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Abstract

With the wider availability of healthcare data such as Electronic Health Records (EHR),

more and more data-driven based approaches have been proposed to improve the quality-

of-care delivery. Predictive modeling, which aims at building computational models for pre-

dicting clinical risk, is a popular research topic in healthcare analytics. However, concerns

about privacy of healthcare data may hinder the development of effective predictive models

that are generalizable because this often requires rich diverse data from multiple clinical

institutions. Recently, federated learning (FL) has demonstrated promise in addressing this

concern. However, data heterogeneity from different local participating sites may affect pre-

diction performance of federated models. Due to acute kidney injury (AKI) and sepsis’ high

prevalence among patients admitted to intensive care units (ICU), the early prediction of

these conditions based on AI is an important topic in critical care medicine. In this study, we

take AKI and sepsis onset risk prediction in ICU as two examples to explore the impact of

data heterogeneity in the FL framework as well as compare performances across frame-

works. We built predictive models based on local, pooled, and FL frameworks using EHR

data across multiple hospitals. The local framework only used data from each site itself. The

pooled framework combined data from all sites. In the FL framework, each local site did not

have access to other sites’ data. A model was updated locally, and its parameters were

shared to a central aggregator, which was used to update the federated model’s parameters

and then subsequently, shared with each site. We found models built within a FL framework

outperformed local counterparts. Then, we analyzed variable importance discrepancies

across sites and frameworks. Finally, we explored potential sources of the heterogeneity

within the EHR data. The different distributions of demographic profiles, medication use,

and site information contributed to data heterogeneity.
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Author summary

The availability of a large amount of healthcare data such as Electronic Health Records

(EHR) and advances of artificial intelligence (AI) techniques provides opportunities to

build predictive models for disease risk prediction. Due to the sensitive nature of health-

care data, it is challenging to collect the data together from different hospitals and train a

unified model on the combined data. Recent federated learning (FL) demonstrates prom-

ise in addressing the fragmented healthcare data sources with privacy-preservation. How-

ever, data heterogeneity in the FL framework may influence prediction performance.

Exploring the heterogeneity of data sources would contribute to building accurate disease

risk prediction models in FL. In this study, we take acute kidney injury (AKI) and sepsis

prediction in intensive care units (ICU) as two examples to explore the effects of data het-

erogeneity in the FL framework for disease risk prediction using EHR data across multiple

hospital sites. In particular, multiple predictive models were built based on local, pooled,

and FL frameworks. The local framework only used data from each site itself. The pooled

framework combined data from all sites. In the FL framework, each local site did not have

access to other sites’ data. We found models built within a FL framework outperformed

local counterparts. Then, we analyzed variable importance discrepancies across sites and

frameworks. Finally, we explored potential sources of the heterogeneity within EHR data.

The different distributions of demographic profiles, medication use, site information such

as the type of ICU at admission contributed to data heterogeneity.

Introduction

Acute kidney injury (AKI) and sepsis are two types of potentially life-threatening clinical con-

ditions that complicate treatment, clinical trajectories, and potentially worsen outcomes of a

significant number of hospitalized or intensive care unit (ICU)-patients [1–2]. For patients

with AKI or sepsis, morbidity and mortality are usually higher than patients without AKI or

sepsis, with as much as a sevenfold increased mortality risk, regardless of type of ICU (for

example, medical, surgical, or cardiac) [3–4]. Moreover, healthcare utilization within the ICU

is often higher for patients with these conditions. For example, patients with AKI and sepsis

often require hemodialysis, inotropic support, or mechanical ventilation [5]. Therefore, early

prediction of AKI or sepsis risk in critical care settings can facilitate early interventions that

are likely to provide benefit, including aggressive treatment with fluid resuscitation and anti-

microbials that may improve patient outcomes [6].

Recently, due to wider availability of electronic health record (EHR) data and advances in

artificial intelligence (AI), machine learning (ML) based disease risk prediction has attracted

more attention in the ICU setting [7]. Previous studies on AKI and sepsis onset risk prediction

mainly focused on building a predictive model on medical data from single hospitals [8–13].

However, building an accurate and generalizable disease risk prediction model requires a large

amount of data from a diverse patient population [8]. Collecting the data together from differ-

ent hospitals and constructing a unified risk prediction model on the combined data can lead

to better prediction performance. Moreover, using multiple hospitals or sites data over single

institution data can add to the generalizability of ML models [14]. A recent study has shown

that creating more generalizable models can increase algorithmic fairness, yet many published

models lack this generalizability across geographic locations and demographics [15]. However,

due to the highly sensitive nature of EHR in terms of protected health information (PHI) of

patients, aggregating multiple institutions’ data all together is challenging [16].
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More recently, federated learning (FL) has emerged as a promising strategy on building ML

models with fragmented sensitive data [17]. FL is one mechanism of training ML models

across multiple decentralized sites holding local data samples without exchanging them [18]. It

builds a central aggregator to obtain global ML model’s parameters by iteratively exchanging

