 1444.74) 4

Wrist 0.90 (0.76, 0.96) 0.93 (0.85, 0.97) 0.89 (0.75, 0.97) 0.93 (0.85, 0.98) 105.68 (56.44, 197.89) 3

Scaphoid 0.92 (0.68, 0.98) 0.81 (0.54, 0.94) 0.89 (0.61, 1.00) 0.80 (0.49, 0.98) 65.27 (44.16, 96.46) 2

Thoracolumbar 0.97 (0.84, 0.99) 0.92 (0.90, 0.95) 0.95 (0.80, 1.00) 0.92 (0.90, 0.95) 278.30 (15.99, 4843.58) 2

Data in parentheses are 95% confidence intervals.
1): the logit transformation was used to calculate the pooled sensitivity and specificity.
2): the arcsine transformation was used to calculate the pooled sensitivity and specificity.

*Multiple fractures outcome studies include hip and pelvic (2), hip and spine (1), major osteoporotic fractures (1), multiple (3), osteoporotic fractures (2), pelvic and

limbs (1), pelvic, spine, and rib (1).

https://doi.org/10.1371/journal.pdig.0000438.t002

Fig 2. The hierarchical summary receiver operating characteristic curve for different fracture types in the meta-analysis. A: Hip (18 studies), B: Vertebral

(20 studies), C: Wrist (3 studies), D: Femoral Neck (4 studies), E: Multiple (11 studies), and F: Others (10 studies).

https://doi.org/10.1371/journal.pdig.0000438.g002
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exhibited superior diagnostic performance with sensitivity and specificity at 91% (95% CI: 88,

93) and 89% (95% CI: 78, 91) using the arcsine transformation (Table 3). Studies employing

radiographs displayed the highest sensitivity (92% [95% CI: 89, 95]) and specificity (90% [95%

CI: 87, 93]) using the arcsine transformation (Table 4).

Subgroup analysis

Among data types, studies using only image data exhibited superior diagnostic performance

with sensitivity and specificity at 92% (95% CI: 90, 94) and 91% (95% CI: 88, 93), respectively,

when using logit transformation (Table 3). Studies employing radiographs displayed the high-

est sensitivity (94% [95% CI: 90, 96]) and specificity (92% [95% CI: 89, 94]) using logit trans-

formation (Table 4). The AUC for radiograph studies (0.94) was higher than studies using

radiograph and CT together (0.89) or MRI alone (0.88). The diagnostic odds ratio (DOR) was

highest for hip fractures at 99.50 (95% CI: 39.37, 251.48) compared to vertebral fractures

(38.26 [95% CI: 21.36, 68.51]) (Table 2). The AUC for image data studies (0.96) was higher

than that for those using tabular and images together (0.83) or tabular data alone (0.81)

(Fig 3).

Publication bias

The assessment of publication bias encompassed each fracture outcome and the utilization of

distinct data types (S5 and S6 Tables, S1–S3 Figs). The Contour-Enhanced Funnel Plot illus-

trated the study distribution, and its enhanced contour facilitated the identification of poten-

tial bias (S1—S3 Figs). Notably, asymmetrical distribution was evident in the context of hip

and vertebral fracture outcomes, and the studies used image data only (S1 Fig and S3 Fig).

Table 3. Pooled Sensitivities, Specificities, and Diagnostic Odds Ratio for 66 studies in different data type used.

Data Type Sensitivity (%)1) Specificity (%)1) Sensitivity (%)2) Specificity (%)2) Diagnostic Odds Ratio No. of Studies included

Tabular 0.81 (0.77, 0.85) 0.83 (0.76, 0.88) 0.81 (0.76, 0.85) 0.82 (0.76, 0.87) 20.06 (12.14, 33.16) 9

Image 0.92 (0.90, 0.94) 0.91 (0.88, 0.93) 0.91 (0.88, 0.93) 0.89 (0.87, 0.91) 104.20 (65.12, 166.72) 54

