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Abstract

Human movement and population connectivity inform infectious disease management.

Remote data, particularly mobile phone usage data, are frequently used to track mobility in

outbreak response efforts without measuring representation in target populations. Using a

detailed interview instrument, we measure population representation in phone ownership,

mobility, and access to healthcare in a highly mobile population with low access to health care

in Namibia, a middle-income country. We find that 1) phone ownership is both low and biased

by gender, 2) phone ownership is correlated with differences in mobility and access to health-

care, and 3) reception is spatially unequal and scarce in non-urban areas. We demonstrate

that mobile phone data do not represent the populations and locations that most need public

health improvements. Finally, we show that relying on these data to inform public health deci-

sions can be harmful with the potential to magnify health inequities rather than reducing them.

To reduce health inequities, it is critical to integrate multiple data streams with measured,

non-overlapping biases to ensure data representativeness for vulnerable populations.

Author summary

Mobile phone data are increasingly used to inform public health efforts in both high and

low-income settings due to convenience and growing phone penetration. However, digital

inequities are ubiquitous and more pronounced in areas where mobile phone ownership is

low or heterogeneous. The biases introduced by using mobile phone data to represent pop-

ulations and their health care needs are rarely measured but have the potential to be detri-

mental to the most vulnerable segments of populations. We conducted detailed interviews

measuring mobile phone ownership, mobility, and access to healthcare in mobile and

remote populations in Namibia. We found that mobile phone owners represent a small

proportion of the population that is highly mobile and has better access to healthcare. This

is likely not unique. Due to the nature of their collection, mobile phone data often under-

represent vulnerable populations. This study demonstrates that uncritically using mobile

phone data to inform public health decisions can perpetuate health inequities.
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Introduction

Background

Human movement and contacts underlie pathogen transmission. Characterizing and quanti-

fying movement greatly improves infectious disease surveillance, control, and prevention

efforts. These efforts are particularly important to guide health policies for mobile populations

[1–3]. The importance and challenge of measuring movement across spatiotemporal scales has

given rise to a broad spectrum of methods to track human movements [4–7]. However, many

methods strongly underrepresent or completely miss the most vulnerable populations, which

are often most in need of improved public health services. This includes marginalized groups,

low-income populations, small or low-density populations, and rural or remote populations.

Measuring movement

The past decade has seen growing use of novel data sources as proxies for human movement

due to technological advances and convenience in the absence of readily available, representative

data [8,9]. Current methods to quantify human movement include commercial air traffic [6],

satellite derived anthropogenic illumination [5,10], and mobility traces derived from mobile

phone call detail records (CDRs) within national boundaries [3,4]. Each of these approaches

captures biased samples of populations, though the extent and types of biases vary. Using rela-

tively new data streams to inform public health decisions can leave decision makers with unmea-

sured biases in population representation, which can harm efforts to improve health equity.

Justified by a broad temporal increase in the usership of mobile phones, CDRs in particular

are increasingly used as proxies for human movement [9,11–13]. CDRs are collected for billing

purposes from all mobile phones regardless of device capabilities, unlike GPS data or app-

derived information. CDRs reflect mobile phone usage and document the towers that route

each telecommunication transaction (call, text, or other billable event). Despite usership

growth, mobile phone penetration is substantially lower in low-income countries when com-

pared to high-income countries [14] and phone usage is heterogeneous in many low-income

and under-resourced populations within middle- and high-income nations [15,16]. In 2022,

phone ownership for individuals older than ten years was 92.9% in Europe and 88.5% in the

Americas, and 60.6% in Africa [17]. Relentless advances in mobile communications technol-

ogy have, in many ways, widened this gap and increased inequities that stem from access to

technology. This is because technological advances have not improved access to phones but

they have increased the advantages of phone ownership; this digital divide is associated with

rurality, lower literacy levels, and lower gross domestic product at the national level [18], with

additional subnational disparities [19,20].