model parameters from local ML models. However, data heterogeneity in the FL framework

may affect prediction performance [19]. For example, different hospitals have different popu-

lations, which may have a high degree of variability in the patient treatment, such as different

medications they administer and different procedures they conduct. This heterogeneity espe-

cially affects the performance of sepsis and AKI prediction models which rely on patient

demographics, disease history, and medications [20]. Both AKI and sepsis are also highly het-

erogeneous [21]. This makes models built with conventional FL strategies such as federated

averaging challenging to generalize across clinics, limiting their use [7,22,23]. Several federated

architectures have been proposed to mitigate effects of data heterogeneity in other domains

and built personalized, but globally correlated, models to mitigate drift across sites [23], such

as model-agnostic meta-learning (MAML), federated multitask learning, and knowledge distil-

lation [24–28]. However, it is not clear how such data heterogeneity problem will impact build-

ing risk prediction models in clinical medicine.

To fill this research gap, we comprehensively investigate the effects of data heterogeneity in

the FL framework for predicting the onset risk of AKI and sepsis in ICU setting using EHR

data from multiple hospital sites. We built multiple predictive models in local, pooled, and FL

settings. The local setting built an individual model for each site from its own data. The pooled

setting built a global model shared across all sites with their combined data. The FL setting also

built a global model, where each local site did not share data with others, but updated model

parameters locally and shared the updated model parameters to a central aggregator, which

was used to update the global model parameters and shared back with each site. By comparing

the performance of models trained from different settings with each other, we investigated

how data heterogeneity would impact the federated risk prediction models. We also explored

the potential sources of the heterogeneity within EHR data by analyzing predictor importance

across settings and sites. The differences were contrasted according to patient and hospital

information to elucidate sources of heterogeneity and how they would potentially impact the

different predictive modeling settings. The overall workflow of our study is shown in Fig 1.

The notable contributions of this work to the literature are as follows:

• With the context of AKI and sepsis onset risk prediction in ICU setting, a comprehensive

comparison in terms of prediction performance among local, pooled, and federated settings

were conducted with a set of ML models.

• We have identified important predictors for AKI and sepsis risk and performed exhaustive

analysis on they would impact the prediction results. These predictors can be used by medi-

cal specialists to monitor the risk of AKI and sepsis for patients in ICU, while accounting for

the specifics of their own hospitals. In addition, we have delineated differences in feature

importance across medical sites, outlining metrics for direct comparison of feature impor-

tance across different settings (i.e., local, pooled, and federated).

• We have performed a thorough analysis on the potential sources of heterogeneity between

hospital sites according to patient demographic, medication, and lab data, as well as hos-

pital information such as available unit types. We outline how these sources of heteroge-

neity could be connected to the varying predictor importance derived across sites and

settings.
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Results

Development of AKI and sepsis prediction models in local sites

Data for 21,796 AKI patients and 22,0082 sepsis patients at 7 hospitals were extracted from the

eICU collaborative research database, following inclusion and exclusion criteria denoted in

the "Methods" section. All patients shared 354 unique variables which included lab tests, vital

signs, demographics, and medications. AKI patients were labeled both within a 24h and 48h

observation window, leading to two settings for AKI prediction. For sepsis, we labeled patient

data in accordance with Sepsis-3 clinical criteria. We predicted whether patients would suffer

from sepsis 6 hours prior to onset, onset point included. Within the observation window, lab

Fig 1. The framework of the study. In Data Preparation, different types of data including lab test, medication, vital

signs, and demographic are extracted during the observation window, which are used to build patients’ profiles to

predict whether they would suffer from acute kidney injury or sepsis in the prediction window. In Feature

Construction and Model Training, individual features from lab test, medication, vital signs, and demographic were

obtained to build a predictive model based on three frameworks including local, pooled, and federated frameworks. In

each framework, two common model architectures including logistic regression and multi-layer perceptron were used.

In Feature Importance Analysis and Source of Model Performance Heterogeneity, feature importance heterogeneity,

feature correlation across mode architectures and frameworks, and sources of model performance heterogeneity were

explored.

https://doi.org/10.1371/journal.pdig.0000117.g001
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tests and vital sign information were aggregated through several statistics (minimum, maxi-

mum, first, and last values) into several new features. Three model frameworks were designed

including local, pooled, and federated model architectures. The details of each model architec-

ture were described in the "Methods" section. For each framework, two model architectures

including the multilayer perceptron (MLP) and logistic regression (LR) were explored. Pro-

cessed data and scripts used for analyses are also available at https://github.com/surajraj99/

Data-Heterogeneity-in-Federated-Learning. On the Apple M1 Max with 10-core CPU, local

LR models were trained within an average of 2.54 ± 0.84 seconds and local MLP models were

trained in 2.36 ± 0.79 seconds. The large standard deviation of local performances is due to

varying dataset sizes across different sites. Pooled LR and MLP models were trained within

18.94 ± 0.05 and 19.33 ± 0.06 seconds, respectively. Federated LR and MLP models were

trained within 51.63 ± 24.26 and 58.51 ± 27.45 seconds, respectively. Communication costs

between sites and the central sever within the federated framework take a significant amount

of time, as evidenced by the time differences between pooled and federated framework. These

communication costs can be reduced by increasing the number of epochs that local sites train

models at each federated framework.