Tabular + Image 0.84 (0.76, 0.89) 0.95 (0.88, 0.98) 0.84 (0.77, 0.90) 0.96 (0.89, 1.00) 73.15 (27.23, 196.52) 3

Data in parentheses are 95% confidence intervals.
1): the logit transformation was used to calculate the pooled sensitivity and specificity.
2): the arcsine transformation was used to calculate the pooled sensitivity and specificity.

https://doi.org/10.1371/journal.pdig.0000438.t003

Table 4. Pooled sensitivities, specifications, and diagnostic odds ratios for 54 studies (including three from the tabular and image data used) in different image

modalities. Studies with only one selected image modality (Radiograph + CT + MRI, Radiograph + MRI, UGWSI) were omitted.

Image Modality Sensitivity (%)1) Specificity (%)1) Sensitivity (%)2) Specificity (%)2) Diagnostic Odds Ratio No. of Studies included

CT 0.89 (0.80, 0.94) 0.90 (0.85, 0.93) 0.86 (0.79, 0.92) 0.89 (0.84, 0.93) 67.16 (28.34, 159.18) 12

MRI 0.91 (0.83, 0.95) 0.89 (0.84, 0.93) 0.91 (0.84, 0.96) 0.91 (0.84, 0.95) 89.46 (26.41, 302.99) 5

Radiograph 0.94 (0.90, 0.96) 0.92 (0.89, 0.94) 0.92 (0.89, 0.95) 0.90 (0.87, 0.93) 150.92 (76.75, 296.78) 33

Radiograph + CT 0.93 (0.79, 0.98) 0.84 (0.81, 0.87) 0.92 (0.75, 1.00) 0.84 (0.80, 0.88) 66.11 (16.48, 265.26) 2

VFAI 0.87 (0.86, 0.89) 0.88 (0.87, 0.89) 0.87 (0.86, 0.89) 0.88 (0.87, 0.89) 50.64 (42.14, 60.86) 2

Data in parentheses are 95% confidence intervals.
1): the logit transformation was used to calculate the pooled sensitivity and specificity.
2): the arcsine transformation was used to calculate the pooled sensitivity and specificity.

UGWSI: Ultrasonic Guided Wave Spectrum Image, VFAI: Vertebral Fracture Assessment Image

https://doi.org/10.1371/journal.pdig.0000438.t004
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This asymmetry implies the presence of possible publication bias, particularly pronounced in

studies with smaller sample sizes. However, the trim-and-fill method corrected this asymme-

try, rendering the distribution symmetrical (S2 Fig and S3 Fig). After using the trim-and-fill

method to adjust for publication bias, the diagnostic odds ratio (DOR) has revealed that the

effect size remains statistically significant (S5 and S6 Tables).

Risk of bias and applicability

The assessment of bias and applicability for 66 studies revealed moderate to low concerns

(Table 5 and Fig 4). Patient selection and reference standards were the primary concerns for

bias and applicability. Many studies lacked the reporting of sample characteristics such as gen-

der and age, limiting generalizability. Some studies did not report patient selection or refer-

ence standard computation methods [62,75,78]. Threshold adjustments in some studies might

have led to overfitting, reducing the generalizability of the models [72]. Most studies exhibited

applicability concerns and needed to be more easily generalizable to other populations. For

example, one study [66] focused on patients visiting the emergency department for acute prox-

imal femoral fracture, limiting generalizability to the general population. Another study

included patients with existing vertebral fractures, reducing generalizability to the general pop-

ulation. Data preprocessing often involves the removal of occult fractures, with some studies

excluding radiographic occult fractures requiring additional modalities for confirmation [53].

Other studies excluded images with uncertain, traumatic, or pathological fractures or those

with insufficient quality or resolution [58]. A few studies did not provide specific locations for

fracture types or specify which ones were included [12,70].

