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Abstract

Accelerometers are widely used to measure physical activity behaviour, including in chil-

dren. The traditional method for processing acceleration data uses cut points to define phys-

ical activity intensity, relying on calibration studies that relate the magnitude of acceleration

to energy expenditure. However, these relationships do not generalise across diverse popu-

lations and hence they must be parametrised for each subpopulation (e.g., age groups)

which is costly and makes studies across diverse populations and over time difficult. A data-

driven approach that allows physical activity intensity states to emerge from the data, with-

out relying on parameters derived from external populations, offers a new perspective on

this problem and potentially improved results. We applied an unsupervised machine learn-

ing approach, namely a hidden semi-Markov model, to segment and cluster the raw acceler-

ometer data recorded (using a waist-worn ActiGraph GT3X+) from 279 children (9–38

months old) with a diverse range of developmental abilities (measured using the Paediatric

Evaluation of Disability Inventory–Computer Adaptive Testing measure). We benchmarked

this analysis with the cut points approach, calculated using thresholds from the literature

which had been validated using the same device and for a population which most closely

matched ours. Time spent active as measured by this unsupervised approach correlated

more strongly with PEDI-CAT measures of the child’s mobility (R2: 0.51 vs 0.39), social-cog-

nitive capacity (R2: 0.32 vs 0.20), responsibility (R2: 0.21 vs 0.13), daily activity (R2: 0.35 vs

0.24), and age (R2: 0.15 vs 0.1) than that measured using the cut points approach. Unsuper-

vised machine learning offers the potential to provide a more sensitive, appropriate, and

cost-effective approach to quantifying physical activity behaviour in diverse populations,

compared to the current cut points approach. This, in turn, supports research that is more

inclusive of diverse or rapidly changing populations.
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Author summary

Physical activity participation in young children has often been measured using parent

reports. Accelerometry provides a more objective measurement but the traditional meth-

ods used to quantify this require calibration and struggle to generalise to diverse or rapidly

changing populations such as young children. In recent years unsupervised machine

learning methods have been shown to be able to segment and cluster accelerometry,

allowing categories of activity intensity to emerge from a data-driven process. Here we

show that an unsupervised machine learning technique (the hidden semi-Markov model)

can be used to estimate categories of activity intensity in accelerometry data recorded

from a diverse population of children age 9–36 months. We also show that this approach

better captures the variance of movement abilities in the population than the traditional

cut points approach. The hidden semi-Markov model approach provides a more effective

approach for processing and analysing accelerometer data in rapidly changing and diverse

populations such as young children, compared to the more traditional cut points

approach. As it does not require calibration studies to incorporate new populations it has

the potential to facilitate inclusion of unrepresented populations in research, as well as

being less resource intensive.

Introduction

Participation in physical activity is widely considered to be beneficial for all people. This

includes young children for whom physical activity is known to promote development and

positive health outcomes [1], while spending time sedentary has been shown to result in poor

sleep [2]. Accurately measuring participation in physical activity by members of this age

group, including those with non-typical developmental trajectories, is an important step in the

development of interventions seeking to facilitate participation.

Accelerometers are increasingly used to measure physical activity. They record the accelera-

tion of the body part to which they are attached, providing an objective record of how much

movement has occurred. This raw acceleration recording can then be processed to extract the

time spent in a range of physical activity intensity categories, such as “sedentary” (SED), “light

physical activity” (LPA), and “moderate to vigorous physical activity” (MVPA). The traditional

method used to process the raw acceleration trace into these categories, known as the cut

points method, applies a threshold to the volume of acceleration recorded in each epoch [3].

This threshold is calibrated in a detailed lab-based study, where energy expenditure is mea-

sured at the same time as the acceleration, so that the cut point thresholds indicate the volume

of acceleration at which the participant would be expected to expend a predefined level of

energy. The energy levels of interest are usually calculated as a ratio of the energy expended

while at rest–known as a Metabolic Equivalent (METs)–and for children are typically <1.5