Fig 2 illustrates the LR and MLP performance, measured by area-under-receiver-operator-

curve (AUC), on both AKI 24h and 48h settings. Sepsis prediction setting results can be found

in S2 Text and S6 Fig. We observed:

• When using local model framework: AKI 24h LR models performed within the range of

0.680–0.809, whereas MLP models performed within a range of 0.677–0.821. Similarly, AKI

48h LR models performed within the range of 0.680–0.809, whereas MLP models performed

within a range of 0.673–0.800. Sepsis LR models’ performances ranged between 0.771–0.834

across sites, whereas MLP models’ performances ranged between 0.772–0.829. The LR and

MLP models performed similarly across all prediction tasks.

• When using pooled model framework: AKI 24h LR models performed within the range of

0.672–0.742, whereas MLP models performed within a range of 0.78–0.827. Similarly, pooled

AKI 48h LR models performed within the range of 0.683–0.744, whereas MLP models per-

formed within a range of 0.686–0.755. Pooled sepsis LR models’ performances ranged

between 0.731–0.800 across sites, whereas MLP models’ performances ranged between

0.732–0.793. LR pooled models showed more consistent performances to local model coun-

terparts in comparison to MLP pooled models.

• When using federated model framework: AKI 24h LR models performed within the range of

0.742–0.834, whereas MLP models performed within a range of 0.732–0.839. Similarly, AKI

48h LR models performed within the range of 0.722–0.835, whereas MLP models performed

within a range of 0.72–0.833. Federated sepsis LR models’ performances ranged between

0.833–0.862 across sites, whereas MLP models’ performances ranged between 0.823–0.861.

• Generally, the federated model outperformed the local model and pooled model. The pooled

models underperformed the local model.

Clinical interpretation of sepsis and AKI prediction models

Using Shapley Additive exPlanations (SHAP) values, we investigated the marginal effects of

the features identified as predictive by each model. Fig 3 illustrates the marginal plots (SHAP

dependence plots) for the top 10 most important features for each pooled model on the AKI

prediction settings. Fig 4 shows the SHAP dependence plots for AKI setting federated models.

Dependence plots for all local models are available in S4 Fig. Sepsis prediction results are
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available in the Supplemental Information and S7 Fig. To calculate the SHAP values for 1000

samples on the Apple M1 Max with 10-core CPU took on average 1076 ± 52 seconds.

In the AKI 24h setting, the pooled MLP model identified last measured level of creatinine

(creatinine_last), last measured hematocrit level (hematocrit_last), Furosemide, bg_paco2_min,

maximum potassium level (potassium_max), minimum creatinine levels (creatinine_min), last

measured systolic blood pressure (sysbp_last), hemoglobin_first, minimum bicarbonate level

(bicarbonate_min), and last measured calcium level (calcium_last) as the top 10 most impor-

tant variables. All factors except Furosemide were lab tests and vital signs. The pooled LR

model shared several important factors with the pooled MLP model, with the addition of age,

first measured calcium level (calcium_first), and last measured blood urea nitrogen level

(bun_last). Of note, in the pooled MLP model, creatinine_last of ~4 mg/dL is associated with

an exp(0.4) = 1.5-fold increase in risk of AKI 24h. In the pooled LR model, creatinine_last
shows a similarly strong relationship as the pooled MLP to AKI 24h risk. A bun_last measure-

ment of ~60 mg/dL is associated with a exp(0.2) = 1.2-fold increase in risk of AKI 24h. In the

Fig 2. Area Under Receiver Operating Curve (AUROC) for AKI Setting. Each plot shows performances for AKI 24h

and 48h prediction settings. Blue bars depict each local site’s model performance on their respective site test data.

Orange bars depict pooled model performance on each local site’s test data. Green bars depict federated model

performance on each local site’s test data.

https://doi.org/10.1371/journal.pdig.0000117.g002
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pooled LR model, the risk of AKI 24h given administration of furosemide, is greater than AKI

risk in the MLP model, with an odds ratio of exp(0.1) = 1.1.

