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Abstract

Scar quantification on cardiovascular magnetic resonance (CMR) late gadolinium enhance-

ment (LGE) images is important in risk stratifying patients with hypertrophic cardiomyopathy

(HCM) due to the importance of scar burden in predicting clinical outcomes. We aimed to

develop a machine learning (ML) model that contours left ventricular (LV) endo- and epicar-

dial borders and quantifies CMR LGE images from HCM patients.We retrospectively studied

2557 unprocessed images from 307 HCM patients followed at the University Health Network

(Canada) and Tufts Medical Center (USA). LGE images were manually segmented by two

experts using two different software packages. Using 6SD LGE intensity cutoff as the gold

standard, a 2-dimensional convolutional neural network (CNN) was trained on 80% and

tested on the remaining 20% of the data. Model performance was evaluated using the Dice

Similarity Coefficient (DSC), Bland-Altman, and Pearson’s correlation. The 6SD model DSC

scores were good to excellent at 0.91 ± 0.04, 0.83 ± 0.03, and 0.64 ± 0.09 for the LV endo-

cardium, epicardium, and scar segmentation, respectively. The bias and limits of agreement

for the percentage of LGE to LV mass were low (-0.53 ± 2.71%), and correlation high (r =

0.92). This fully automated interpretable ML algorithm allows rapid and accurate scar quanti-

fication from CMR LGE images. This program does not require manual image pre-process-

ing, and was trained with multiple experts and software, increasing its generalizability.

Author summary

Accurate scar quantification of cardiac magnetic resonance (CMR) late gadolinium

enhancement (LGE) images is important in managing hypertrophic cardiomyopathy
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(HCM) patients. We developed a 2D convolutional neural network to quantify CMR LGE

in HCM patients that is computationally interpretable and trained using multicenter data

analyzed by 2 expert readers using 2 different analysis packages. Our model demonstrated

low bias and limits of agreement and high correlation with expert analysis. Benchmarking

comparison was performed between our algorithm and standard U-Net model with and

without cropped raw images. Our method showed superior performance and has high

potential for clinical adaptability.

Introduction

Hypertrophic cardiomyopathy (HCM) is the most common inheritable cardiomyopathy with

a reported prevalence as high as 1 in 200 [1]. Patients with HCM can develop myocardial fibro-

sis, which is associated with heart failure and sudden cardiac death [2–5]. Late gadolinium

enhancement (LGE) techniques on cardiovascular magnetic resonance (CMR) imaging allow

for non-invasive detection and quantification of fibrosis in patients with HCM. Due to its

prognostic value, current guidelines for the management of HCM patients recommends

assessment of LGE by CMR as an important component for risk stratification [6–8]. However,

in current practice, LGE quantification can be subjective, time-consuming, and requires train-

ing to delineate both the myocardial borders and the hyper-enhanced regions on the LGE

images [9–12]. These issues are even more pronounced in HCM patients where scar is most

often patchy and multi-focal [12].

Recently, machine learning (ML) and specifically deep convolutional neural networks

(CNN) have been used to automate CMR LGE image segmentation in HCM patients [13–18].

However, many of these ML algorithms require image pre-processing or relied on a single

expert reader as their reference standard, potentially limiting their generalizability and adopt-

ability. The Shape Attentive U-Net (SAUNet) model, a previously developed algorithm from

our group, focuses on model interpretability and robustness, and has shown promising perfor-

mance on medical image segmentation [19]. We aimed to use SAUNet to develop a 2-dimen-

sional (2D) computationally interpretable CNN model to efficiently and accurately segment

left ventricular (LV) endo- and epicardial borders and quantify scar on LGE CMR images in

HCM patients with minimal pre-processing and using a single NVIDIA Tesla P100 graphics

card.

Results

Baseline patient demographics are presented in Table 1. The median age of patients was 52

years (interquartile range, IQR, 39–61 years) and the majority (70%) were male. The short axis

LGE images consisted of 8 ± 2 images per patient (interquartile range, IQR, 7–9 images). LGE

images from 307 HCM patients were divided into exclusive training or testing subsets. The

training set included 247 patients (2056 images) with 200 patients having LGE scar (927

images). The testing set consisted of 60 patients (501 images) with 53 patients having LGE scar

(253 images). See the S1 Table for more detailed information.

