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Abstract

Urine culture is often considered the gold standard for detecting the presence of bacteria in

the urine. Since culture is expensive and often requires 24-48 hours, clinicians often rely on

urine dipstick test, which is considerably cheaper than culture and provides instant results.

Despite its ease of use, urine dipstick test may lack sensitivity and specificity. In this paper,

we use a real-world dataset consisting of 17,572 outpatient encounters who underwent

urine cultures, collected between 2015 and 2021 at a large multi-specialty hospital in Abu

Dhabi, United Arab Emirates. We develop and evaluate a simple parsimonious prediction

model for positive urine cultures based on a minimal input set of ten features selected from

the patient’s presenting vital signs, history, and dipstick results. In a test set of 5,339

encounters, the parsimonious model achieves an area under the receiver operating charac-

teristic curve (AUROC) of 0.828 (95% CI: 0.810-0.844) for predicting a bacterial count� 105

CFU/ml, outperforming a model that uses dipstick features only that achieves an AUROC of

0.786 (95% CI: 0.769-0.806). Our proposed model can be easily deployed at point-of-care,

highlighting its value in improving the efficiency of clinical workflows, especially in low-

resource settings.

Author summary

Urine culture tests are often ordered to help early detection of bacteria in the urine in vari-

ous clinical settings. Notwithstanding their importance in clinical decision-making, urine

culture tests add cost and burden on medical staff as they require a long waiting time. In

this work, we propose a low-cost machine learning model to provide real-time predictions

of urine culture results at point-of-care. The proposed approach is based on a simple

model that requires a minimal feature set, making it easy to implement in real-clinical set-

tings. By developing and validating the model on real-world outpatient data from Abu

Dhabi, we found that our model outperformed the clinical baselines. Our findings
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underscore the potential of machine learning models in optimizing clinical workflow effi-

ciency by providing timely predictions.

Introduction

Urine cultures have long been used for detecting the presence of specific microorganisms in

the urine. It is usually ordered for patients with urinary symptoms mainly to evaluate for the

presence of bacteria in urine. A positive urine culture result is considered the gold standard in

the diagnosis and treatment of certain infections, such as urinary tract infection (UTI) [1, 2].

Despite their prevalence, urine cultures are not always necessary and diagnostic stewardship

seeks best practices for ordering such tests [3]. The process of obtaining the results of a urine

culture test is also time-consuming, and it relies on the examiners’ experience, which may not

always be readily available.

Urine dipstick test is a point of care (POC) test where a strip treated with chemicals is

dipped in a urine sample. The strip then changes color to indicate the concentration of certain

substances [4]. Although popular and easy to use, disptick tests tend to lack sensitivity and

specificity, which limits their optimal use for predicting urine culture results in clinical prac-

tice [5]. Considering the costs associated with processing a urine culture test, there is a promi-

nent need for a predictive model at POC that can assist clinicians in their decision-making

process.

Several existing studies investigated the prediction of urine culture results, and most

approaches rely on using urinalysis results as predictive variables. For example, [6] use the

results of an automated urinalysis system to build a model that predicts urine culture results in

a cohort of inpatients and outpatients. Another example is by [7], where the authors build a

system for predicting urine culture results from urine flow cytometry in a large cohort of emer-

gency encounters. While useful, most of these models rely on data collected using specific tech-

nologies for urinalysis that may not always be available at different clinical institutions. While

previous work focus on the prediction of urine culture results in the emergency department

[7] or across a general cohort of inpatient and outpatient encounters [6], many urine cultures

take place in the outpatient setting, such as in primary care or elective encounters where a clin-

ical decision is often made at POC. Additionally, previous work does not investigate the use of

other readily available information, such as previous disease and procedures, patient demo-

graphics, and comorbidities, which can be augmented with dipstick results for the prediction

of urine culture results.

To this end, we develop a machine learning-based parsimonious model for the prediction

of positive urine culture results in outpatient visits. Our proposed model can predict the result

of the urine culture based on a minimal feature set of dipstick results and readily available

information in the electronic patient record. We train and evaluate the model using observa-

tional retrospective data collected at Cleveland Clinic Abu Dhabi (CCAD) in the United Arab

Emirates (UAE). Our data-driven approach of selecting a minimal feature set demonstrates

significant improvements in predicting urine culture results when compared to using dipstick

results alone, demonstrating its potential in supporting decision making at POC in outpatient

settings without increasing the burden on the staff. An overview of use case and the model

development and evaluation pipeline is shown in Fig 1. To allow for reproducibility and exter-

nal validation of our proposed work, we made our code available at https://github.com/nyuad-

cai/Parsimonious-Model-PUC.
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Materials and methods

Dataset

We retrieved anonymized data collected between March 2015 and March 2021 at CCAD,

which is a multi-specialty large hospital with primary, secondary, and tertiary care facilities in

Abu Dhabi, UAE. This retrospective study was approved by the Institutional Review Board of

CCAD (Ref: A-2019-054) and NYU Abu Dhabi (Ref: HRPP-2020-173). Informed consent was

not required as the study was determined to be exempt. We report the study in accordance to

the Transparent reporting of a multi-variable prediction model for individual prognosis or

diagnosis (TRIPOD) guidance [8]. The checklist is shown in S1 File.