METs for SED, 1.5–3 METs for LPA, and>3 METs for MVPA [4]. As the relationship

between acceleration volume and energy expenditure depends upon the physical abilities,

body size, and movement patterns of the child [5] calibration must be performed for each sub-

population. This results in different cut points derived as children age and develop [6] and for

children with different movement capabilities [7]. Using the cut-points approach is therefore

challenging, if not impossible, when the population under study is diverse in their physical

capabilities or when they are rapidly changing, such as in a longitudinal study of young

children.
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Recently, machine learning approaches have been increasingly applied to the analysis of

accelerometer data. Some have sought to train supervised machine learning techniques to rec-

ognise activity types [8,9] while others have used unsupervised techniques to categorise activity

based on the intensity and direction of movement [10–12]. This latter approach promises to

segment and cluster the acceleration data according to its intensity, without parameters

derived from external populations, and to offer a potentially more appropriate method for

determining engagement in physical activity in longitudinal population studies of young

children.

A HSMM approach has previously been used to segment and cluster accelerometer data

recorded in children from the general population at age 14 [11]. In the present study we apply

the hidden semi-Markov model (HSMM) to segment and cluster accelerometer data in 279

toddlers across abilities. We demonstrate that this method is a more appropriate approach in a

rapidly developing and highly heterogeneous population. For comparison, we process the

accelerometer data according to the traditional cut-points approach, using the best available

parameters for this population. To evaluate which approach provides the most clinically rele-

vant measure, we compare both approaches to how each child scores on the Paediatric Evalua-

tion of Disability Inventory Computer Adaptive Test (PEDI-CAT), an established assessment

of developmental capacities with strong psychometric properties across age groups and

populations.

Materials and methods

Ethics statement

The data presented was collected as part of the ActiveCHILD project (NIHR ICA-SCL-2015-

01-003) [13,14]. The study had NHS Research Ethics Committee and Health Research Author-

ity (UK) approvals (NHS IRAS 218313, 17-NE-0051), and the design drew on the Nuffield Eth-

ics guidance for health research involving children [15]. Formal written consent was obtained

from the parents or guardians of all children who participated in this study.

Data collection

Young children (n = 279, aged between 9 and 36 months) were recruited through the universal

healthy child pathway (i.e. health visitors) and specialist children’s health services (e.g. neona-

tology, community paediatrics, paediatric physiotherapy) in thirteen areas in England, UK.

Different models of health visiting can be found across countries, under various labels [16].

Children recruited through specialist services (42%, n = 118/278) were purposefully over-

sampled to ensure coverage of children with a range of development trajectories. Table 1

shows the key characteristics of the sample; further details are available elsewhere [14].

To collect data, families were provided with pre-prepared accelerometer packs. The pack

contained a pre-programmed accelerometer threaded on a flexible, waist-worn belt, and

instructions [17] for the parent. Fig 1 illustrates how parents were instructed to fit the device.

The device was set to record two days after the parent received the pack, and parents were

encouraged to let their child play with the accelerometer on these pre-recording days in order

to familiarise with the device. On the night before the first recording day, parents were asked

to place the accelerometer beside the child’s bed, to prompt them to put it on first thing in the

morning. The parents were then asked to encourage the child to wear the accelerometer for

seven days, except while bathing or showering, swimming, or in bed. At the end of the recod-

ing period, parents were asked to post the accelerometer to the research team. In return of the

accelerometer, parents were sent a feedback sheet of their child’s activity and the child was

sent a small toy as a reward. The ActiGraph GT3X+ was used, which has been previously
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found to be acceptable and feasible to use in under5s [18] with physical limitations as well as

typically developing children. The device was worn around the waist, set to record at 100 Hz,

and set to capture record all movement that lasted at least one second.

The child’s developmental abilities were measured using the Pediatric Evaluation of Dis-

ability Inventory—Computer Adaptive Test (PEDI-CAT). The PEDI-CAT is the current-gen-

eration version of a well-established, widely used measure Pediatric Evaluation of Disability

Inventory (PEDI), originally published in 1992 and since revised as a computer adaptive test

(CAT) [19]. The PEDI-CAT measures children’s developmental abilities and disabilities, as

manifested in daily life, across four domains (daily activities, mobility, social-cognitive, and

responsibility). In our study, the PEDI-CAT was administered by the research team, with

responses provided by one of the child’s parents. The PEDI-CAT software uses Item Response

Theory to estimate a child’s abilities from a minimal number of the most relevant items within

each domain, establishing the child’s ability levels for each domain. Within the PEDI-CAT, the

mobility domain assesses the child’s movement behaviours such as sitting, crawling, and walk-

ing. The PEDI-CAT has been validated for use across diagnostic groups, ages, settings and

countries. (19)

Table 1. Shows the distribution of ages and recruitment pathways of the participants.