Model development

Model development is described in Fig 1. The average analysis time for one image using our

algorithm was less than 70 milliseconds using a single NVIDIA Tesla P100 GPU. Figs 2 and 3

provide examples of the expert-based analysis and contours predicted by the

PLOS DIGITAL HEALTH Interpretable deep learning for CMR scar quantification

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000159 January 4, 2023 2 / 17

corresponding author at wendy.tsang@uhn.ca. All

code is available in a public link: https://drive.

google.com/drive/folders/

1197aHAFmLWqknuvrKAm51i7fH4q8c7Bo and

will be shared on GitHub after publication.

Funding: Funding for this study was provided by

the Peter Munk Cardiology Center Innovation Fund

and the MSH-UHN AMO Innovation Fund. BW is

partially supported by the CIFAR AI Chair Program.

WT is supported by a Heart and Stroke Foundation

of Canada National New Investigator Award. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors declare that they

have no competing interests.

https://doi.org/10.1371/journal.pdig.0000159
mailto:wendy.tsang@uhn.ca
https://drive.google.com/drive/folders/1197aHAFmLWqknuvrKAm51i7fH4q8c7Bo
https://drive.google.com/drive/folders/1197aHAFmLWqknuvrKAm51i7fH4q8c7Bo
https://drive.google.com/drive/folders/1197aHAFmLWqknuvrKAm51i7fH4q8c7Bo


SAUNet algorithm in patients with and without scar. The heatmaps obtained from different

layers of the model were obtained to visualize the focus of the model at different steps. These

intermediate-level outputs for each layer of the SAUNet model aided in identifying which lay-

ers required modification to improve the final segmentation performance for faulty predic-

tions. The spatial attention maps of the final Dual Attention Block (DA-Block) are provided in

Figs 2 and 3 for the corresponding samples to highlight regions of interest by the model during

intermediate stages of the algorithm computation [19].

Model LV Segmentation and Scar Quantification

4SD SAUNet model. LV segmentation by the developed model demonstrated excellent

similarity to manual segmentation with a DSC score of 0.92 ± 0.04 for the LV endocardium

and 0.83 ± 0.03 for the LV epicardium. For LV LGE scar quantification, the DSC score was

good at 0.60 ± 0.08. There was no significant difference between the average LGE scar mass

quantified by the 4SD model compared to manual expert analysis (3.77 ± 7.11 g model versus

4.56 ± 7.23 g expert, p = 0.55, Table 2). The per patient correlation between SAUNet 4SD

model LGE scar mass and expert manually quantified LGE scar mass was high (r-value 0.92,

Fig 4A). Bland-Altman analysis for scar mass demonstrated that the 4SD model had a low bias

of -0.79 g with limits of agreement of -6.26 g to 4.68 g (Fig 4B).

The percentage LGE quantified by the SAUNet 4SD model was 2.55 ± 4.94% compared to

3.47 ± 5.62% obtained by manual expert-analysis, which was not significantly different

(p = 0.34). Correlation between SAUNet 4SD model and manually quantified percentage LGE

scar was high (r-value 0.90, Fig 4C). For %LGE, Bland-Altman analysis demonstrated that the

4SD model slightly underestimated LGE with a bias of -0.93% and limits of agreement of

-5.64% to 3.78% (Fig 4D). There was no significant difference between sites in either scar

quantification or the percentage of LGE quantified.

Table 1. Patient demographics.