Phone data analyses often incorrectly assume a 1:1 relationship between a person and a

phone [21]. Some studies explore scalable solutions to correct for low ownership but cannot

address biased usership [22]. The necessary anonymity of mobile device data renders it impos-

sible to assess potential biases from the data itself (Fig 1A). This can result in unknowingly

ignoring complex ownership and usership patterns. Additionally, the mobility patterns of

mobile phone users cannot be tracked in areas that lack mobile phone reception, which is fre-

quently the case in low-income, low population density areas. Overall, this leads to misrepre-

senting mobility patterns and underrepresenting the segments of populations most in need of

improved health services. Public health efforts that are intended to reach the most vulnerable

and least resourced members of populations that rely on biased data can result in interventions

that are counterproductive to improving health equity. These populations are often small in

size, which contributes to the reasons they are routinely overlooked. Regardless of their size,
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the most vulnerable populations define global health equity, and they must be prioritized

instead of forgotten.

Phones and health in Namibia

Namibia is a middle-income nation with a relatively high infectious disease burden. The top

ten causes of death include HIV/AIDS, lower respiratory infections, tuberculosis, and diar-

rheal diseases [23]. Public health efforts in Namibia increasingly incorporate phone-derived

data, specifically CDRs, to measure movement to understand spatial connectivity, trip dura-

tion, and seasonality to inform infectious disease prevention and management, including

malaria elimination and HIV risk reduction [24–27]. In 2013, mobile phone ownership in

Namibia was estimated at 95% in urban areas [28], with reliable network coverage. However,

populations in Namibia vary greatly in size and density (Fig 1B). In Namibia’s non-urban

areas, where health improvements are needed most, phone ownership and network coverage

had not been measured prior to this study. Additionally, mobile and remote populations are

not consistently included in traditional censuses in the region [29,30].

The Kunene province is a desert area in northwestern region of Namibia (Fig 1B). Local res-

idents are largely nomadic pastoralists who move seasonally and many are members of the

Himba tribe. Residents travel primarily by walking. The area has a minimal, informal road net-

work, and scarce access to petrol. There is a strong gender division of labor in these popula-

tions: men herd cattle and women manage childcare and subsistence farming. As a result, men

travel greater distances and move more frequently than women do and men maintain control

over valuable assets, specifically livestock. These nomadic populations represent vulnerable

groups for both preventable and emerging infectious diseases. Although basic public health-

care is relatively affordable and accessible in urban areas of Namibia, in remote areas, facilities

are scarce and distance to the nearest clinic is often prohibitive. In populations with limited

access to healthcare, many illnesses go undiagnosed, untreated, and unreported [31].

Fig 1. Overview of concept and location. (A) Schematic showing underrepresentation and biased representation of a

population. Circles represent individuals; black, blue, and green colors each represent one of three possible values for a

demographic characteristic. Orange shaded areas represent individuals selected for inclusion in each data set. (B)

Above: Inset map of continent, Namibia in black, and region of interest outlined in red. Below: Detailed map of the

region of interest showing population density in 2016 (yellow = high; blue = low; white = NA (Etosha National Park,

no human population)). Study area circled in orange, health clinics (orange crosses), regional hospital (red cross). Map

created in ArcGIS with data from GADM (https://gadm.org/).

https://doi.org/10.1371/journal.pdig.0000270.g001
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To assess data representativeness in mobile phone-derived data in non-urban areas, we

conducted detailed interviews among residents of the Kunene province (Fig 1B) in 2015

(rainy season) and 2016 (dry season). We collected data to compare characteristics of mobile

phone owners and non-mobile phone owners among participants. Specifically, we assessed

demographic characteristics (gender and age), self-reported recent movements and travel,

and measures of access and barriers to healthcare (recency, frequency, distance, monetary

cost, time cost) (see Supporting Information in S1 Text for survey details and Table O in S1

Text for survey instrument). We find that data derived from mobile phones in this remote

population: 1) underrepresent women, 2) overestimate mobility and access to care, and 3)

underrepresent remote and rural areas. Using mobile phone-based data to inform public

health needs would largely overlook the segments of the population that need improvements

the most. Instead, measuring biases in phone usage and integrating multiple data sources

with non-overlapping biases can help include the most vulnerable members of populations in

data that are used to inform public health efforts. This is an important step towards improv-

ing health equity, a priority for The United Nations’ (UN) Sustainable Development Goals

(SDG) [32].