In the AKI 48h setting, the pooled MLP model identified creatinine_last, hemoglobin_first,
bg_paco2_first, potassium_min, bun_last, Furosemide, maximum partial pressure of carbon

dioxide (bg_paco2_max), hemoglobin_max, sysbp_last, and first measured platelet count (pla-
tlet_first) as the top 10 most important variables. All factors except Furosemide were lab tests

and vital signs. The pooled LR model shared several important factors with the pooled model,

with the addition of the mean systolic and diastolic blood pressure (meanbp_first) and mini-

mum glucose level (glucose_min). Like the 24h setting, in the 48h pooled MLP model, creatini-
ne_last of ~4 mg/dL is associated with an exp(0.4) = 1.5-fold increase in risk of AKI. A

bun_last measurement of greater than ~25 mg/dL is associated with an increased risk of AKI

Fig 3. Shapley dependence plots for top 10 features for pooled models. Each panel shows the marginal effects of

each of the most impactful features ranked among the top 10 for predicting AKI 24h or 48h using pooled models. The

x-axis gives the raw values of each feature, and the y-axis gives the logarithmic of estimated odds ratio (i.e., the SHAP

value) for sepsis, AKI 24h or AKI 48h, when a feature takes a certain value. Each dot represents the SHAP value of a

sample. The LOWESS curve, used for smoother extrapolating across all the dots, is plotted in red for all panels. (a, c)

show Shapley dependence plots for pooled MLP models and (b, d) show Shapley dependence plots for pooled LR

models. (a, b) show plots for AKI 24h, and (c, d) show plots for AKI 48h.

https://doi.org/10.1371/journal.pdig.0000117.g003
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48h. In the pooled LR model, creatinine_last and bun_last show similarly strong relationships

as the pooled MLP model. Furosemide is considered an important medication across all AKI

settings and model architectures.

For the AKI 24h setting, the federated MLP and LR model consider more medications

important than their respective pooled counterparts. Medications considered important by the

federated MLP model include Furosemide, Potassium Chloride, Aspirin, and Metoprolol,

whereas the federated LR model considered Insulin important as well. Interestingly, the feder-

ated MLP model considered the patient’s choice of elective surgery (electivesurgery) as an

important feature, albeit a relatively small increase (exp(0.02) = 1.02-fold) in risk of AKI 24h.

Like the 24h setting, the federated MLP and LR models of the AKI 48h setting considered

more medications important than their respective pooled counterparts. Both the MLP and LR

Fig 4. Shapley dependence plots for top 10 features for federated models. Each panel shows the marginal effects of

each of the most impactful features ranked among the top 10 for predicting AKI 24h or 48h using federated models.

The x-axis gives the raw values of each feature, and the y-axis gives the logarithmic of estimated odds ratio (i.e., the

SHAP value) for sepsis, AKI 24h or AKI 48h, when a feature takes a certain value. Each dot represents the SHAP value

of a sample. The LOWESS curve, used for smoother extrapolating across all the dots, is plotted in red for all panels. (a,

c) show Shapley dependence plots for federated MLP models and (b, d) show Shapley dependence plots for federated

LR models. (a, b) show plots for AKI 24h, and (c, d) show plots for AKI 48h.

https://doi.org/10.1371/journal.pdig.0000117.g004
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model consider administration of Aspirin and Insulin as important factors. The federated

MLP for the 48h setting uniquely finds the minimum ratio of “partial pressure of oxygen” to

“fractional inspired oxygen” (bg_pao2fio2ratio_min) and maximum level of glucose (glucose_-
max) as important factors. Local models shared numerous important factors with pooled and

federated models, depicting similar relationships between feature value and risk of sepsis/AKI

(S4 Fig).

Source of prediction performance heterogeneity across model

architectures, frameworks, and sites

To better understand differences in feature importances across hospital sites and model frame-

works, we performed a qualitative analysis which looked at the most important variables

selected by models and their prevalence across sites. Fig 5, 6, and 7 show features in relation to

Fig 5. Distribution of important features at all local models across local sites. The figure demonstrates feature

importance disparities for all AKI settings (24h, 48h) local models (MLP and LR). (a, b) show feature importance

disparities for MLP models. (c, d) show feature importances for LR models. Each dot corresponds to one of the most

important features ranked among the top-100 by at least one of the seven models; y-axis measures the proportions of

sites that identified the feature as top-100, or “commonality across sites”; x-axis measures the mean of feature

importance rankings measured as “soft ranking” (the closer it is to 1, the higher the feature ranks). Top-100 is an

arbitrary cutoff we used to analyze the most important features to illustrate heterogeneity. Each feature is also color

coded by the interquartile range (IQR) of the ranks across sites (the higher the IQR is, the more disagreement across

sites on the importance of that feature).

https://doi.org/10.1371/journal.pdig.0000117.g005
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their importance rankings in AKI prediction models, where the y-axis is the proportion of

sites that consider the feature as a top 100 feature (for the specific model architecture). For

example, a feature that has a y-value of 1.0 is deemed important at all sites, whereas if a feature

has a y-value of 0.1429 (1/7), it is only considered important at one site. The x-axis shows the

importance ranking of the feature, averaged across the sites it is considered important (i.e., top

100) in (i.e., a feature is more important if it is closer to 1). Results for the sepsis prediction set-

ting are available in the Supplemental Information and S8 Fig.