Characteristic Toronto (n = 211) Boston (n = 96) All (n = 307)

Age (y)� 52 (41, 61) 49 (35, 59) 52 (39, 61)

Male sex 152 (72%) 64 (66%) 216 (70%)

Body surface area (m2)� 1.96 (1.81, 2.09) 1.93 (1.75, 2.13) 1.96 (1.8, 2.11)

LV mass indexed to BSA (Kg/m2)� 0.06 (0.05, 0.08) 0.07 (0.06, 0.08) 0.06 (0.05, 0.08)

Maximum LV wall thickness (mm)� 18.3 (15.25, 22) 18.8 (16.3, 22.23) 18.3 (15.72, 22.1)

New York Heart Association classification

1 111 43 154

2 76 31 107

3 22 22 44

4 1 0 1

Coronary artery disease 20 8 28

Atrial fibrillation 22 16 38

Risk factors for sudden death

Non-sustained ventricular Tachycardia 34 11 45

Unexplained syncope 24 8 32

Family history of sudden cardiac death 35 12 47

Left ventricular outflow tract obstruction 42 39 81

� sign means the variable is represented in median (first quartile, third quartile) format. Other numbers in the table represent the number of patients (BSA = Body

Surface Area, LV = Left Ventricular).

https://doi.org/10.1371/journal.pdig.0000159.t001
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6SD SAUNet model. LV segmentation by the SAUNet 6SD model demonstrated excellent

similarity to manual segmentation with a DSC score of 0.91 ± 0.04 for the LV endocardium

and 0.83 ± 0.03 for the LV epicardium. For LV LGE scar quantification, the DSC score was

good at 0.64 ± 0.09. There was no significant difference between the average LGE scar mass

quantified by the 6SD model compared to manual expert analysis (2.21 ± 4.38 g model versus

2.68 ± 4.77 g, p = 0.50, Table 2). The per patient correlation between the 6SD model LGE scar

mass and expert manually quantified LGE scar mass was high with an r-value of 0.91 (Fig 5A).

Bland-Altman analysis for scar mass demonstrated that the 6SD model had a low bias of -0.56

g with limits of agreement of -4.44 g to 3.32 g (Fig 5B).

The percentage LGE quantified by the SAUNet 6SD model was 1.28 ± 2.76% compared to

1.80 ± 3.38% obtained by manual expert-analysis, which was not significantly different

(p = 0.35). Correlation between the 6SD model and manually quantified percentage LGE scar

was high with an r-value of 0.92 (Fig 5C). Bland-Altman analysis for LGE% demonstrated that

the 6SD model had a low bias of -0.53 g with limits of agreement of -3.23 g to 2.18 g (Fig 5D).

U-Net model comparison. Tables 3–4 provides the comparisons for LV segmentation

and scar detection between the 4SD and 6SD SAUNet models and the U-Net models. While

the DSC scores for SAUNet and U-Net endo and epicardium segmentation were close, the

DSC scores for scar prediction were 5–7% higher for 4SD and 6SD SAUNet models compared

to the implemented U-Net models. Cropping the images to isolate the LV region improved the

absolute DSC scores for both the SAUNet and U-Net models by 2–8% compared to their

Fig 1. Diagram of the 2D CNN model (SAUNet) used in this study with sample input and output (BCE = Binary Cross Entropy, CE = Cross Entropy,

Conv = Convolutional Block, DA-Block = Dual Attention Block, Res. Block = Residual Block).

https://doi.org/10.1371/journal.pdig.0000159.g001
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respective results without image cropping. However, the results of the SAUNet program

remained superior to U-Net (Table 3).

Bland Altman analysis, t-test, predicted mean mass, and expert-read mean mass and LGE%

comparing SAUNet against U-Net for the 4SD and 6SD models are provided in Table 4 (see

S1 Fig and S2 Fig for more analyses).

Sex comparison. The mass and LGE% statistics of ground truth from different sex groups

are provided in S2 Table, using the 6SD SAUNet model. By Welch’s t-test, there are no differ-

ences between the predicted and ground truth means for between sexes.

Discussion

In this study, we have used multicenter CMR data to successfully develop and validate a fully

automated deep learning algorithm that contours the LV endo- and epicardial borders and

quantifies LGE in patients with HCM. Based on the experiments we performed, our pipeline

Fig 2. Examples of patients with no scar. The leftmost column is the original MRI image, the second column is the expert-based label or ground truth, and the

third column is the model prediction. The fourth and fifth columns are the spatial attention heatmaps at the 1/2 and 1/4 resolutions, respectively.

https://doi.org/10.1371/journal.pdig.0000159.g002
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provides more accurate and robust scar quantification as it was trained with data from differ-

ent sites, vendors, readers, and analysis packages. It also has higher clinical utility as it does not

require manual image pre-processing and can rapidly analyze standard CMR LGE images

using a single graphics card. Finally, it is based on SAUNet architecture, allowing strong

computational interpretability by providing visualization attention maps during the interme-

diate stages of the segmentation.