Material and methods

Interviews

Sampling methods and recruitment. We conducted interviews in two settlements in the

desert of Kaoko in the Kunene region, Namibia, in February of 2015 (rainy season) and Octo-

ber of 2016 (dry season) (Fig 1B). The vast majority of participants self-identified as members

of the Himba tribe. Participants also included members of the Tjimba, Ovambo, Zemba, and

Twe tribes. The Himba are the majority tribe in Kaoko, and all tribes in the area are Bantu-

speaking and participate in the cattle-herding culture and economy. The lifestyle is highly

mobile and semi-nomadic, with pastoralism supported by subsistence agriculture. We con-

ducted interviews at the same two physical settlements across two years, and participants

included residents of these settlements as well as visitors. These data represent mobile individ-

uals and families from many locations and settlements within the Kaoko region of northern

Namibia.

Interviews were performed in the local language, Otjiherero, with a translator who was the

same gender as the participant.

Inclusion criteria. Study participants were restricted to adults. The designation of “adult”

was locally determined by household responsibilities, interpersonal relationships (sexually

active), or age, in instances when it was known. Locally, individuals are considered adults at

approximately 16 years of age.

Pregnant women could participate in the study, as it posed no risk to the mother or fetus.

Participants were required to provide consent to participate in the study and could revoke

their consent at any point.

Sample size. We conducted a total of 167 interviews. We conducted interviews with 102

adults in 2015. Twenty-five of these (12 men, 13 women) were completed in a short format

during a pilot phase during which we primarily collected demographic data. We conducted

full-length interviews with 75 adults (37 men, 38 women). The remaining 2 adults (2 women)

provided basic demographic information as child guardians. In 2016, we conducted full-length

interviews with 65 adults (31 men, 34 women). Eight adults were interviewed in both 2015 and

2016.

Instrument items analyzed in this study. This study analyzes some of the data collected

during the interviews. Included here are participants’ answers to questions about phone
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ownership, phone use during their lifetime, areas with phone reception, travel time to the

nearest health center (discrete values in hours; estimated by participants in hours or based on

sun positions), travel destinations in the previous 12 months (up to 5), mode of travel to the

nearest health care center, and the ability to access health care when wanted. Participants were

also asked about basic demographic information, individual and household resources, and sex-

ual contacts in the previous 12 months (Table O in S1 Text contains the full survey

instrument).

Statistical analysis

All analyses were done using R 4.0.3 [33]. We provide a basic description of the participants

with means and percentages before multiple imputations (Table 1 and Table A in S1 Text). We

addressed data missingness with multiple imputations (15 imputations) and analyzed every

imputed data set before applying the Rubin rules to pool the estimates of interest [34,35] (see

S1 Text). All the tests performed to compare groups (men vs women, participants interviewed

in 2015 vs participants interviewed in 2016, or mobile phone owners vs non-owners) were per-

formed using the imputed data sets. We calculated differences in means and in proportions in

every imputed data set, pooled them together, and obtained p-values using Wald tests [35].

We used a principal component analysis to identify a reasonable proxy for access to health

care. We applied it to a set of variables that addressed access to care and checked their loadings

[36]. The set of variables included the number of travel destinations, travel to health care by

car or another mode of transportation, the travel time to access healthcare, and the ability to

access health care when desired. We used the loadings to identify the variable most strongly

correlated with the main principal component and used that variable as a proxy for access to

care in the rest of the analysis (see S1 Text).

We compared access to care between mobile phone owners and non-phone owners by cal-

culating the mean values of the identified proxy for each group and pooling the differences in

means of every imputed data set. To minimize confounding biases in this comparison, we cal-

culated propensity score and calculated the difference in means after trimming and matching

in every imputed data set (Figure B in S1 Text) before pooling the estimates to ensure that

Table 1. Summary of the characteristics of the participants including mobile phone ownership. Overview of par-

ticipant characteristics before applying multiple imputations.