Total number of children 279

Recruitment (n = 278) Health Visitor 58%

(160)

Other paediatric specialist 42%

(118)

Sex (% female) (n = 218) 56%

(123)

Age (months) (n = 277) 5–10 5% (13)

10–15 27%

(76)

15–20 18%

(50)

20–25 17%

(47)

25–30 22%

(61)

30–35 10%

(28)

35–40 1% (2)

Mobility as described by the

clinician (n = 202)

Walks without support 80%

(162)

Uses walking aid 10%

(21)

Moves with support only (e.g. parent carrying, buggy) 9% (19)

Cognitive development (Clinician’s

Assessment) (n = 203)

Unable to comment on the child’s cognitive capacity 19%

(39)

No concerns about the child’s cognitive development 68%

(139)

There are concerns about this child’s cognitive development or

learning (e.g. the child is below educational level, the child receives

support for learning)

9% (18)

The child has a global developmental delay established as part of a

multidisciplinary or medical assessment

3% (7)

https://doi.org/10.1371/journal.pdig.0000220.t001
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Accelerometer data pre-processing

The accelerometer data was processed using the Python programming language, with the gt3x

module used to read the raw accelerometer signal from file. From this we extracted the 10 sec-

ond mean of the vector magnitude of body acceleration, calculated as the Euclidian Norm

Minus One (ENMO) [20].This is calculated as shown in the equation below, where accx, accy,
accz are the acceleration along the three orthogonal axes. We have used the ENMO because it

automatically corrects for the contribution of gravity by subtracting one gravitational unit

from the overall magnitude and has been shown to perform well in segmenting accelerometery

according to activity intensity [20]. Following [20] we round negative values up to zero to pre-

vent noise generating negative values.

ENMO ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðacc2

x þ acc2
y þ acc2

zÞ
q

� 1; 0g:

As the devices recorded movement at all times, regardless of whether the device was being

worn or not, the first step in our data processing was to detect when the device was worn by

the child in the morning and when it was last taken off at night. To do this, we segmented the

recording into days starting and ending at 4am—following [11], calculated the activity to be

Fig 1. Shows the accelerometer (the ActiGraph GT3X+) and how it was instructed to be worn.

https://doi.org/10.1371/journal.pdig.0000220.g001
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the mean of the acceleration in 10 second epochs—following [21], then took the first worn

time to be the first epoch of non-transient activity, and the last worn time to be the last epoch

of non-transient activity. We defined non-transient activity as activity recorded for at least 150

seconds out of every 1000 seconds. These parameters were determined empirically by applying

a range of parameters to a sample of our recordings and selecting those that corresponded best

with human selected wear times. We then detected any non-wear time during the day as any

continuous period of zero activity longer than one hour [21]. As many of the children had

worn the device for more than seven days, or had worn the device more sporadically, we then

selected the seven continuous days that provided the maximum amount of wear time–the

application of this algorithm to a sample recording is illustrated in S1 Fig. A recording day was

only included in the analysis if it contained at least five hours of wear time; and the overall

recording could only be included if it contained at least three days of suitable recordings [22].

Training the HSMM

The HSMM model allowed us to segment and cluster our accelerometry traces according to

the magnitude of acceleration. It can segment the trace into periods of similar acceleration,

then cluster each segment into one of a number of hidden states. Hidden states are defined by

their parameters (in this case parameters describing their acceleration distribution and dura-

tion distribution). The HSMM extends the better-known Hidden Markov Model (HMM) by

explicitly modelling the duration of time spent in a state. This is modelled as a Poisson distri-

bution and the observations (acceleration magnitudes) modelled by a Gaussian distribution.