Compared to previous studies specifically investigating HCM patients, the CMR images

used in our study were collated from multiple vendors, and two distinct sets of these images

were analyzed by two different readers using different software packages. The incorporation of

data from different sites, vendors, readers, and analysis packages enabled us to develop a more

robust model. Studies have demonstrated significant inter-reader variability in CMR LGE

image analysis, which is exacerbated by the patchy multifocal CMR LGE appearance in HCM

patients [9–12]. As such, incorporating more than one reader reduces the risk of bias that may

develop in a deep learning model trained using contours from one clinician. Given the afore-

mentioned advantages, the dataset used to train and test the algorithm allowed us to develop a

model with greater potential for wider clinical use.

Moreover, we trained and validated our model to function efficiently on a single NVIDIA

GPU to analyze uncropped images. Our algorithm can rapidly process one image in less than

0.07 seconds, which is comparable to previous programs. Using our program, an average

CMR study consisting of approximately 8 LGE images would require less than 0.56 seconds to

be analyzed. This is considerably shorter than the time currently required for experts to manu-

ally segment the LV and quantify the scar burden from CMR LGE images [20]. This offers

time-savings to clinicians and will reduce the amount of training required to perform CMR

LGE scar analysis. It will also increase the number of patients receiving quantitative scar bur-

den measurement over a qualitative assessment.

Our pipeline does not require the extra step of manually cropping the images such that all

the structures around the LV are removed. Most of the previously developed programs were

trained and tested using these LV focused CMR LGE images, because it reduces computational

requirements as the tasks (i.e., identify the LV and then segment the LV) required by the algo-

rithm are reduced. The ability to analyze a more complete image permits this program to be

more easily integrated into an automated clinical workflow.

To demonstrate the improvements gained by our SAUNet-based algorithm, we compared

our results against a U-Net model trained and tested on the same samples with the same gold

standard definition. Our benchmarking also included assessing the impact of image cropping

Fig 3. Examples of patients with mild (8% LGE) (a) and large (51% LGE) scar burden (b). The left most column is the

expert-based label or ground truth, and the second column is the model prediction. The third and fourth columns are

the spatial attention heatmaps at the 1/2 and 1/4 resolutions, respectively. Note, not all slices from each patient are

presented.

https://doi.org/10.1371/journal.pdig.0000159.g003

Table 2. Expert-based CMR LGE quantification versus CNN model LGE prediction (4SD and 6SD SAUNet models).

Expert CMR LGE Quantification (Mean ± SD) CNN Model Prediction (Mean ± SD) Correlation Bias LOA (2SDs)

4SD model

LGE mass 4.56 ± 7.23 g 3.77 ± 7.11 g 0.92 -0.79 g 5.47 g

%LGE volume 3.47 ± 5.62% 2.55 ± 4.94% 0.90 -0.93% 4.71%

6SD model

LGE mass 2.68 ± 4.77 g 2.21 ± 4.38 g 0.91 -0.56 g 3.88 g

%LGE volume 1.80 ± 3.38% 1.28 ± 2.76% 0.92 -0.53% 2.71%

https://doi.org/10.1371/journal.pdig.0000159.t002
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to isolate the LV. Overall, CMR LGE quantification is a more complicated task as demon-

strated by the lower DSC scores compared to LV segmentation as seen in this analysis and in

prior publications. However, our SAUNet model performed better at scar segmentation com-

pared to the standard U-Net, and this improvement persisted with cropped images. Overall,

SAUNet results in an algorithm that outperforms standard U-Net architecture [16].

The use of SAUNet also improves both computational interpretability and performance of

final prediction. SAUNet is a 2D architecture that we developed that uses shape-dependent

information in addition to texture information to improve a CNN model’s robustness [19].