Fig 5 shows the distribution of important features across sites for local models. For all set-

tings, there are features that are both ‘universally important’ and site-specific (i.e., important at

only a subset of sites). The universally important features across most sites for AKI (both 24h

and 48h) included creatinine_last, creatinine_min, creatinine_max, administration of Ondan-

steron, glucose_max, and urineoutput_sum. However, the relative importance of features at

local sites were different. This disagreement was reflected in the dependence plots for the local

models (S4 Fig). Universally important features like creatinine_last, administration of Sodium

Fig 6. Distribution of important features at pooled models across local sites. The figure demonstrates feature

importance disparities for all AKI settings (24h, 48h) pooled models (MLP and LR). Each dot corresponds to one of

the most important features ranked among the top-100 by the pooled model; y-axis measures the commonality across

sites; x-axis measures the feature importance soft rankings.

https://doi.org/10.1371/journal.pdig.0000117.g006
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Chloride, among others, have different trends with the prediction diagnosis depending on the

site.

Fig 6 shows the distribution of important features for the pooled models across sites. Both

AKI 24h and 48h settings’ pooled models have relatively fewer features that are only important

at a small number of sites compared to the local model framework. For the pooled MLP and

LR AKI 24h or 48h model, the universally important features mainly included creatinine_last,
potassium_max, and creatinine_min. All AKI pooled models have features that are uniquely

important to the pooled models (i.e., these features were not considered as part of the top 100

features at any local site). The pooled MLP AKI 24h model uniquely considered administra-

tion of Nitroglycerin moderately important. The pooled LR AKI 24h model uniquely consid-

ered administration of Metoclopramide Mupirocin, Lidocaine, and race_black as slightly

important. The pooled MLP AKI 48h model uniquely considered administration of Hydro-

morphone and bilirubin_last as slightly and moderately important respectively. The pooled LR

AKI 48h model also uniquely considered administration of Hydromorphone and

Fig 7. Distribution of important features at federated models across local sites. The figure demonstrates feature

importance disparities for all AKI settings (24h, 48h) federated models (MLP and LR). Each dot corresponds to one of

the most important features ranked among the top-100 by the pooled model; y-axis measures the commonality across

sites; x-axis measures the feature importance soft rankings.

https://doi.org/10.1371/journal.pdig.0000117.g007
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bilirubin_last as moderately important. Taken together, these differences suggested that there

is slight variability in uniquely important features among models.

Fig 7 shows the distribution of important features for the federated models across sites. Like

the pooled models, both MLP and LR federated models have relatively fewer features that are

important at only a small number of sites compared to the local model analysis. The federated

MLP AKI 24h model shares its universally important features with its pooled counterpart,

namely attributing importance to creatinine_last, potassium_max, and creatinine_min, among

others. These features are universally important in the federated LR architecture, as well as in

the 48h setting. Some of the federated AKI models have uniquely important features as well.

The federated MLP AKI 24h model considered administration of Dexmedetomidine as an

important variable. The federated LR AKI 48h model considered administration of Phenyleph-

rine slightly important. Like the pooled setting, we can see discrepancies between feature

importances which are not considered universally important at all sites.

Correlation of feature importances across model architectures

To investigate differences of feature importance between model architectures, we looked at the

correlation between importance rankings of features shared by both the MLP and LR model

for each setting and framework. Fig 8 shows these correlations, where the x and y axes are the

importance of the feature in the MLP and LR model respectively. In the AKI 24h setting, local

models have moderately strong positive correlations with Pearson-correlation coefficients

(PC) ranging from 0.79–0.84. The pooled and federated AKI 24h model shows slightly weaker

positive correlations as compared to the local models PC = 0.79, 0.77. These results suggest

that, within the AKI setting, the pooled and federated models were not successful at decreasing

feature discrepancies between the LR and MLP architectures that were present in local models.

Sepsis prediction setting results are available in Supplemental Information and S9 Fig.

Correlation between local feature importances and non-local framework

feature importances

To investigate the correlation of heterogeneous features between local frameworks and both

pooled and federated frameworks, we established the ‘unique importance score’ (UIS). The

UIS score is large for features that are highly important at a small subset of sites, whereas it is

small for features that are considered universally important (i.e., features that were important

at a plurality of sites). In other words, the score is large for features that lie in the bottom right

region of the plots in Figs 5, 6, and 7. Calculation of the UIS score can be found in the Methods

section. Fig 9 shows the correlations of the UIS score across frameworks. Similar conclusions

can be derived from both pooled and federated framework analyses, in both sepsis and AKI.

There is a strong positive correlation (PC ranging from 0.84–0.93) between local UIS and

pooled/federated. Interestingly, for all analyses, confidence on the line of best fit decreases at

larger UIS scores. This suggests that features considered universally important in the local

framework were important for the pooled/federated models whereas features only important

at a small subset of hospitals were disregarded.