The trained model also contains a transition probability matrix, defining the likelihood of

transitioning from one state to another. As the parameters for these distributions are learned

in a Bayesian manner, the HSMM allows the hidden states to emerge solely from the data

under study, unlike the traditional cut points method whose parameters must be derived from

studies of external (and possibly unrepresentative) populations. We used the pyhsmm Python

package [23] to train the HSMM, which implements a Hierarchical Dirichlet Process Hidden

semi-Markov Model. The HSMM model requires us to specify a number of hyperparameters

that influence the outcomes of the learning process as well as the computational resources

required. We set the maximum state duration to 360 ten second epochs or 60 minutes. We set

the maximum number of states to be six–this would allow a long duration and short duration

state for each of the cut point categories (SED, LPA, MVPA). A condition for early stopping

was specified to be when the Hamming distance between two consecutive iterations was less

than 0.05, and a maximum of 20 iterations was used. The random seed was set to zero.

Applying the cut-points approach

The cut points published by [7] are the most appropriate for our population in the currently

available literature. They were measured using the same waist-worn triaxial ActiGraph GT3X

+ accelerometer as the children in this study, with the cut point of 40 suggested as a valid cut

point for sedentary activity for typically developing children and for children with cerebral

palsy who were considered ambulant. This study did not provide a cut point separating light

physical activity (LPA) and moderate to vigorous physical activity (MVPA), so we have used

cut points derived by [24,25] as the best available for this. These were also measured for a

waist-worn ActiGraph GT3X+ accelerometer but were validated only with typically developing

children. The cut points specified in the literature are in units of accelerometry counts rather

than raw accelerations. To use the most appropriate cut points for our population, we pro-

cessed the raw accelerometry into accelerometry counts, with an epoch of one second, using
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the ActiLife software provided by ActiGraph. We then labelled each one second epoch using

the following rules:

• Sedentary activity (SED) as less than eight counts per second (based on the estimate of 40

counts per 5 seconds [7]).

• Light physical activity (LPA) as more than eight counts per second [7] and less than 28

counts per second—based on an estimate of 420 counts per 15 seconds [24,25].

• Moderate to vigorous physical activity (MVPA) as more than 28 counts per second [24,25].

We then found bouts of continuous activity using a custom function written in Python

based on the getBout.R function of the GGIR package [26]. This allowed 10% of an LPA bout

or SED bout and 20% of an MVPA bout to be outside of the intensity range for that cut point

(e.g. less than 28 counts per second for MVPA). By ignoring these interruptions, we are recog-

nising that periods of activity may have short pauses.

Results

The cut points approach and HSMM approach were applied to data from 279 children, with

each child contributing between three and seven days of accelerometry recordings. Fig 2(A)

shows the parameters of the six hidden states of the HSMM after training. The state duration

is the λ of the Poisson distribution that models the duration of each activity state, the state

amplitude is the mean of the Gaussian distribution that models the acceleration magnitude of

each state. Here we can see that states with a high acceleration mean also have a shorter dura-

tion. This reflects the underlying feature that high intensity physical activity cannot be main-

tained for the same length of time as low intensity activity. We also see that the states can be

clustered around three groups, high intensity-short duration (states 4 and 5), low intensity-

long duration (states 2 and 3), and very low intensity (states 0 and 1)–the colour of each state

reflects the group we have assigned it to. To facilitate comparison with the traditional physical

activity intensity categories (SED, LPA, MVPA) we compare SED with states 0 and 1, LPA

with states 2 and 3, and MVPA with states 4 and 5.

Fig 2(B) shows an example accelerometry trace for one day of activity along with an annota-

tion indicating the HSMM states assigned to each segment as well as the classical cut points

categories (SED, LPA, MVPA). Here we can see an example of non-wear time during the day

(between 12:00 and 14:00) and we can see how the HSMM approach compares to the tradi-

tional cut points approach in application to a sample of accelerometer data.

Fig 2(C) shows the time spent in each of the HSMM states by the population of children.

We can see that before 06:00 and after 23:00 most children are not wearing the device, but

between these times the proportion wearing the device quickly rises to over 80%. There is a

dip in the total children wearing the device around mid-day, likely to be attributable to nap

time. The most active states (4 and 5) comprise about 20% of time spent throughout the

day.

Fig 3(A) shows the extent to which the output of the traditional cut points approach over-

laps with that of the HSMM approach, while Fig 3(B) also indicates the correlation between

the outputs of each approach. We can see that SED and MVPA are strongly correlated with

states 0–1 (rho = 0.67), and 4–5 (rho = 0.82), respectively. SED is negatively correlated with

states 4–5 (rho = -0.28) and MVPA negatively correlated with states 0–1 (rho = -0.39). LPA

does not show strong correlation with any state grouping.