We have taken this architecture and adapted it to HCM LV segmentation and LGE quantifica-

tion. Previously developed HCM algorithms used off-the-shelf U-Net models, which lack

interpretability. In comparison, SAUNet allows for multi-level computational interpretability

and removes the need for additional post-hoc computations or gradient-based saliency meth-

ods for sensitivity analysis [19,21]. The intrinsic attention maps within the SAUNet model are

a strong alternative to saliency methods with some improved computational advantages [19].

Namely, attention maps at varying resolutions and layers of the model are all computed during

the forward-pass of an image, reducing the need for multiple iterations of additional post-hoc

computation to compute the saliency map of different points within the model. We suggest

this computational interpretability is beneficial as having a seamless method to visualize com-

prehensible intermediate stages of the model is useful for debugging the pipeline, especially in

the case of using larger datasets with greater variance (i.e., from different readers and centres).

Fig 4. Correlation (a) and Bland-Altman analysis (b) between the expert-based manual analysis and the model prediction for CMR LGE scar mass. Correlation

(c) and Bland-Altman analysis (d) between the expert-based manual analysis and model prediction for percentage of LGE volume.

https://doi.org/10.1371/journal.pdig.0000159.g004
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Existing works for automated scar quantification in HCM patients proposed programs with

no framework or guidelines for interpretability analysis [13–16]. By verifying that an algorithm

is not perpetuating biases, a valuable tool can be created to help solve the challenges numerous

clinicians face in medical image analysis.

Limitations

One limitation to this study is the slight pixel intensity shifts seen within a patient’s CMR LGE

images. Often expert readers will define a region of interest of normal myocardium on a

Fig 5. Correlation (a) and Bland-Altman analysis (b) between the expert-based manual analysis and the model prediction for CMR LGE scar mass. Correlation

(c) and Bland-Altman analysis (d) between the expert-based manual analysis and model prediction for percentage of LGE volume.

https://doi.org/10.1371/journal.pdig.0000159.g005

Table 3. Performance comparison between SAUNet and U-Net models on endo- and epicardial and scarring segmentation on HCM patients.

Dice Score Coefficient Endocardium Epicardium Scar

SAUNet 4SD 0.92 ± 0.04 0.83 ± 0.03 0.60 ± 0.08

6SD 0.91 ± 0.04 0.83 ± 0.03 0.64 ± 0.09

U-Net 4SD 0.91 ± 0.04 0.81 ± 0.03 0.55 ± 0.07

6SD 0.91 ± 0.04 0.80 ± 0.03 0.57 ± 0.08

SAUNet cropped version 4SD 0.91 ± 0.02 0.83 ± 0.02 0.62 ± 0.07

6SD 0.91 ± 0.02 0.84 ± 0.02 0.68 ± 0.09

U-Net cropped version 4SD 0.90 ± 0.02 0.82 ± 0.02 0.61 ± 0.07

6SD 0.90 ± 0.02 0.82 ± 0.02 0.65 ± 0.08

https://doi.org/10.1371/journal.pdig.0000159.t003

PLOS DIGITAL HEALTH Interpretable deep learning for CMR scar quantification

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000159 January 4, 2023 9 / 17

https://doi.org/10.1371/journal.pdig.0000159.g005
https://doi.org/10.1371/journal.pdig.0000159.t003
https://doi.org/10.1371/journal.pdig.0000159


limited number of slices (i.e., not on every LGE image). Thus, subtle intensity shifts to the

overall pixel values on slices where the normal region was not defined could lead to over- or

underestimation of scarring in the ground truth mask. While the extracted pixels’ statistics

generally performed well, providing a normal myocardial region contour for every LGE slice

would enhance the accuracy of individual slices’ labelling. Validation with more interpreters

or with pathologic confirmation would be important in removing potential bias and human

error in the ground truth contouring. Finally, external validation of this program would be

valuable to assess wider generalizability.

Conclusions

Using novel machine learning methods, we have successfully developed an automatic deep

learning pipeline that rapidly provides LV endo- and epicardial segmentation and LV scar

quantification on CMR images. Our program was developed with multiple experts and soft-

ware packages. It also does not require heavy image pre-processing and has greater interpret-

ability, potentially allowing it to be integrated into routine clinical practice.