Discussion

Our systematic review and meta-analysis offer the most current and comprehensive evaluation

of the diagnostic accuracy of Artificial Intelligence (AI) for predicting various osteoporotic

fracture outcomes using various imaging modalities and data types. This study represents the

first systematic review and quantitative meta-analysis of AI’s diagnostic accuracy and compari-

son using different data types across multiple fracture outcomes. Our analysis reveals four

major findings. First, AI provides high classification accuracy for fracture detection when uti-

lizing imaging data, with a pooled sensitivity of 92% (95% CI: 90, 94). Convolutional neural

networks with transfer learning exhibit significantly high accuracy when using image data in

classifying fractures. Second, our study comprehensively reviews diagnostic accuracy among

Fig 3. Unified hierarchical summary receiver operating characteristic curve for different data types in the meta-analysis. A: image (54 studies), B: tabular

(9 studies), and C: image and tabular (3 studies).

https://doi.org/10.1371/journal.pdig.0000438.g003
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Table 5. The result of methodological quality for 66 included studies in the assessment of the risk of bias and applicability.

First author (Year

published)

RISK OF BIAS APPLICABILITY CONCERNS

PATIENT

SELECTION

INDEX

TEST

REFERENCE

STANDARD

FLOW AND

TIMING

PATIENT

SELECTION

INDEX

TEST

REFERENCE

STANDARD

Almog et al. (2020) [12] + + + + + + +

Bae et al. (2021) [7] + + + + + + +

Beyaz et al. (2020) [67] + + + + + + +

Burns et al. (2017) [8] − + + + − − +

Chen et al. (2021) [28] + + + + + + +

Chen et al. (2022) [46] + + + + + + +

Cheng et al. (2019) [6] + + + + + + +

Cheng et al. (2020) [29] + + + + + + +

Cheng et al. (2021) [30] + + + + + + +

Choi et al. (2020) [47] + + + + − + +

Chou et al. (2022) [31] + + + + + + +

Chung et al. (2018) [45] + + − + − + −
Derkatch et al. (2019)

[51]

+ + + + + + +

Galassi et al. (2020) [68] + + + + + + +

Guermazi et al. (2022)

[52]

+ + + + + + +

Gupta et al. (2020) [53] + + + + + + +

Hayashi et al. (2022) [54] + + + + − + +

Ho-Le et al. (2017) [79] − + + + + + +

Inoue et al. (2022) [9] + + + + − + +

Kim et al. (2018) [69] + + + + + + +

Kitamura et al. (2020)

[55]

+ + + + + + +

Korfiatis et al. (2018)

[81]

+ + + + − + +

Kruse et al. (2017) [13] + + + + + + +

Del Lama et al. (2022)

[80]

+ + + + + + +

Lemineur et al. (2007)

[70]

+ + − + − + −

Lindsey et al. (2018) [56] + + + + + + +

Liu et al. (2015) [32] + + + + + + +

Liu et al. (2022) [48] + + + + + + +

Mawatari et al. (2020)

[37]

+ + + + + + +

Mehta et al. (2020) [57] + + + + − + +

Minonzio et al. (2020)

[71]

+ − + + + − +

Monchka et al. (2021)

[58]

O + + + − + +

Monchka et al. (2022)

[59]

+ + + + + + +

Mu et al. (2021) [49] + + + + + + +

Murata et al. (2020) [38] + + + + + + +

Mutasa et al. (2020) [60] + + + O + + O

Nguyen et al. (2022) [61] + + + + + + +

(Continued)
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different image modalities with AI. While all image modalities provide comparable results, AI

with radiograph images yields the highest results with a pooled sensitivity of 94% (95% CI: 90,

96). Third, our sensitivity analysis, employing the arcsine transformation, which was comple-

mented by the primary analysis utilizing the logit transformation, provides the robustness of

our findings. Both methodologies yielded similar results regarding pooled sensitivity and

Table 5. (Continued)

First author (Year

published)

RISK OF BIAS APPLICABILITY CONCERNS

PATIENT

SELECTION

INDEX

TEST

REFERENCE

STANDARD

FLOW AND

TIMING

PATIENT

SELECTION

INDEX

TEST

REFERENCE

STANDARD

Nishiyama et al. (2014)

[39]

O + + + + + +

Nissinen et al. (2021)

[72]

+ + O + O + O

Oakden-Rayner et al.