To further assess the clinical utility of each approach, we compared the outputs to the four

domains of the Paediatric Evaluation of Disability Computer Aided Test (PEDI-CAT) applied
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to the children from our sample. Fig 3(C) shows the linear regression of time spent doing

MVPA (as a proportion of time wearing the device) and the score achieved by the child in

each of the four PEDI-CAT domains. Fig 3(D) shows the same but for the time spent in the

HSMM model states 4 and 5. Table 2 shows the coefficient of determination calculated from

the above regression analyses, as well as a regression with age. The output of HSMM explains

more variance in each of the four PEDI-CAT domains and age than the time spent in MVPA.

Adding the time spent in all active HSMM states (2–5) did not improve the fit against age or

any of the PEDI-CAT domains. Adding the LPA to the MVPA improved the fit slightly for

PEDI Mobility (R2 = 0.42), PEDI Activities (R2 = 0.27), PEDI Responsibility (R2 = 0.14) but

states 4–5 of the HSMM remained a better fit for each.

Fig 2. (A) Shows the parameters of each state in the HSMM. The colour corresponds to the group they have been placed in. (B) Shows a sample accelerometry

trace from one day of recording (central trace) for one child and the corresponding classification according to the HSMM (inner circle) and traditional cut

points approach (outer circle). The legend below indicates the states or cut point categories represented by each colour. (C) shows the proportion of children in

each HSMM state throughout the day, with non-wear time shown as the area left white. The legend to the right indicates the colours corresponding to each

state.

https://doi.org/10.1371/journal.pdig.0000220.g002
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Discussion

In the study reported, we have shown that hidden semi-Markov models can be used to seg-

ment and cluster multiday accelerometer data recorded in an ability-diverse population of

Fig 3. (A) Shows the mean time (in minutes) that each cut point derived category spends overlapping with each HSMM state. The states are sorted so that state

0 has the lowest mean acceleration and state 5 the highest. (B) Shows the correlation (Spearman’s rho) between the time spent in each of the traditional cut

points based physical activity intensity categories compared with the time spent in the grouped states of the HSMM. (C) Shows the linear regression of time

spent doing MVPA against each of the PEDI-CAT domains. (D) Shows the linear regression of time spent in states 4 and 5 of the HSMM against each of the

PEDI-CAT domains.

https://doi.org/10.1371/journal.pdig.0000220.g003

Table 2. Shows the coefficient of determination (R2) calculated on the linear regression of the time spent in

HSMM states 4 and 5 or time spent in MVPA with age, and the four domains of the PEDI-CAT measure of

ability.

R2 for each method

Measure Cut Points (MVPA) HSMM (states 4–5)

Age 0.1 0.15

PEDI Mobility 0.39 0.51

PEDI Social Cognitive 0.20 0.32

PEDI Activities 0.24 0.35

PEDI Responsibility 0.13 0.21

https://doi.org/10.1371/journal.pdig.0000220.t002
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children aged 9 to 36 months. We have further shown that the resulting activity states are bet-

ter predictors of the children’s developmental capacity than the traditional analytical approach

of using cut points.

Previous work [11,12] has shown that the HSMM can be used to segment and cluster wrist-

worn accelerometer data recorded in teenagers or adults. We have built on this by demonstrat-

ing that the method can be used in young children (a rapidly developing and physically diverse

population) and show that it produces an output that explains more of the variance in the chil-

dren’s PEDI-CAT domains, and so better captures their movement capacities than the tradi-

tional cut points approach.

The traditional cut points method used to quantify physical activity intensity from accelero-

metry relies on parameters derived from previous studies on external populations [24]. If these

populations are not representative of those the method is applied to, there is a risk that the

parameters may not be calibrated appropriately [3]. This can lead to the method failing to cap-

ture enough of the variance in physical activity behaviour present in the sample. For example,

if the threshold for MVPA is calculated from a population of physically able adults and then

applied to children with physical disabilities, the method would consider most of the popula-

tion inactive most of the time. While they might rarely reach the physical activity intensities of

able adults, there could well be important variations in this population that have not been

detected. This can in part be overcome by calculating thresholds on the appropriate popula-

tions [7] however, this is expensive and is not feasible in all populations, e.g. in young children

or in people with complex disabilities or health conditions [27,28]. Furthermore, even when

appropriate thresholds are available, if one is studying a diverse population, or a rapidly evolv-

ing population, thresholds for different subpopulations or timepoints would be required, mak-

ing it difficult to compare between groups and over time. This is a major challenge for

longitudinal studies of young children or studies involving participants with a diverse range of

physical activity behaviours [27]–often resulting in exclusion of these populations from

research.