Materials and methods

Study patients

The study design is summarized in Fig 6. We retrospectively studied 2557 CMR LGE images

from 307 HCM patients imaged at the University Health Network (Toronto, Canada) and

Tufts Medical Center (Boston, USA) between November 2001 and September 2015.

The diagnosis of HCM was made clinically as per societal guidelines [7,8,22]. Baseline

demographics and clinical characteristics were obtained from the patient’s electronic medical

record. Echocardiograms were reviewed for information regarding the presence of LV outflow

tract obstruction. This study received the proper ethical oversight and was approved by the

Research Ethics boards of the University Health Network (Toronto, Canada) and Tufts Medi-

cal Center (Boston, USA).

CMR imaging

CMR imaging was performed using 1.5T or 3T scanners (Achieva, Philips, the Netherlands; or

Avanto/Skyra_fit/Signa Excite/Verio, Siemens, Germany) using steady-state, free-precession

breath-hold cines in sequential short-axis slices from the atrioventricular ring to the apex (6–8

mm slices with 0–2 mm inter-slice gap). LGE images were acquired 10 to 20 minutes after

Table 4. Bland Altman analysis, t-test, predicted mean mass, and expert-read mean mass and LGE% comparing SAUNet against U-Net for the 4SD and 6SD

models.

Bias + LOA T-test P-value Predicted mean + SD Expert-read mean + SD

Mass

4SD SAUNet -0.79 ± 5.47 g 0.55 3.77 ± 7.11 g 4.56 ± 7.23 g

4SD U-Net -0.72 ± 7.08 g 0.58 3.84 ± 6.91 g

6SD SAUNet -0.56 ± 3.88 g 0.50 2.21 ± 4.38 g 2.68 ± 4.77 g

6SD U-Net -0.91 ± 4.68 g 0.35 1.77 ± 3.58 g

LGE%

4SD SAUNet -0.93 ± 4.71% 0.34 2.55 ± 4.94% 3.47 ± 5.62%

4SD U-Net -1.24 ± 5.95% 0.17 2.23 ± 3.47%

6SD SAUNet -0.53 ± 2.71% 0.35 1.28 ± 2.76% 1.80 ± 3.38%

6SD U-Net -0.72 ± 3.45% 0.18 1.08 ± 2.40%

https://doi.org/10.1371/journal.pdig.0000159.t004
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intravenous administration of 0.15–0.2 mmol/kg gadolinium-DTPA with breath-hold 2D

phase-sensitive inversion-recovery sequences in identical planes as in the cine images. Inver-

sion time was optimized to null normal myocardial signal. For phase-sensitive sequences,

uncorrected magnitude images were used.

CMR image analysis

LV endo- and epicardial contouring and LGE scar quantification were performed using com-

mercially available software packages (QMASS DSI version 7.4, Medis Medical Imaging, Lei-

den, Netherlands; CVi42 5.11.1, Circle Cardiovascular Imaging, Calgary, Canada) (S3 Table).

LV endocardial and epicardial borders were manually contoured on the LGE images to define

the myocardium, taking care to exclude papillary muscles and the trabecular blood pool. LGE

quantification was performed by 2 expert readers (R.H.C., A.A) [4,23,24]. Briefly, LV myocar-

dial areas with pixel intensity values 4 standard deviations (SD) greater than the mean of a

Fig 6. Central illustration of data processing, modelling, and assessments of this study.

https://doi.org/10.1371/journal.pdig.0000159.g006
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normal myocardial region that was manually defined by experts, were considered scar, and

labelled as the 4SD LGE ground truth. A 6SD ground truth was also generated using a 6SD

cut-off. The LGE area of each slice was then summed across each patient’s MRI images to gen-

erate the total LGE mass. Inter- and intra-observer agreement using this method has previ-

ously been published [4].