Participants (N = 159) Mobile phone owners

(N = 41)

Non-phone owners

(N = 91)

NA for phone

ownership (N = 27)

n % n % n % n %

Year

2015 102 64.2 26 63.4 49 53.8 27 100

2016 57 35.8 15 36.6 42 46.2 0 0

Gender

Women 85 53.5 11 26.8 59 64.8 15 55.6

Men 74 46.5 30 73.2 32 35.2 12 44.4

Age

16–25 36 22.6 10 24.4 23 25.3 3 11.1

26–35 41 25.8 18 43.9 22 24.2 1 3.7

36–45 31 19.5 6 14.6 18 19.8 7 25.9

46–59 24 15.1 5 12.2 12 13.2 7 25.9

60+ 27 17.0 2 4.9 16 17.6 9 33.3

https://doi.org/10.1371/journal.pdig.0000270.t001
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mobile phone owners and non-owners were as similar as possible [37] (see S1 Text, and

Figure B in S1 Text).

We investigated the bias in access to care by estimating the distribution of the identified

proxy among phone users only and for the whole sample by calculating the difference between

the two groups. We calculated the probability mass for every value after applying Rubin rules

to the imputed data sets by gender and mobile phone ownership and smoothed it with discrete

kernel density estimators to minimize random noise [38,39]. We then estimated the distribu-

tion of the proxy among mobile phone owners as well as for the total population by calculating

the weighted average of the smoothed distribution by gender and mobile phone ownership

with pooled proportions from imputed data sets used as weights. Little to no difference

between the two probability masses would point toward no bias. Conversely, a positive or a

negative difference (with the distribution of mobile phone owners as a reference) point toward

an over- or underrepresentation in mobile phone-based data. We calculated the 95% CI of the

average value of the proxy in mobile phone owners and for the total population after making

single imputations embedded in bootstrap (1000 samples) with the percentile method [40].

We assessed the bias in movements that would be captured by mobile phone-based data by

participant mobile phone ownership and by analyzing the distribution of the numbers of

recently visited locations, including travel destinations (up to 6 reported per participant) and

home locations. We classified all destinations according to mobile phone network reception

availability based on our observations in the field with MTC mobile phones, the main service

provider in Namibia, and participants’ responses to questions about locations with and with-

out phone reception. We classified destinations as follows: A) areas where phone reception

was easily and widely available, B) areas with limited access to phone reception, including

where reception was only available at elevation and required significant walking in mountain-

ous terrain to reach, and therefore not accessible to everyone, C) areas with no access to mobile

phone network reception, or D) areas with unlikely access to phone reception but for which

we lacked definitive information on the presence or absence of reception. We calculated the

percentage of participants’ destinations and visits that would not be captured by mobile

phone-based data.

Ethics

The study design has approval from Penn State’s Institutional Review Board (IRB

#STUDY00001510: Movement and Pathogens in Namibia) and Institutional Biosafety Com-

mittee (IBC #48898). Each interview began with an explanation of the survey process and pur-

pose of the research. Data collection began after participants provided their formal verbal

consent. Participants could decline to answer or skip any questions, decline continuation at

any point during the survey, or revoke consent. Prior to conducting field work, the authors

obtained research visas from the Namibian Ministry of Health and Social Services (MOHSS)

and local institutional support through The University Center for Studies in Namibia

(TUCSIN).

Results

Overview

Participant characteristics from interviews are presented in Table 1 and Table A in S1 Text.

About two thirds of the total participants were interviewed in 2015 (102/167) and the remain-

ing third were interviewed in 2016 (65/167). The gender ratio of participants was slightly in

favor of women (80 men and 87 women, or 52.1% of women). About half of all participants

were between 16 and 35 years old (49.1%), though participant age distribution varied by year;
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23.5% vs 6.2% were aged 60+ years during 2015 and 2016, respectively. Out of all the partici-

pants who answered questions about mobile phone ownership, only 31.4% (44/140) of the par-

ticipants reported owning a phone and 58.6% (82/140) reported that they had used a phone in

their lifetime. 73.2% (101/138) of participants answered that they were unable to access a

health care center when they wanted medical attention.

For the remaining results, we calculated three estimates due to the lack of independence of

the data collected from the eight individuals who were interviewed in both 2015 and 2016: A)

considering their responses in 2015 and 2016 as independent data points, B) excluding their

data collected in 2015, and C) excluding their data collected in 2016. These estimates were very

similar. When analyzing data from both collection years for the population, we include only

the data collected in 2015 for these eight individuals. The resulting sample size is 159 unique

participants, and 41 unique mobile phone owners (Table 1) (see S1 Text for full details and

other estimates).