To define the patient cohort, we designed an inclusion and exclusion criteria in collabo-

ration with clinical experts. We include outpatient encounters only and exclude all other

encounters that represent in-patient admissions. The outpatient setting at the dataset’s

institution spans primary, secondary and tertiary care. Since the study focuses on adult

patients, we exclude encounters of patients who were less than 18 years old at the time of

the start of the encounter. We also only include encounters associated with a urine culture,

as we use the urine culture result to define the model’s output. Finally, we perform a tempo-

ral patient split to obtain a training set of encounters recorded between 2015 and 2019, and

a test set of encounters recorded between 2020 and 2021. We use the training set for model

development and the test set for model evaluation. All of the results are reported on the test

set.

Fig 1. Overview of the proposed model. (a) In this figure, we illustrate an example of an outpatient encounter. After evaluating the patient’s symptoms, a clinician may

perform a urine dipstick test while they wait for the urine culture results. Our proposed parsimonious model can make a prediction ahead of the culture results to inform

the decision-making process. (b) In this figure, we summarize the model development process. We first extract the features, pre-process the data, and then develop three

prediction models with all the features (original model), with the top ten predictive features (parsimonious model), and with the dipstick features only (dipstick model).

https://doi.org/10.1371/journal.pdig.0000306.g001
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Input features

Demographics & vital-sign measurements. To define the input features of the model,

we first extract data that is collected at the beginning of each encounter: demographic infor-

mation and vital-sign measurements. The demographic features included patient age

(numerical) and biological sex (binary). The vital-sign measurements are all numerical and

include six variables: pulse, respiratory rate, oxygen saturation, temperature, systolic blood

pressure, and diastolic blood pressure. If a vital-sign measurement is missing, we perform

mean imputation.

Patient history. First, we define and extract four binary features to explicitly represent

patient comorbidities: cancer, diabetes, hypertension, and hyperlipidemia, where 1 indicates

the presence of the comorbidity and 0 otherwise. Cancer was explicitly recorded as a binary

feature in the patient encounter data. We extract the three other conditions for each encounter

using International Classification of Diseases (ICD)-10 codes recorded in any of the patient’s

previous encounters, which could be outpatient or otherwise. The ICD-10 codes are summa-

rized in S2 File.

Next, we extract the patient’s history of disease using all of the ICD-10 codes recorded in

any previous encounter. We group the ICD-10 codes based on the high-level categorization of

the type of disease [9], resulting with the 22 binary features. Similarly, we group history of pre-

vious procedures according to custom hospital codes, where each group indicates the type of

procedure. This process results with 34 binary features each representing a unique procedure

group. If a patient does not have previous encounters at the hospital, we set all of the patient

history features to 0.

Urine dipstick results. For each encounter in our dataset, we extract any associated urine

dipstick results collected within the same encounter. Based on clinical expertise and clinical lit-

erature [1, 10–12], we identified three substances of interest as input features to our model:

nitrites, leukocyte esterase, and hemoglobin. We then clean the data by resolving spelling mis-

takes and inconsistencies. Missing values are replaced with results of microscopic urinalysis, if

available within the same encounter. We apply one-hot encoding to the final categorical fea-

tures, except for nitrite which we consider as a binary feature (positive/negative). Encounters

with no record of urine dipstick or microscopic analysis are assigned with the most frequent

value in the training set for each respective feature. We report the statistical distribution of all

input features, including mean and standard deviation for the numerical features and a distri-

bution count for categorical features.

Ground-truth labels

The goal of our model is to predict whether a urine culture is likely to grow bacterial

agents [1]. To this end, we process the urine culture results to define the ground-truth

labels. Each urine culture result is associated with the time of sample collection, result

time, and semi-structured text summarizing the culture result of the sample. Positive sam-

ples are typically described through the explicit mention of a significant growth of a bacte-

rial agent [13]. The description may also indicate the quantity of Colony Forming Units

per milliliter (CFU/ml). International guidelines use varying thresholds to confirm a diag-

nosis [14–16]. Hence, we define two labels to represent a positive urine culture: � 104

CFU/ml and � 105 CFU/ml, with the latter being more definitive and the primary out-

come of this work. If there is no significant growth of bacteria, we assume that the culture

is negative. Each encounter eventually has two binary output labels, one for each bacterial

count threshold.
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Predictive modeling