For ML, each patient’s CMR study contained manually traced contours corresponding to the

LV endo- and epicardium that was used for LV segmentation, and a contour identifying a region

of normal myocardium on the LGE images. The mean and standard deviations of the normal

myocardial region were used to calculate and label the scarred region for that patient’s LGE

images. Each 2D image was converted to a tensor and then normalized across the slice before it

was fed into the model during training and validation. Due to the downsizing and upsizing nature

of the architecture of the deep model used in this study, each image was reshaped to the size of

256 by 256 pixels prior to analysis. To avoid training bias, the datasets for each site were randomly

split into training and testing data sets in a 4:1 ratio, ensuring that the 80% of cases with LGE pres-

ent were included in the training set and the remaining 20% were used for validation. A model

was trained using the 4SD ground truth and separately the 6SD ground truth label.

Convolutional neural network

An interpretable version of the 2D U-Net deep neural network (DNN) model called Shape

Attentive U-Net (SAUNet) was used in this study. SAUNet architecture is composed of two

main streams, including the shape stream that processes boundary information and the texture

stream. The shape stream is composed of gated convolutional layers and residual layers. The

gated convolutional layers are used to fuse texture and shape information, while the residual

layers are used to fine-tune the shape features [19].

Each image sample was processed as a (3, 256, 256) tensor, which was fed into the network.

The SAUNet model deploys an encoder-decoder based architecture to learn the features of LV

and scar segmentation, and outputs a (4, 256, 256) tensor. Each of the four channels in the out-

put tensor corresponds to one of the 4 segmentation classes: background, LV epicardium, LV

endocardium, and scar. We apply a Softmax function across the channel dimension such that

each tensor value in a given channel corresponds to the probability that corresponding pixel is

labelled its respective channel’s class. Thus, our model’s final prediction is computed as the

argmax of the output tensor after the SoftMax function. In other words, each pixel is labelled

as the class that has the highest probability across the channels for the respective pixel.

We deployed transfer learning and data augmentation techniques to train a robust and gen-

eralizable model and speed up the learning process. We started with a SAUNet model, whose

initial parameters were determined from training to segment the left and right ventricular cav-

ities and left myocardium on CMR data on the AC17 dataset [19,25]. Multiple real-time aug-

mentation methods were deployed during the training step to prevent overfitting and increase

the generalizability of the model. By applying various data augmentation techniques, multiple

potential variations of the provided images were seen by the model, helping mitigate the data

hunger of deep models [26,27]. Random cropping, flipping, rotating, and random elastic

deformation filtration were applied on the images to allow the deep model to identify various

shapes of images [28].

Mini-batch gradient descent was deployed during training, which provided fast training

convergence while limiting memory usage. After performing hyperparameter search, we used

a batch size of 4 for all model training. SAUNet includes a combination of three loss functions

as the total loss composed of the segmentation loss and the shape stream boundary loss. SAU-

Net uses a Cross-Entropy loss as a commonly used loss function for image segmentation tasks
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(LCE), Dice loss which measures the overlap and similarity between two sets for each class

(LDice), and an extra loss called Edge loss which denotes the binary cross entropy loss of the

predicted shape boundaries (LEdge). The total loss, LTotal, is defined as,

LTotal ¼ LCE þ LDice þ LEdge:

The stochastic gradient descent (SGD) algorithm was deployed for training optimization with

a momentum of 0.9 and a learning rate value initialized to 0.0005. For regularization, a weight

decay of 1e-4 was used, and the best model parameters were selected based on the scarring seg-

mentation Dice Similarity Coefficient (DSC) score between 180 epochs of training.

Image processing and performance evaluation were performed using Python (version 3.6;

Python Software Foundation) in the PyTorch framework. All analysis was performed using a

single NVIDIA Tesla P100 graphics card. Model implementation and their parameters are

available online on our GitHub page.

Scar quantification

On the CMR LGE images, we computed the scar and no-scar myocardial mass (in grams) by

multiplying the voxel volume by the number of pixels labelled scar or no-scar, respectively.

Summation of segmented no-scar and scarred myocardial mass was used to calculate the total

LV mass. The ratio of scar mass to total LV myocardium mass (%LGE) was computed for

automatic and manual segmentations. Scar regions bordering the endocardium and epicar-

dium contours as well as regions with an area of only 1-pixel were considered as noise and

were removed from the ground truth during training and assessment [16].