Sources of data heterogeneity

Tables 1 and 2 show demographic profiles across each site for AKI and sepsis patients, respec-

tively. For both AKI and sepsis settings, sites show similar gender distributions, with a slight

majority of patients being male across all sites. Age distributions are also similar across all sites

with most patients being between 50–75 years old. Patient BMI is similar across sites with

most patients having a BMI between 23–34. Site 199 has slightly fewer patients with a BMI of

PLOS DIGITAL HEALTH Data heterogeneity in federated learning with Electronic Health Records

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000117 March 15, 2023 12 / 26

https://doi.org/10.1371/journal.pdig.0000117


less than 23, and more patients with a BMI of greater than 34 compared to other sites. In both

settings, there was a disparity in the number of patients that underwent elective surgery, with

the proportions ranging from 0.12–0.28. Patients show differences in racial breakdowns across

sites. The African American population varies across sites from 0.02/0.01 (AKI/sepsis) at Site

199 to 0.3/0.32 at Site 243. Site 73 has a relatively large population of Hispanic individuals

compared to other sites, whereas Sites 122, 243, 252, and 458 have no Hispanic patients. The

Asian population is similar across all sites. The ‘Other’ racial category has the largest propor-

tion of individuals across all sites, but this proportion varies largely depending on the site,

ranging from 0.67–0.98. As previously mentioned, most of the patients in all settings (AKI

24h, 28h, and sepsis) were negative for the disease. For AKI 24h and AKI 48h settings, the pro-

portion of AKI positive patients ranges from 0.06/0.08 (24h/48h) to 0.1/0.13. For the sepsis set-

ting, the proportion of positive patients ranges from 0.02 to 0.20.

Table 3 shows general site information for the 7 hospitals. The sites are located across the

Northeast, Midwest, and South of the continental United States of America. All sites are large

with greater than 500 beds. There are differences in patient unit types across all sites. Sites 420,

243, 252, and 199 have no patients in Cardiothoracic Intensive Care Units (CTICU). Sites 252

and 458 have no patients in Medical Surgery Units (Med-Surg ICUs). Sites 122 and 199 have

no patients in Surgical Intensive Care Units (SICU). Sites 122, 243, 458, and 199 have no

Fig 8. Important features comparison across model architectures for AKI 24h setting. The figure shows correlations between

important features in the MLP and LR models. Each dot corresponds to one of the most important features ranked among the top-100

by both the MLP and LR model. The y-axis measures the importance of the feature in the LR model whereas the x-axis measures the

importance in the MLP model. The shaded portion represents a 95% confidence interval. PC (Pearson correlation coefficient) for each

comparison is denoted on the top-left of each plot. (a) shows the comparisons for local sites, 420, 252, and 73. (b) shows comparisons

for the pooled models. (c) shows comparisons for the federated models.

https://doi.org/10.1371/journal.pdig.0000117.g008
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patients in Critical Care Cardiothoracic Intensive Units (CCU-CTICU). Sites 420 and 122

have no patients in Cardiothoracic Intensive Care Units (MICU). Sites 420, 122, and 199 have

no patients in Neurological Care Units (Neuro ICU). Sites 252, 199, and 73 have no patients in

Cardiac Intensive Care Units (Cardiac ICU). Among sites which do share patients in the same

unit, proportions may be different. For example, while both Sites 199 and 73 have patients in

the Med-Surg ICUs, 88% of patients in Site 199 are admitted to Med-Surg ICUs whereas only

16% of patients in Site 73 are admitted to Med-Surg ICUs. Sites also had disparities in patient

admission sources. Across hospitals, most patients were either admitted directly or admitted

from the emergency department or operating Room. Of note, at Site 199, 22% of patients were

admitted from the ICU to a special care unit (SCU). At Site 73, no patients were admitted

from the recovery room. Taken together, despite being large, sites have disparities in unit types

and sources of admission.

S5 Fig illustrates the usage of medications across sites. Only 22 medications are used at all

sites for both sepsis and AKI settings. Further analysis indicated that even for medications

Fig 9. Correlation of unique importance score (UIS) between local and pooled/federated frameworks. x-axis is the

UIS for each feature in the local model framework. y-axis is the UIS for the pooled/federated model. Line of best fit is

plotted, and equation is shown on top corner, along with Pearson correlation coefficient (p). Shaded area represents a

95% confidence interval. First column depicts plots for the MLP model whereas the second column depicts plots for

the LR model. (a, b) show analyses for sepsis setting, (c, d) show analyses for AKI 24h setting. (a, c) show analyses for

pooled framework, (b, d) show analyses for federated framework.

https://doi.org/10.1371/journal.pdig.0000117.g009
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used at multiple hospitals, the proportion of patients that were on the medication at each hos-

pital varied greatly. Coupled with the disparities in unit types, this suggests that each hospital

site treats significantly different populations of individuals, despite all these hospitals having

patients who suffer from AKI and sepsis.

Table 1. Demographic Characteristics of AKI patients at each site. Percentage of individuals with certain characteristics specified within parentheses. Table 1 Positive/

Negative distribution is associated with the AKI 48h setting.