Model development. We develop three multivariable logistic regression models for each

output label. The motivation behind using a multivariable logistic regression is its relative sim-

plicity and often comparative performance to other more complex machine learning models,

all of which facilitates easy deployment at POC [17–20]. The first model, defined as the “origi-

nal model”, processes all of the input features. We then perform SHapley Additive exPlana-

tions (SHAP) analysis to identify the top ten features for the parsimonious model [21]. SHAP

values are based on a game theory approach for calculating each feature’s contributions to the

final model prediction [22]. The SHAP value for each feature is indicative of the relative

importance of the input variables and its impact on the predictions. While most commonly

used as a model interpretability method, SHAP values can be used as a feature-selection meth-

odology to identify the most predictive features [23]. To measure the importance of each fea-

ture we use the mean absolute SHAP value across the overall population.

Using the ten most predictive features identified by the original model, we then train a new

model for each output label, which we refer to as the parsimonious model. The parsimonious

model is driven by the need for low-cost models that can be easily deployed in practice [24].

As a clinical baseline, we train another set of models using urine dipstick features only. We

consider this model as a strong clinical baseline since previous work highlighted the usefulness

of dipstick results in predicting urine culture outcomes [1].

To train all of the described models, we perform 5-fold cross validation randomized hyper-

parameter search on the training set. The hyperparameters include type of penalty, regulariza-

tion strength, optimizer, and maximum number of iterations, and the search ranges are listed

in S3 File. We select the best hyperparameters based on the highest average cross-validation

performance, which are then used to fit the final models.

Model evaluation. We evaluate the final models on the test set in terms of the Area Under

the Receiver Operating characteristic Curve (AUROC) and the Area Under the Precision-

Recall Curve (AUPRC) and visualize associated curves. The AUROC summarizes the model’s

ability in discriminating between positive and negative samples [25], while the AUPRC illus-

trates its performance considering class imbalance [26]. We also report model calibration in

terms of calibration slope and intercept. Calibration is a reflection of how well the model’s

probability predictions reflect the true distribution of the ground-truth labels [27, 28]. We

assess model performance across the overall population, females and males, and two age

groups. All results are reported with confidence intervals computed using bootstrapping with

1,000 iterations [29]. We perform all experiments using Python (version 3.7.3) and scikit-
learn (version 1.1.1).

Results

Patient cohort

The results of applying the inclusion and exclusion criteria are shown in Fig 2. The final train-

ing set consists of 12,113 unique encounters and 8,147 unique patients, while the final test set

consists of 5,339 unique encounters and 4,057 unique patients. In Table 1, we summarize the

characteristics of the patient cohort. We observe that the distribution of age and sex is similar

across the training and test sets, with a mean age of 49.1 ± 17.6 years and 58.8% females in the

training set, and a mean age of 49.2 ± 17.0 years and 50.0% females in the test set. The preva-

lence of positive urine cultures based on the� 105 CFU/mL threshold was 13.7% and 14.4% in

the training and and test sets, respectively. We also observe a higher incidence of positive urine

cultures in females than in males, 9.7% vs 4.0% in the training set and 10.5% vs 4.0% in the test

PLOS DIGITAL HEALTH A parsimonious prediction model for positive urine cultures in outpatient visits

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000306 November 1, 2023 5 / 17

https://doi.org/10.1371/journal.pdig.0000306


Fig 2. Flowchart of inclusion and exclusion criteria. We apply the inclusion and exclusion criteria to obtain the

training set, which we use for model development, and the test set, which we use for model evaluation. In the figure, n

represents the number of unique encounters and p represents the number of unique patients since a unique patient

could have multiple encounters.

https://doi.org/10.1371/journal.pdig.0000306.g002

Table 1. Summary of patient cohort. We describe the characteristics of the patient cohort across the training and test

sets. Here, n represents number, std represents standard deviation, and % is percentage. We also report the distribution

of ground-truth labels across patient subgroups.

Characteristic Training set Test set

Outpatient encounters (n) 12,113 5,339

Unique patients (n) 8,147 4,057

Age, mean (std) 49.1 (17.7) 49.16 (17.0)

Female, n (%) 7,123 (58.8) 2,670 (50.0)

Positive urine culture, n (%)

� 105 CFU/mL

Overall population 1,662 (13.7) 769 (14.4)

Females 1,184 (9.7) 558 (10.5)

Males 478 (4.0) 211 (4.0)

< 40 years old 432 (3.6) 187 (3.5)

� 40 years old 1,230 (10.2) 582 (10.9)

https://doi.org/10.1371/journal.pdig.0000306.t001
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set. Similarly, a higher incidence is observed among the older population, 10.2% vs 3.5% in the

training set and 10.9% vs 3.6% in the test set. In Table 2 we summarize the distributions of the

demographic features, vital-sign measurements, comorbidities and dipstick results. The distri-

bution of the other patient history features is summarized in Table 3.