Model interpretability

Interpretability is a limitation of most neural networks, such as U-Net due to the large number

of convolutional layers used. This effectively renders the neural network a black box, making it

difficult to determine the cause of misclassification or inaccurate segmentation. SAUNet

addresses the interpretability and robustness constraints by including a secondary shape

stream in its architecture in parallel to the regular stream that mainly captures images’ texture

information. SAUNet includes modules in its architecture that take in intermediate feature

maps at multiple stages of the network. These attention maps can be extracted to produce a

visual heatmap that can be used for interpretability. More specifically, the heatmap visualiza-

tion highlights the regions of the input image that have a more substantial impact on the final

segmentation and can be used to detect the layers of origin where the inaccuracy of prediction

starts for samples with faulty predictions. This opportunity provides the model developers

with a better understanding of where to focus on for improving the model.

Comparison to other models

U-Net architecture variations have been used in other studies to segment CMR LGE images in

HCM patients. We analyzed our test dataset using the standard U-Net architecture and com-

pared the results to our model’s performance for CMR LGE quantification [13–17]. The 4SD

and 6SD U-Net models were implemented in the PyTorch framework and trained with the

same hyperparameters and data as the SAUNet models.

Statistical analysis

Continuous variables were expressed as mean ± standard deviation. Pearson correlation coeffi-

cient (r) and Bland-Altman analysis were used to assess agreement between automatic and
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manual scar volumes and the %LGE. Overlap between the automatically segmented and the

manually segmented areas in samples was measured by using the DSC for both the LV scar

and the myocardium. DSC calculates the area of overlap between ground truth and the predic-

tion divided by the total number of pixels in the images:

DSC GT; Pð Þ ¼
2jGT \ Pj
jGTj þ jPj

where GT is the ground truth and P is the model prediction pixels [19]. DSC was only calcu-

lated from samples with scar present on either the ground truth or the model prediction as

DSC is not defined when there is no scar. DSC scores were classified as follows: less than 0.25,

poor; 0.25–0.49, moderate; 0.5–0.74, good; and 0.75 or greater, excellent. We used a nonpara-

metric Kruskal-Wallis test to compare DSC values, the Welch t-test to compare regression

slopes, and the Fisher z test to compare correlation coefficients. Statistical significance was

defined as P< 0.05. Statistical analyses were performed using R 4.0.2 [29–31].

The following comparisons between the ground truth and the model prediction for LV seg-

mentations, LGE mass and LGE% were performed:

1. The SAUNet 4SD model versus the SAUNet 6SD model,

2. Our SAUNet model versus the standard U-Net model using either a 4SD or 6SD cutoff.

Many previous studies on HCM images required image pre-processing with manually crop-

ping to isolate the LV prior to analysis [13]. Thus, we also performed the above comparisons on

pre-processed images that were cropped around the LV region to observe the effect of cropping

on segmentation. Each 2D image slice was cropped around the epicardium border using the posi-

tional information provided in the ground truth epicardium mask. Then, each image was zoomed

to a dimension of 160x160 px2 consistent with previous works [17]. Lastly, differences in model

performance on our testing set partitioned by sex were examined for the SAUNet 6SD model.

Supporting information

S1 Fig. Correlation and Bland-Altman analysis for U-Net 4SD model. Correlation (a) and

Bland-Altman analysis (b) between the expert-based manual analysis and the model prediction

for CMR LGE scar mass. Correlation (c) and Bland-Altman analysis (d) between the expert-

based manual analysis and model prediction for percentage of LGE volume.

(TIFF)

S2 Fig. Correlation and Bland-Altman analysis for U-Net 6SD model. Correlation (a) and

Bland-Altman analysis (b) between the expert-based manual analysis and the model prediction

for CMR LGE scar mass. Correlation (c) and Bland-Altman analysis (d) between the expert-

based manual analysis and model prediction for percentage of LGE volume.

(TIFF)

S1 Table. Size of training and testing samples grouped by their site and scarring label.
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S2 Table. Bland Altman analysis, t-test, and predicted against expert-read mean mass and
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