ID 420 ID 122 ID 243 ID 252 ID 458 ID 199 ID 73

Total 2957 2315 2990 2549 2592 2848 5545

Female 1198 (0.41) 1080 (0.47) 1316 (0.44) 1079 (0.42) 1161 (0.45) 1232 (0.43) 2452 (0.44)

Male 1759 (0.59) 1235 (0.53) 1674 (0.56) 1470 (0.58) 1431 (0.55) 1616 (0.57) 3093 (0.56)

Black 131 (0.04) 507 (0.22) 909 (0.3) 164 (0.06) 730 (0.28) 43 (0.02) 813 (0.15)

Hispanic 2 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 26 (0.01) 397 (0.07)

Asian 46 (0.02) 11 (0.0) 28 (0.01) 8 (0.0) 36 (0.01) 2 (0.0) 72 (0.01)

Other 2778 (0.94) 1797 (0.78) 2053 (0.69) 2377 (0.93) 1826 (0.7) 2777 (0.98) 4263 (0.77)

Elective Surgery: Yes 366 (0.12) 404 (0.17) 470 (0.16) 625 (0.25) 490 (0.19) 368 (0.13) 1542 (0.28)

Elective Surgery: No 2591 (0.88) 1911 (0.83) 2520 (0.84) 1924 (0.75) 2102 (0.81) 2480 (0.87) 4003 (0.72)

BMI < 23 582 (0.2) 493 (0.22) 493 (0.17) 480 (0.19) 553 (0.21) 399 (0.15) 806 (0.2)

23 < BMI < 28 959 (0.33) 678 (0.3) 884 (0.3) 743 (0.29) 792 (0.31) 785 (0.29) 1100 (0.27)

28 < BMI < 34 748 (0.26) 606 (0.27) 904 (0.3) 703 (0.28) 722 (0.28) 764 (0.28) 1121 (0.28)

BMI > 34 613 (0.21) 485 (0.21) 701 (0.24) 617 (0.24) 520 (0.2) 779 (0.29) 1010 (0.25)

Age < 25 107 (0.04) 71 (0.03) 73 (0.02) 81 (0.03) 97 (0.04) 118 (0.04) 116 (0.02)

25 < Age < 50 559 (0.19) 420 (0.18) 505 (0.17) 437 (0.17) 563 (0.22) 537 (0.19) 1032 (0.19)

50 < Age < 75 1611 (0.54) 1322 (0.57) 1757 (0.59) 1516 (0.59) 1414 (0.55) 1599 (0.56) 3096 (0.56)

Age > 75 680 (0.23) 502 (0.22) 655 (0.22) 515 (0.2) 518 (0.2) 594 (0.21) 1301 (0.23)

Positive 338 (0.11) 196 (0.08) 382 (0.13) 216 (0.08) 271 (0.1) 233 (0.08) 476 (0.09)

Negative 2619 (0.89) 2119 (0.92) 2608 (0.87) 2333 (0.92) 2321 (0.9) 2615 (0.92) 5069 (0.91)

https://doi.org/10.1371/journal.pdig.0000117.t001

Table 2. Demographic Characteristics of Sepsis patients at each site. Percentage of individuals with certain characteristics specified within parentheses.

ID 420 ID 122 ID 243 ID 252 ID 458 ID 199 ID 73

Total 2276 2365 3212 2586 2748 2996 5919

Female 936 (0.41) 1085 (0.46) 1404 (0.44) 1097 (0.42) 1234 (0.45) 1293 (0.43) 2629 (0.44)

Male 1340 (0.59) 1280 (0.54) 1808 (0.56) 1489 (0.58) 1514 (0.55) 1703 (0.57) 3290 (0.56)

Black 100 (0.04) 553 (0.23) 1019 (0.32) 175 (0.07) 805 (0.29) 44 (0.01) 899 (0.15)

Hispanic 2 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 36 (0.01) 428 (0.07)

Asian 43 (0.02) 12 (0.01) 31 (0.01) 10 (0.0) 38 (0.01) 3 (0.0) 82 (0.01)

Other 2131 (0.94) 1800 (0.76) 2162 (0.67) 2401 (0.93) 1905 (0.69) 2913 (0.97) 4510 (0.76)

Elective Surgery: Yes 371 (0.16) 424 (0.18) 541 (0.17) 659 (0.25) 527 (0.19) 412 (0.14) 1635 (0.28)

Elective Surgery: No 1905 (0.84) 1941 (0.82) 2671 (0.83) 1927 (0.75) 2221 (0.81) 2584 (0.86) 4284 (0.72)

BMI < 23 414 (0.19) 491 (0.21) 528 (0.16) 475 (0.18) 576 (0.21) 414 (0.14) 854 (0.2)

23 < BMI < 28 747 (0.33) 692 (0.3) 953 (0.3) 761 (0.29) 809 (0.3) 801 (0.28) 1170 (0.27)

28 < BMI < 34 597 (0.27) 628 (0.27) 956 (0.3) 723 (0.28) 775 (0.28) 811 (0.28) 1188 (0.28)