Table 2. Overview of input features. Summary of the model input features across the training and test sets, where

mean and standard deviation (std) are shown for numerical features, and the number (n) and percentage (%) are

shown for categorical features, such as comorbidities and urine dipstick features.

Input feature Training set Test set

Demographics

Age, mean (std) 49.1 (17.7) 49.2 (17.0)

Female, n (%) 7,123 (58.8) 2,670 (50.0)

Comorbidities, n (%)

Diabetes 1,608 (13.3) 853 (16.0)

Hypertension 1,655 (13.7) 1,012 (19.0)

Hyperlipidemia 208 (1.7) 299 (5.6)

Cancer 689 (5.7) 993 (5.5)

Vital sign, unit, mean (std)

Respiratory rate, breaths per minute 17.6 (3.2) 17.4 (3.9)

Not Recorded 8133 (67.1) 3566 (66.8)

Pulse rate, beats per minute 78.5 (12.6) 78.1 (12.3)

Not Recorded 7674 (63.4) 3497 (65.5)

Oxygen saturation, % 99.5 (2.4) 99.3 (2.8)

Not Recorded 8133 (64.7) 3518 (65.9)

Temperature auxiliary, ˚C 36.5 (0.8) 36.7 (0.9)

Not Recorded 8268 (68.3) 3760 (70.4)

Systolic blood pressure, mmHg 127.9 (16.8) 127.3 (15.9)

Not Recorded 7577 (62.6) 3483 (65.2)

Diastolic blood pressure, mmHg 72.7 (12.1) 75.3 (11.1)

Not Recorded 7577 (62.6) 3483 (65.2)

Urine dipstick, n (%)

Nitrite

Negative 8,624 (71.2) 4,304 (80.6)

Positive 741 (6.1) 300 (5.6)

Not Recorded 2,748 (22.7) 735 (13.8)

Leukocyte esterase

3+ 1,092 (9.0) 511 (9.6)

2+ 851 (7.0) 383 (7.2)

1+ 1,024 (8.5) 480 (9.0)

Trace 988 (8.2) 325 (6.0)

Negative 5,409 (44.7) 2,905 (54.4)

Not Recorded 2,749 (22.7) 735 (13.8)

Hemoglobin

4+ 102 (0.8) 240 (4.5)

3+ 621 (5.1) 227 (4.3)

2+ 516 (4.3) 281 (5.3)

1+ 906 (7.5) 472 (8.8)

Trace 1,997 (16.5) 814 (15.3)

Negative 5,223 (43.1) 2,570 (48.1)

Not Recorded 2,748 (22.7) 735 (13.8)

https://doi.org/10.1371/journal.pdig.0000306.t002
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Table 3. Summary of the ICD code groups and procedure code groups used as input features to train the models,

in terms of count (encounters) and percentage in both the training and test sets, respectively.

Features, n (%) Training set Test set

ICD diagnosis code groups

Certain infections and parasitic diseases 1411 (11.7) 993 (18.6)

Neoplasms 9030 (74.6) 4452 (83.4)

Diseases of the blood and blood-forming organs 9030 (74.6) 4452 (83.4)

Endocrine, nutritional and metabolic diseases 2866 (23.7) 1745 (32.7)

Mental, Behavioral and Neurodevelopmental disorders 414 (3.4) 326 (6.1)

Diseases of the nervous system 1501 (12.4) 1129 (21.2)

Diseases of the eye and adnexa 9030 (74.6) 4452 (83.4)

Diseases of the ear and mastoid process 9030 (74.6) 4452 (83.4)

Diseases of the circulatory system 2818 (23.3) 1615 (30.3)

Diseases of the respiratory system 1646 (12.6) 1017 (19.1)

Diseases of the digestive system 2880 (23.8) 1866 (35.0)

Diseases of the skin and subcutaneous tissue 979 (8.1) 735 (13.8)

Diseases of the musculoskeletal system and connective tissue 2628 (21.7) 1538 (28.8)

Diseases of the genitourinary system 3670 (30.3) 2132 (39.9)

Pregnancy, childbirth, and puerperium 222 (1.8) 118 (2.2)

Certain conditions originating in the perinatal period 2 (0.0) 5 (0.1)

Congenital malformations, deformations and chromosomal abnormalities 340 (2.8) 166 (3.1)

Symptoms, signs, and abnormal clinical laboratory findings 5523 (45.6) 3019 (56.6)

Injury, poisoning, and certain other consequences of external causes 807 (6.7) 590 (11.1)

Codes for special purposes 0 (0.0) 17 (0.3)