(2022) [62]

+ + − + O + −

Ozkaya et al. (2022) [73] + + + + + + +

Raghavendra et al.

(2018) [82]

O + + + O + +

Raisuddin et al. (2021)

[74]

+ + + + + + +

Ramos et al. (2022) [10] + + + + + + +

Regnard et al. (2022)

[75]

− + + + − + +

Rosenberg et al. (2022)

[76]

+ + + + + + +

Salehinejad et al. (2021)

[83]

+ + + + + + +

Sato et al. (2021) [40] + + + + + + +

Small et al. (2021) [63] + + + + + + +

Su et al. (2019) [64] + + + + + + +

Tomita et al. (2018) [65] + + + + + + +

Tseng et al. (2013) [33] + + + + + + +

Ulivier et al. (2021) [77] + + + + + + +

Urakawa et al. (2019)

[41]

+ + + + + + +

Ureten et al. (2022) [78] − + + + − + +

Wang et al. (2022) [84] + + + + + + +

Wu et al. (2020) [14] + + + + + + +

Yabu et al. (2021) [11] + + + + + + +

Yamada et al. (2020) [42] + + + + + + +

Yamamoto et al. (2020)

[43]

+ + + + + + +

Yeh et al. (2022) [34] + − + + + + +

Yi-Chu Li et al. (2021)

[35]

+ + + + + + +

Yoda et al. (2022) [44] + + + + + + +

Yoon et al. (2021) [36] + + + + + + +

Yu et al. (2020) [66] + + + + + + +

Yuan Li et al. (2021) [50] + + + + + + +

+: Low risk of bias/no concerns regarding applicability, −: High risk of bias/concerns regarding applicability, O: Unclear risk of bias/unclear whether there are concerns

regarding applicability.

https://doi.org/10.1371/journal.pdig.0000438.t005
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specificity, which underscores the reliability and consistency of our findings. Fourth, signifi-

cant flaws were observed in the study design and reporting of AI for real-world applicability.

For example, only a few studies described the patient characteristics of data, and only half

(n = 33) reported the hyperparameter selection process.

Our findings align with other systematic reviews and meta-analyses [15,16], showing that

AI demonstrates considerably higher pooled sensitivity and specificity. However, inconsistent

results have been observed when comparing different image modalities in fracture detection.

External validation enables a more robust demonstration of clinical utility versus simple inter-

nal train/test cross-validation. Our study shows that only thirteen studies (20%) out of sixty-

six performed external validation. The limitation of validating in an external dataset is the lack

of availability of large, labeled datasets due to resistance to sharing data across institutions

because of patient privacy issues and the necessity of experts for labeling the datasets. Although

external validation enhances the robustness of AI systems, it could potentially attenuate their

impact on the system. Consequently, it’s crucial to acknowledge that external validation might

not always be advisable due to the potential impact of factors like sample size and the diversity

of the training set. Two systematic reviews [89,90] provide valuable insights into the current

limitations of AI studies. A broad discussion of possible solutions is necessary because meth-

odological challenges, risk of bias, and applicability concerns can arise in AI during all stages

of development, including data curation, model selection, implementation, and validation.

Both reviews recommend that researchers follow standardized reporting guidelines to deter-

mine the risk of bias and improve methodological quality assessment.

Fig 4. Summary of the Quality Assessment of Diagnostic Accuracy Studies for the risk of bias and applicability in the included 66 studies. The

risk of bias was measured in four domains: patient selection, index test, reference standard, and flow and timing. The risk of applicability was

evaluated with three domains: patient selection, index test, and reference.

https://doi.org/10.1371/journal.pdig.0000438.g004
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Our study has limitations; the major one is that only a few studies that employed tabular

data or combined tabular and image data are eligible. Second, we excluded non-English-lan-

guage articles, which may have overlooked some studies published in a different language.