In contrast to the cut points approach[3], the HSMM learns the parameters for its hidden

states from the data given to it [12,23], and the states can then be used to quantify and describe

physical activity [11]. This approach has several potential advantages over the cut points

approach. The parameters generated by HSMM can be easily interpreted–the mean of the

Gaussian distribution (representing the observation distribution for the state) indicating the

physical intensity of the state and the λ parameter of the Poisson distribution representing its

duration. The time spent by a participant in each hidden state quantifies their physical activity

participation. Our results further suggest the HSMM approach also has better clinical utility

compared to the cut points, as the estimates of physical activity participation produced by the

HSMM approach correlated more strongly with children’s developmental capacity than the

cut points estimates. Furthermore, it has the potential to make movement and physical activity

research more inclusive for populations where calibration to energy expenditure is not possi-

ble–potentially reducing health inequalities over time.

Limitations

In the present study we have used cut points to benchmark the HSMM approach. We have

sought the most appropriate cut points for our population (young children with a diversity of

abilities) and device type (ActiGraph GT3X+ worn around the waist). The LPA cut point

taken from [7] partially meets these criteria, having been validated for pre-schoolers (both typ-

ically developing and with ambulatory cerebral palsy) wearing a GT3X+ around the waist. The

MVPA cut point taken from [24] matches the device type and population age but has been
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validated only for typically developing children. Our population however, contains children

who are typically developing alongside those with a wide range of medical and developmental

conditions (most of which neither of the cut points used have been validated for). This high-

lights the difficulty in applying the cut points approach to ability diverse populations–it would

be prohibitively expensive to validate the cut points for each subgroup of our population–and

further motivates the more flexible HSMM approach.

For regression with the PEDI-CAT domains and age we have taken the MVPA or HSMM

states 4–5 rather than any physical activity (LPA + MVPA) or HSMM states 2–5. We choose

this under the assumption that more vigorous forms of activity would relate more strongly to

ability and age. This proved true for the regressions involving the HSMM output–in each case

adding the time spent in less intense states (2–3) reduced the explained variance. For the cut

points approach we found that for three of the PEDI-CAT domains (Mobility, Activities, and

Responsibilities) the fit was improved slightly by adding the LPA, but not enough to make this

combination a better predictor than states 4–5 of the HSMM. While the PEDI-CAT is not a

direct and objective measure of physical activity participation, it has been shown to have dis-

criminant validity with respect to the clinical assessment of a child’s disability and provides a

clinically valid assessment of a child’s physical as well as cognitive and social behaviours

[29,30]. The PEDI-CAT has also been shown to have concurrent validity with the Infant Tod-

dler Activity Card Sort–a measure of activity participation in early childhood for children with

developmental concerns [31]–and has been used to assess change in participation of activities

in children as they receive physical therapy [32].

There are two key considerations to using the HSMM approach. First, it requires multiple

iterations of its learning algorithm over the entire training dataset, and related high perfor-

mance computing facilities and programming expertise. Second, the output cannot be directly

associated with energy expenditure and thus its best suited for studies where direct estimation

of energy expenditure is not a primary concern–such as in developmental studies with young

children where movement and physical activity per se are the primary focus, or where addi-

tional measures are used to assess subsequent health and biological outcomes.

Conclusion

The cut points approach continues to be an important tool for estimating energy expenditure

from accelerometry. However, we have shown here that the HSMM approach can be used in

an ability-diverse and rapidly developing population to provide a measure of physical activity

participation. We hope this facilitates physical activity research in populations where cut-

points are not currently available or populations for whom cut-point estimation is difficult.

Supporting information

S1 Fig. Illustrates the application of the algorithm used to identify wear time and to select

7 days of recording for subsequent analysis. Red stars indicate the 7 days selected; the white

line indicates wear time.
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