External causes of morbidity 10 (0.1) 1 (0.0)

Factors influencing health status and contact with health services 4591 (37.9) 2801 (52.5)

Procedure code groups

Lab chemistry orderables 5679 (46.9) 3339 (62.5)

Urine orderables 4557 (37.6) 2099 (39.3)

Lab blood orderables 6576 (54.3) 3365 (63.0)

Microbiology—general orderables 2813 (23.2) 1654 (31.0)

Poct orderables—device 2310 (19.1) 2047 (38.3)

Procedure/minor surgical orderables 898 (7.4) 550 (10.3)

Pathology/cytology orderables 832 (6.9) 467 (8.8)

IMG US orderables 3062 (25.3) 1895 (35.5)

CV ECG / EKG orderables 2892 (23.9) 1660 (31.1)

Genetic testing 356 (2.9) 214 (4.0)

HLA lab orderables 358 (3.0) 302 (5.7)

Blood bank test orderables 323 (2.7) 204 (3.8)

IMG CT orderables 3003 (23.8) 1785 (33.4)

IMG diagnostic imaging/x-ray orderables 4325 (35.7) 2292 (42.9)

IMG MRI orderables 1228 (10.1) 833 (15.6)

Body fluids and stools orderables 195 (1.6) 131 (2.5)

ADT orderables 839 (6.9) 565 (10.6)

Visit typelinked ref orders 0 (0.0) 263 (4.9)

Ophthalmology services orderables 68 (0.6) 56 (1.1)

Core measures orderables 6 (0.1) 1 (0.0)

General surgical orderables 217 (1.8) 105 (2.0)

GI procedure orderables 255 (2.1) 244 (4.6)

(Continued)

PLOS DIGITAL HEALTH A parsimonious prediction model for positive urine cultures in outpatient visits

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000306 November 1, 2023 8 / 17

https://doi.org/10.1371/journal.pdig.0000306


Performance evaluation

We compare the performance of the best original model with all of the input features, parsimo-

nious model with the top ten features identified by the former via SHAP analysis, and the dip-

stick only model. The performance results on the test set for� 105 CFU/ml is visualized in Fig

3 for the Fig 3A receiver operating characteristic curve, Fig 3B, precision-recall curve, and Fig

3C calibration curves. In Table 4, we summarize all the metrics with 95% confidence intervals.

Using the� 105 CFU/ml threshold, the original model achieves the best performance across

all patient subgroups, with 0.831 (0.816, 0.846) AUROC and 0.542 (0.508, 0.578) AUPRC. The

parsimonious model achieves comparable results to the original model with only ten features

in the overall population, with 0.828 (0.810, 0.844) AUROC and 0.550 (0.511, 0.593) AUPRC.

On the other hand, the worst performing model is the dipstick only model with 0.786 (0.769,

0.806) AUROC and 0.484 (0.445, 0.522) AUPRC. Across both labels in the overall population,

we note that all models were well-calibrated, with the slope ranging between 0.906 and 0.951

Table 3. (Continued)

Features, n (%) Training set Test set

IMG dexa orderables 172 (1.4) 122 (2.3)

Ophthalmology zeiss orderables 2393 (19.8) 1377 (25.8)

IMG fluoroscopy orderables 592 (4.9) 373 (7.0)

CV echo orderables 572 (4.7) 334 (6.3)

ONCBCN communication 7 (0.1) 6 (0.1)

Blood bank product orderables 99 (0.8) 66 (1.2)

PFT orderables 1223 (10.1) 672 (12.6)

Outpatient referral orderables 119 (1.0) 91 (1.7)

IMG NM orderables 329 (2.7) 250 (4.7)

Neurology orderables 96 (0.8) 77 (1.4)

IMG mammography orderables 15 (0.1) 50 (0.9)

ENT orderables 23 (0.2) 8 (0.2)

https://doi.org/10.1371/journal.pdig.0000306.t003

Fig 3. Performance curves on the test set. Fig 3A Receiver operating characteristic curves, Fig 3B precision-recall curves, and Fig 3C calibration curves are shown for the

original, parsimonious and dipstick models for the ground-truth label� 105 CFU/ml.

https://doi.org/10.1371/journal.pdig.0000306.g003
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and intercepts between 0.045 and 0.069, as visualized in the calibration curves in Fig 3C. We

include all the results of the model trained using the 104 in S4 File.

When comparing the performance across the female and male patient subgroups, we

observe that all models achieved a higher AUROC across males, but a higher AUPRC across

females. For example, the parsimonious model achieves a 0.767 AUROC across the female sub-

group, compared to 0.868 AUROC across the male subgroup. This implies that the model can

better discriminate between the positive and negative classes in the male subgroup. On the

other hand, the parsimonious model achieves a 0.575 AUPRC across the female subgroup

compared to 0.486 AURPC across the male subgroup for the� 105 CFU/ml label, which is

related to the difference in class imbalance across the two subgroups. We also compare the per-

formance of the models across two age subgroups: < 40 and� 40 years old. We note that the

models had a comparable performance across the two populations.