Mobile phone ownership was more frequent among participants interviewed in 2015 com-

pared to 2016, 34.7% (26/75) vs 27.7% (18/65) (Table 1). The difference was not statistically

different when tested on imputed datasets (p = 0.54). However, the proportion of participants

who reported having ever used a mobile phone in their lifetime was lower in 2015 than in

2016; 48.0% (36/75) vs 70.8% (46/65) (Table A in S1 Text). This difference was statistically sig-

nificant when tested on imputed datasets (p<0.01). Overall, phone ownership and usership

were significantly greater in men compared to women; 48.4% (30/62) of men vs 15.7% (11/70)

of women reported phone ownership, and 75.8% (47/62) of men vs 42.9% (30/70) of women

reported prior phone usership in their lifetime (Table 1 and Tables A and B in S1 Text). These

differences were statistically significant when tested on imputed datasets (respectively p<0.001

for phone ownership and p<0.001 for phone usership).

Phone owners traveled to a greater number of destinations than did non-phone owners in

the 12 months preceding the interview, reporting means of 3.5 destinations vs 2.6 destinations

(Fig 2). When pooling estimates on imputed datasets the mean number of destinations

were.3.1 vs 2.1 respectively (p<0.01). When stratified by gender, this difference in travel his-

tory among phone owners was statistically significant in women (p<0.05) but not in men.

Phone owners also experienced significantly shorter travel times to health care centers com-

pared to non-phone owners, reporting means of 3.8 hours vs 5.7 hours in transit, respectively

Fig 2. Distributions of the number of travel destinations and travel time to healthcare for non-phone owners

(blue) and mobile phone owners (red). The curves show density plots of the distributions of the number of travel

destinations and travel time to healthcare (no data were imputed for these density plots), with a jittered rug below. The

mean values are indicated by dashed vertical lines.

https://doi.org/10.1371/journal.pdig.0000270.g002
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(p<0.05). When stratified by gender, the association between phone ownership and shorter

travel times to health care centers remained significant in men (p<0.05) but not in women,

among whom phone ownership was very low (Figures C and D and Tables C and D in S1

Text).

To reduce the dimensionality of the data, we applied a principal component analysis (PCA)

to all the previously specified variables that were related to access to health care. The travel

time to a health care center was identified and then used as the main proxy for access to care

for the remainder of the analysis (see S1 Text, Figure A in S1 Text).

Biased estimate of access to care

The smoothed distribution of travel time to healthcare highlighted a greater probability of

shorter travel times among mobile phone owners, which was even more pronounced among

men (Fig 3A). The average values for travel time to healthcare among mobile phone owners

compared to the total population was 3.9 hours (95% CI: 3.0–5.8) vs 5.2 hours (95% CI: 4.4–

7.0), respectively (Fig 3C). The smoothed distribution of travel time to healthcare taken from

mobile phone owners would over-represent values below 5 hours and mostly under-represent

values over 5 hours (Fig 3B and 3D).

The reduction in mean travel time after propensity score matching was consistent with

greater access to care among phone owners and was close to significance, -2.6 hours of travel

time to healthcare (95%CI: -5.5–0.3) (Tables I and J and Figure E in S1 Text).

Biased representation of mobility

Mobile phone derived data can only capture movements of mobile phone owners in areas with

mobile phone network reception. The 41 participants who owned mobile phones (25.8% of

159 participants) reported 34.7% (186/536) of all 536 reported recent travel destinations

(including their home settlements) (Fig 4).

Access to mobile phone reception did not differ significantly between the destinations of

mobile phone owners and non-phone owners (Fig 4, Table L in S1 Text); 50.3% (257/511) of

all visits were to areas with widely available network reception, 25.2% (129/511) of visits were

to areas with limited access to network reception, 2.2% (11/511) of visits were to areas with no

access to network reception, and 22.3% (114/511) of visits were to areas with unlikely but

unconfirmed access to network reception. Although the access to network reception was simi-

lar between the destinations reported by mobile phone owners and non-phone owners, 73.8%

(377/511) of the reported destinations would be missed by mobile phone-based data (Fig 4).