Third, many of these included studies had study design flaws. They were classified as having

great concern for bias and applicability, limiting the conclusions that could be drawn from the

meta-analysis because studies with a high risk of bias and applicability overestimated algo-

rithm performance.

This systematic review and meta-analysis have important implications for clinical practice.

Given the high diagnostic performance of AI, these techniques could be integrated into exist-

ing fracture risk assessment tools to enhance the identification of patients at risk and facilitate

early intervention. Healthcare professionals should be trained in interpreting and applying

these methods in clinical practice.

This study observed superior prediction performance with single radiograph input data

over multimodal imaging, which can be attributed to the radiographs’ consistent and stan-

dardized anatomical view, reducing noise and variability inherent in multimodal inputs [91].

Radiographs precisely capture fracture-relevant features, while added modalities like CT and

MRI can diversify and possibly weaken these key features [92]. Multimodal inputs can also ele-

vate overfitting risks, particularly with limited datasets [93]. Radiographs, being more accessi-

ble and cost-effective than CT or MRI, allow for larger, representative datasets enhancing

model performance. The decision between single radiographs and multimodal inputs should

be rooted in the research context, data availability, and prediction objectives. Despite the evi-

dent advantages of radiographs, specific scenarios may warrant multimodal integration for

improved predictions. We also observed that solely relying on image data produced better

AUC values than combining it with tabular data. Image data’s richness and direct relevance to

fracture detection offer clear diagnostic advantages [94]. Convolutional neural networks

(CNNs), identified in our study, are adept at processing this data, emphasizing subtle fracture-

related visual nuances [95]. In contrast, tabular data could infuse noise and inconsistencies.

Sole image data ensures focus on vital visual features and offers a more standardized data for-

mat than diverse tabular inputs.

Further research is needed to address the limitations identified in the included studies and

to explore the performance of specific ML and DL algorithms. Researchers should provide

more detailed information about their study populations and methods, including patient selec-

tion, fracture type location, and the reference standard used. Future studies should also investi-

gate the impact of factors such as training dataset size, model architecture, and the inclusion of

clinical and demographic variables on the diagnostic performance of AI. Future research will

help develop more accurate and generalizable models for predicting osteoporotic fractures and

inform evidence-based clinical practice. Several novel diagnostic meta-analysis methodologies

have recently been introduced [96–98]. Nevertheless, due to the limited sample sizes within

selected studies focusing on fractures beyond vertebral and hip injuries and studies involving

tabular and tabular and image data types, incorporating these methodologies into our present

study was unfeasible. While we acknowledge their potential applicability, the current study’s

unique characteristics led us to refrain from their implementation. We will implement these

methodologies in our forthcoming investigations, particularly as more comprehensive studies

become available. In aid of future researchers, we provide an array of crucial challenges and

their potential resolutions pertinent to applying machine learning or deep learning for fracture

diagnosis (S7 Table).

In conclusion, our meta-analysis highlights the high diagnostic accuracy of AI in various

fracture outcomes. As AI demonstrates reliable results in fracture detection, it holds the poten-

tial to streamline fracture diagnosis in healthcare systems. However, transparent reporting of
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study methods and designs for AI development and validation is essential to ensure their real-

world applicability. By addressing the current research landscape’s limitations and promoting

standardized guidelines, we can facilitate the integration of AI technologies into clinical prac-

tice and enhance the prediction of osteoporotic fractures, ultimately leading to improved

patient care.
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tion of deep neural networks for wrist fracture detection. Sci Rep. 2021; 11: 6006. https://doi.org/10.

1038/s41598-021-85570-2 PMID: 33727668

75. Regnard NE, Lanseur B, Ventre J, Ducarouge A, Clovis L, Lassalle L, et al. Assessment of perfor-

mances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal

bone lesions, and elbow effusions on trauma X-rays. Eur J Radiol. 2022; 154: 110447. https://doi.org/

10.1016/j.ejrad.2022.110447 PMID: 35921795
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