We also conduct a subgroup analysis for encounters with a recorded UTI ICD code in the

test set, which is equivalent to 137 encounters. In this subgroup, the model achieves an

AUROC of 0.806 (0.714, 0.882 95% CI) and AUPRC of 0.587 (0.432, 0.760 95% CI).

Feature importance

The top ten predictive features of the original model that were used to develop the parsimoni-

ous model are shown in Fig 4 with their mean absolute SHAP values, which indicate their

importance with respect to the model’s prediction. For the� 105 CFU/ml label, the top ten fea-

tures are: negative leukocyte esterase dipstick finding, patient sex, patient age, negative hemo-

globin dipstick finding, previous diseases of the digestive system, positive nitrite dipstick

finding, +3 leukocyte esterase dipstick finding, previous microbiology procedure, previous

Table 4. Performance evaluation results on the test set. We report the performance results for the area under the receiver operating characteristic curve (AUROC), area

under the precision recall curve (AUPRC), and calibration slope and intercept. The results are shown for the overall population and patient sub-groups. All results are

reported with 95% confidence intervals computed using bootstrapping with 1,000 iterations [29].

Population Result Original model Parsimonious model Dipstick model

Overall population AUROC 0.831 (0.816, 0.846) 0.828 (0.810, 0.844) 0.786 (0.769, 0.806)

AUPRC 0.542 (0.508, 0.578) 0.550 (0.511, 0.593) 0.484 (0.445, 0.522)

Calibration slope 0.951 (0.870, 1.028) 0.951 (0.864, 1.028) 0.906 (0.773, 1.022)

Calibration intercept 0.045 (0.016, 0.077) 0.063 (0.031, 0.097) 0.069 (0.014, 0.124)

Females AUROC 0.769 (0.743, 0.792) 0.767 (0.743, 0.792) 0.760 (0.738, 0.783)

AUPRC 0.558 (0.515, 0.599) 0.575 (0.533, 0.617) 0.533 (0.496, 0.579)

Calibration slope 0.928 (0.825, 1.022) 0.938 (0.840, 1.035) 0.925 (0.788, 1.052)

Calibration intercept 0.057 (0.020, 0.095) 0.080 (0.042, 0.120) 0.119 (0.045, 0.184)

Males AUROC 0.875 (0.85, 0.896) 0.868 (0.841, 0.892) 0.806 (0.775, 0.836)

AUPRC 0.505 (0.434, 0.57) 0.486 (0.416, 0.555) 0.409 (0.345, 0.491)

Calibration slope 0.995 (0.869, 1.110) 0.951 (0.819, 1.065) 0.805 (0.538, 1.014)

Calibration intercept 0.033 (-0.021, 0.086) 0.015 (-0.046, 0.085) -0.001 (-0.088, 0.112)

< 40 years old AUROC 0.809 (0.777, 0.842) 0.802 (0.768, 0.836) 0.749 (0.707, 0.788)

AUPRC 0.407 (0.342, 0.485) 0.424 (0.357, 0.503) 0.373 (0.306, 0.456)

Calibration slope 0.881 (0.654, 1.026) 0.798 (0.466, 1.048) 0.754 (0.495, 0.998)

Calibration intercept 0.063 (0.004, 0.139) 0.082 (-0.009, 0.191) 0.063 (-0.029, 0.161)

� 40 years old AUROC 0.837 (0.819, 0.855) 0.837 (0.821, 0.854) 0.800 (0.780, 0.819)

AUPRC 0.583 (0.542, 0.625) 0.588 (0.546, 0.632) 0.533 (0.492, 0.573)

Calibration slope 0.981 (0.890, 1.062) 0.985 (0.900, 1.068) 0.978 (0.852, 1.071)

Calibration intercept 0.038 (0.006, 0.070) 0.054 (0.019, 0.087) 0.067 (0.002, 0.141)

https://doi.org/10.1371/journal.pdig.0000306.t004
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diseases of the genitourinary system, and previous ultrasound procedures. Similarly for

the� 104 CFU/ml label, the top ten features include previous urine orderables but excluded

previous ultrasound procedures. The full list of features and their corresponding SHAP values

are shown in S5 File. The final coefficients and intercept of the multivariable logistic regression

models in the parsimonious setting are shown in S6 File. We also conducted an analysis where

we varied the number of included features in the parsimonious model and observed that by

using 10 features the model maintained a comparable performance to that of the original

model trained using the full feature set. The results for this analysis are presented in S7 File. To

understand how the predictions apply on the patient level, we show the shap analysis for an

example encounter in S8 File.