Of the missed visits, 33.2% (125/377) were to areas with no access or unlikely but not con-

firmed access to mobile phone reception. Visits to areas with no phone reception, or unlikely

but unconfirmed reception represented 24.5% (125/511) of all travel destinations reported by

participants who answered questions related to mobile phone ownership.

Discussion

This study presents original, detailed data on a small number of people but comprehensively

represents the populations interviewed. These data represent understudied populations that

are often missed in routine data collection on demographics and health, have limited access to

health care, and are not prioritized by current health policies. We minimized the effect of the

small sample size by applying appropriate statistical approaches to avoid dropping data points

and to minimize confounding factors.

With mobile phones being increasingly used in public health data collection [8,41,42], we

measured biases in mobile phone-derived data that are often acknowledged, but rarely
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quantified, and frequently ignored. Our analysis presents evidence that phone owners have

better access to health care and greater mobility than members of the same population who

do not own phones. We also show that mobile phone-based data provide a skewed percep-

tion of local mobility patterns. These data miss a majority of reported travel destinations

due to low phone ownership. They also fail to include movement to areas without phone

network reception, which tend to overlap with areas that are most in need of improved

access to public health resources. Further, using mobile phone data to track the spread of a

transmissible pathogen in a region like this one would miss most movements and contacts.

This strategy would be highly misleading and ineffective for outbreak response efforts hop-

ing to control the number of new cases and limit the spatial spread of a transmissible patho-

gen [21].

Fig 3. Distributions of travel time to healthcare by gender and mobile phone ownership. (A) Distribution of travel

time to healthcare by gender and mobile phone ownership (non-phone owners in blue and mobile phone owners in

red) after applying a discrete kernel density estimator [38,39] on the distribution after multiple imputation (truncated

for values above 15 hours). The dashed vertical lines show the average travel time to health care for each group after

multiple imputations. (B) Distribution of travel time to healthcare considering only mobile phone owners (red) and

total population (purple). Distributions are the results of a weighted average of the distribution in B using proportions

of each category shown in A after multiple imputations. The dashed vertical lines show the average travel time to

healthcare for mobile phone owners (red) and for the total population (purple) after multiple imputations. (C) Average

travel time to healthcare for mobile phone owners (red filled circle) and for the total population (purple filled circle)

after multiple imputations and their 95% CI estimated by bootstrap. (D) Difference in the distribution of travel time to

healthcare between mobile phone owners and the total population (the reference group). This is the difference of the

two step lines displayed in B. For travel times to healthcare that reported more frequently by mobile phone owners

than by the total population, the values are shown as positive. Light shades of grey represent smaller absolute

differences; dark shades of grey represent greater absolute differences.

https://doi.org/10.1371/journal.pdig.0000270.g003
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Mobile phone ownership in remote populations of Himba pastoralists in Namibia was sig-

nificantly more prevalent in men than women. Mobile phone owners reported much shorter

travel times to health care centers compared to non-phone owners, as well as more time-effi-

cient travel methods. Representing these populations with data collected from mobile phone-

owners overestimates travel destinations per person and underestimates travel time to a health

care center per person. Using mobile phone data to represent this population prevents the

detection of the very inequities that require improvement. Failing to measure data biases while

relying on biased data to guide policies reinforces existing health inequities.

Many low and middle-income countries (LMIC) report rapid growth in mobile phone

usage and infrastructure [18,20]. It is often expected that this trend will continue globally and

Fig 4. Distribution of participant destinations by mobile phone network reception and mobile phone ownership.

Each row represents a unique town and the length of each bar represents the number of participants who reported

traveling there (no data were imputed for this histogram). Locations are divided vertically into categories based on

mobile phone network reception. Visitor numbers are divided horizontally by visitors’ mobile phone ownership (186

destinations from 41 mobile phone owners on the left, 325 destinations from 91 non-phone owners on the right, 25

destinations from the 27 participants with missing values for mobile phone ownership are not shown). Visits that

would not be captured by mobile phone-based data are shown in dark grey, visits that would be captured by mobile

phone-based data are shown in light grey.

https://doi.org/10.1371/journal.pdig.0000270.g004
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that low or biased phone usership will simply be overcome with time. Our data suggest that

universal growth of mobile phone ownership and infrastructure is unlikely; these interviews

were conducted 19 months apart and phone ownership rates were constant and low, with a

slight decrease over time. Mobile phone network coverage in the area also did not improve

during this time. Subsequent visits to this area and these populations indicate that phone

reception and ownership have not increased in recent years.