Discussion

The main contributions of this study is that we propose, develop, and implement a data-driven

framework for predicting urine cultures in outpatient visits and evaluate it using a real-world

dataset. We specifically focus on the development of a low-cost parsimonious model that can be

easily used at POC. We used a dataset collected at a large multi-specialty hospital in Abu Dhabi,

UAE. Using ten features only, the parsimonious model achieves a 0.828 AUROC in the overall

population for the� 105 CFU/ml label, which is a commonly used threshold in the guidance of

clinical decision-making [1, 30]. To understand whether or not the AUROC is fit for clinical

practice, we provide additional results on the sensitivity and specificity of our parsimonious

model across different cut-off values S9 File, and we leave this choice to clinical judgment.

We also investigated the relevance of the features identified by the SHAP analysis in the

original model. The top ten features that we used to develop the parsimonious models are

indeed relevant to urine culture outcomes as supported by clinical evidence. For example, pre-

vious diseases of the digestive system and previous diseases of the genitourinary system have a

Fig 4. Post-hoc feature importance for the original model. A bar plot showing the mean SHAP value assigned to each input feature.

https://doi.org/10.1371/journal.pdig.0000306.g004
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strong correlation with the development of infections in the urine [31–34]. The SHAP analysis

also revealed that previous ultrasound imaging and microbiology procedures are also predic-

tive of the outcome, which may be related to previous infections or general health issues

requiring abdominal imaging [35, 36]. Other identified features include sex, age, and selected

dipstick results, which have also been shown to be related to urine culture results in previous

work [37–39]. Overall, we note that the top ten features were related to patient demographics

(2 out of ten), specific previous diagnosis or procedures (4 out of ten), and dipstick results (4

out of ten), which can all be easily collected and/or acquired from a digital electronic health

record system. This implies that the parsimonious model can be easily deployed in existing

hospital systems considering its low-cost features.

Our study has several strengths. To the best of our knowledge, our work is the first to

develop and validate a model for predicting positive urine cultures in the UAE population,

whereas all other related models were developed for populations in the United States or

Europe [40–43]. We focus on outpatient visits, rather than a specific patient subgroup. How-

ever, the generalizability of this work to other outpatient settings should be treated with cau-

tion due to differences in patient demographics, phenotypic variation, practice across

healthcare systems, and even practice over time within the same institution [44]. This high-

lights the importance of model validation in external cohorts.

Another strength is that the parsimonious model achieved comparable performance to the

original model and significantly better results than the dipstick only model across both colony

count labels. The model can be easily deployed at POC for real-time predictions since it uses

easily collected features, compared to other studies that use more complex machine learning

models or more expensive features such as genetic or blood biomarkers [40, 45]. By using mul-

tivariable logistic regression, our model also offers interpretability since clinicians can refer to

the model coefficients or SHAP values assigned to each input feature to understand its impor-

tance with respect to the model’s predictions.

While our work focuses on predicting urine culture results, we believe that the proposed

model can help in various clinical scenarios where timely urine culture results are needed.

Aside from helping in the diagnosis of patients presenting with symptoms of UTI, urine cul-

tures are conducted prior to urological and endoscopic procedures, such as the implantation

of urologic prosthetics, urogenital biopsies, and active stone interventions to avoid post-opera-

tive infectious complications [46–48]. Furthermore, urine cultures are used in the differential

diagnosis of patients suspected of bladder cancer [49], as many of the presenting symptoms

overlap with UTI. Other specialties that rely on urine cultures include obstetrics and gynecol-

ogy, where urine cultures are conducted for pregnant women during the first prenatal visit to

check for asymptomatic bacteriuria, which often predisposes UTI, and serious kidney infec-

tions such as Pyelonephritis [50]. Such information can especially be useful in settings where

urine culture is not easily accessible, hence potentially improving resource allocation and clini-

cal workflow efficiency.

We intend for our proposed model to be an additional tool and source of information in

the clinical workflow, like other predictive models. Generally, prediction models are expected

to provide the most benefit in identifying patients who are at the highest risk or in assisting in

circumstances where urine culture is not easily accessible, hence mostly for operational pur-

poses and resource allocation. We note that the implications of a negative or positive predic-

tion may vary depending on the local guidelines, the patient history, presenting complaints in

relation to the suspected disease, differential diagnosis, or patient monitoring motivation

behind ordering the urine culture. Further studies are required to assess how the model would

affect clinical decision-making, such as prospective studies and some lessons are summarized

in the work of Kappen et. al [51].
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We also acknowledge that our study has several limitations. First, we observe a performance

gap between the female and male subgroups when investigating the model’s performance

across patient subgroups. This gap has been identified by other clinical studies for urine dip-

stick tests, where the diagnostic accuracy of urine dipstick has been found to be higher in

males than in females [52]. On the other hand, another study observes a higher performance

of an XGboost model in the prediction of suspected urinary tract infections in the emergency

department within the female subgroup [53]. This suggests that future work can focus on the

development of fairer models across females and males [52].

Another limitation of this work is the possible dependency across multiple encounters for

the same patient since we have more unique encounters than unique patients. In the future, we

plan to investigate mixed effect logistic regression models [54] to account for any dependen-

cies across samples. Despite the simplicity of the logistic regression model, we also did not

investigate more complex machine learning approaches that could lead to better performance

results, and this is an area of future work. Finally, this is a single-center retrospective study due

to the lack of access to other outpatient-based datasets. In the future, we are interested in con-

ducting a multi-center retrospective study, as well as a prospective validation study to assess

the model’s performance in a real-world setting.

It is important to acknowledge a related area of research that specifically focuses on the

diagnosis of urinary tract infection, such as the work of [42]. We were unable to obtain defini-

tive labels of infection diagnosis due to the absence of data on patients’ presenting symptoms,

which are usually required for a confirmed diagnosis. Our model is not comparable to those in

related studies since we focus on the prediction of urine culture results. We also did not rely

on ICD codes since they are used for billing purposes and hence may be noisy. Considering

that we focus on a general outpatient cohort, we believe that our model can still be used for

patients with suspected urinary tract infections, although its use should be in accordance with

diagnostic stewardship since the reliance on urine cultures results may lead to misdiagnosis

and unnecessary antibiotics [3, 55]. Additionally, model transportability across different levels

of care facilities will generally rely on the type of decision that needs to be made based on urine

culture results, and how fast it needs to be made. This requires further investigations related to

implementation science and the role of predictive algorithms within complex decision making

frameworks in health and medicine [56].
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using the 104 cut-off threshold. We report the performance results for the area under the

receiver operating characteristic curve (AUROC), area under the precision-recall curve

(AUPRC), and calibration slope and intercept. The results are shown for the overall population

and patient sub-groups. All results are reported with 95% confidence intervals computed using
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mance in terms of the receiver operating characteristic curve (AUROC), area under the preci-

sion-recall curve (AUPRC) when training and testing the parsimonious model with the top x

features, where x is iteratively decreased.
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to check feature importance with respect to model predictions via the SHAP analysis.
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S9 File. Sensitivity and specificity analysis of the parsimonious model. The table shows the
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The logistic regression model predictions were binarized by adjusting the alerting threshold to

achieve approximately x sensitivity on the test set, where x is referred to as “Risk cut points” in

the table.

(PDF)

Acknowledgments

We would like to thank Waqqas Zia and the High Performance Computing (HPC) team at

NYU Abu Dhabi for their support. We would also like to thank Dr. Adnan Alatoom and Dr.

Rania El Lababidi for the helpful discussions.

Author Contributions

Conceptualization: Farah E. Shamout, Y. Zaki Almallah.

Data curation: Terrence Lee St John, Pengyu Wang, Vee Nis Ling, Nasir Hayat.

Formal analysis: Ghadeer O. Ghosheh.

Funding acquisition: Farah E. Shamout, Y. Zaki Almallah.

Investigation: Ghadeer O. Ghosheh, Pengyu Wang, Vee Nis Ling, Nasir Hayat.

Methodology: Ghadeer O. Ghosheh, Farah E. Shamout, Y. Zaki Almallah.

Project administration: Lelan R. Orquiola, Farah E. Shamout, Y. Zaki Almallah.

Software: Ghadeer O. Ghosheh, Pengyu Wang, Vee Nis Ling, Nasir Hayat.

Supervision: Farah E. Shamout, Y. Zaki Almallah.

Validation: Ghadeer O. Ghosheh.

Visualization: Ghadeer O. Ghosheh.

PLOS DIGITAL HEALTH A parsimonious prediction model for positive urine cultures in outpatient visits

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000306 November 1, 2023 14 / 17

http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000306.s005
http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000306.s006
http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000306.s007
http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000306.s008
http://journals.plos.org/digitalhealth/article/asset?unique&id=info:doi/10.1371/journal.pdig.0000306.s009
https://doi.org/10.1371/journal.pdig.0000306


Writing – original draft: Ghadeer O. Ghosheh, Pengyu Wang, Vee Nis Ling, Farah E.

Shamout.

Writing – review & editing: Ghadeer O. Ghosheh, Terrence Lee St John, Pengyu Wang, Vee

Nis Ling, Lelan R. Orquiola, Nasir Hayat, Farah E. Shamout, Y. Zaki Almallah.

References
1. Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E. The diagnosis of urinary
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