Although these populations are small in size and number, addressing health inequities for

members of the Himba tribe and other underrepresented populations is necessary for public

health progress. Remote populations often make up only a small percentage of national or

regional populations, and working with these populations necessarily yields small sample sizes.

However, ignoring small populations in public health efforts propagates cycles of underrepre-

sentation in data. Remote populations play an important and often underappreciated role in

the transmission, emergence, and persistence of infectious diseases [43,44]. Overlooking these

groups hinders the final stages of elimination of vaccine preventable transmissible pathogens

like polio and measles. In addition, a lack of access to basic health care in remote areas leads to

delayed outbreak detection of endemic infections and emerging pathogens [45], which can

increase morbidity and mortality. The UN emphasizes the global importance of equitable

access to health care as a basic human right for all. Several of the SDGs prioritize improve-

ments in health equity as critical milestones towards progress [32,46].

Large data sets cannot overcome inherent biases by virtue of their size alone [47]. Gender,

wealth, education, and disability create gaps in phone ownership at various levels of aggrega-

tion across low and middle income countries (LMIC) [15,16,48,49]. These characteristics are

also associated with differential access to healthcare [50,51]. Biases in population representa-

tiveness in CDRs are often estimated by comparison to another source in which data are aggre-

gated spatially or reported at the population-level instead of the individual-level, such as

income subgroups [52–54]. Unfortunately, it is very difficult to identify biases in data repre-

sentativeness in aggregated data, because heterogeneities and inequities often intersect and are

present at fine scales. Traditional data sources, such as population-based surveys, also contain

biases in remote areas. When data collection methods have been in use for a long time, their

biases become relatively well understood and, once detected, data collection efforts can be

adjusted to reduce or account for biases in data representativeness. For example, this study col-

lected data at the individual level. This level of granularity allowed us to measure biases while

avoiding the uncertainty associated with comparison data that could be lost by aggregating

across administrative areas, age groups, or income levels [52,53].

The Kunene region is not unique regarding remoteness, heterogeneous mobile phone own-

ership, and wireless signal coverage scarcity. Interviews that are specifically designed to assess

populations in remote areas are labor, time, and cost intensive. However, they are critical to

identify and monitor populations in need of public health improvements and to assess their

representation in proxy measures, including mobile phone data. Surveys that collect data on

both phone ownership and variables of interest in targeted areas make it possible to measure

biases at comparable, operational scales. High granularity data collected from a source unre-

lated to mobile phones, such as surveys, are necessary to correct biased estimates of mobility

from phones. Alternatively, some studies have successfully used GPS devices paired with sur-

veys, predicated on an understanding of the acceptance and usefulness of GPS devices in a

local context [55–58]. This approach is advantageous because it is not impacted by phone net-

work reception or differential mobile phone ownership. Unfortunately, unpredictable long-

distance travel over long time periods made GPS device retrieval impossible and we were

unable to execute this strategy in northern Namibian pastoralist populations. Integrating mul-

tiple data sources improves estimates of the sizes and movements of mobile populations [59],
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improves data quality on health indicators, and can help guide decision makers towards reduc-

ing health inequalities. This strategy also augments the interpretability and usability of data

streams like CDRs while minimizing their potential drawbacks.

Well-informed health policy decisions produce effective and equitable improvements in

population health outcomes [60,61]. Prioritization is critical in resource-limited settings, as is

impact assessment [62,63]. Barriers to implementing effective health policy include inaccurate

and biased assessments of the underlying problems and the impacted populations [64]. Accu-

rate estimates of the health needs of mobile or remote populations are critical for reducing the

burden of infectious diseases and improving global health. Addressing problems of data repre-

sentativeness is critical to ensure data sources do not become tools that enhance inequities.

Health care that serves all populations, no matter how small or remote, is integral to the

management of infectious diseases. Pathogens persist in areas with insufficient disease surveil-

lance and prevention [65]. Decisions based on data that have not been critically assessed for

representativeness and biases can promote dangerous health inequities by incorrectly assum-

ing inclusion of the least visible groups.
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