BMI > 34 475 (0.21) 496 (0.21) 765 (0.24) 621 (0.24) 582 (0.21) 848 (0.3) 1100 (0.26)

Age < 25 77 (0.03) 72 (0.03) 72 (0.02) 83 (0.03) 100 (0.04) 119 (0.04) 125 (0.02)

25 < Age < 50 430 (0.19) 435 (0.18) 542 (0.17) 448 (0.17) 577 (0.21) 557 (0.19) 1083 (0.18)

50 < Age < 75 1243 (0.55) 1358 (0.57) 1902 (0.59) 1516 (0.59) 1516 (0.55) 1694 (0.57) 3318 (0.56)

Age > 75 526 (0.23) 500 (0.21) 696 (0.22) 539 (0.21) 555 (0.2) 626 (0.21) 1393 (0.24)

Positive 459 (0.2) 172 (0.07) 187 (0.06) 152 (0.06) 123 (0.04) 135 (0.05) 89 (0.02)

Negative 1817 (0.8) 2193 (0.93) 3025 (0.94) 2434 (0.94) 2625 (0.96) 2861 (0.95) 5830 (0.98)

https://doi.org/10.1371/journal.pdig.0000117.t002
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Discussion

In this study, to investigate the effect of data heterogeneity on the performance of FL, multiple

machine learning models were developed to predict the risk of both AKI and sepsis diseases in

multiple ICU settings. Different types of EHRs including lab tests, vital signs, demographics,

and medications were extracted from seven hospitals in the eICU collaborative research data-

base. Three model frameworks including local, pooled, and federated were explored. Effects of

data heterogeneity across hospital sites were evaluated through model performance compari-

son and feature importance analysis. The sources of data heterogeneity across hospitals were

investigated based on patient demographics, medication usage, and general hospital attributes.

Our prediction models have shown comparable performance with state-of-the art AKI and

sepsis prediction studies [7]. In addition, federated model frameworks generally outperform

their local counterparts in our results. However, this largely depends on how heterogeneous

the patient populations from different hospitals are. Moreover, the pooled model did not show

much improvement over the local models, this could be largely due to the cross-site sample

heterogeneity. Though FL performed better than pooled models in our investigations, our FL

strategy is based on federated average which did not consider such cross-site heterogeneities,

thus it is difficult to justify the generalizability of the conclusion. One reason as to why the fed-

erated models performed better than pooled models might be due to their weight distribution.

The weights of the federated models are concentrated around zero as compared to pooled

models for all settings. More weights near zero means that the models are regularized and sim-

pler, which is likely to generalize better [29].

Table 3. Hospital site information. Percentage of usage/individuals specified within parentheses.

ID 420 ID 122 ID 243 ID 252 ID 458 ID 199 ID 73

Region Northeast South South Midwest South Northeast Midwest

Number of Beds > = 500 > = 500 > = 500 > = 500 > = 500 > = 500 > = 500

Unit Type

CTICU 0 (0.0) 562 (0.19) 0 (0.0) 0 (0.0) 635 (0.17) 0 (0.0) 1364 (0.19)

Med-Surg ICU 1343 (0.29) 1495 (0.51) 11 (0.0) 0 (0.0) 0 (0.0) 3712 (0.88) 1159 (0.16)

SICU 1932 (0.41) 0 (0.0) 710 (0.17) 588 (0.17) 372 (0.1) 0 (0.0) 408 (0.06)

CCU-CTICU 706 (0.15) 0 (0.0) 0 (0.0) 1031 (0.31) 0 (0.0) 0 (0.0) 1510 (0.21)

MICU 0 (0.0) 0 (0.0) 778 (0.18) 914 (0.27) 446 (0.12) 528 (0.12) 1124 (0.16)

Neuro ICU 0 (0.0) 0 (0.0) 716 (0.17) 838 (0.25) 416 (0.11) 0 (0.0) 1494 (0.21)

Cardiac ICU 698 (0.15) 884 (0.3) 2028 (0.48) 0 (0.0) 1832 (0.5) 0 (0.0) 0 (0.0)

Patient Admit Source

Floor 683 (0.15) 676 (0.23) 378 (0.09) 175 (0.05) 261 (0.07) 290 (0.07) 904 (0.13)

Emergency Department 2283 (0.5) 1254 (0.43) 1798 (0.42) 760 (0.23) 1463 (0.4) 1185 (0.28) 2301 (0.33)

Operating Room 644 (0.14) 458 (0.16) 402 (0.09) 462 (0.14) 577 (0.16) 698 (0.17) 1858 (0.26)

Direct Admit 49 (0.01) 397 (0.14) 763 (0.18) 877 (0.26) 710 (0.19) 427 (0.1) 627 (0.09)

Other Hospital 279 (0.06) 27 (0.01) 19 (0.0) 100 (0.03) 82 (0.02) 96 (0.02) 233 (0.03)

ICU to SDU 178 (0.04) 26 (0.01) 234 (0.06) 0 (0.0) 1 (0.0) 916 (0.22) 870 (0.12)

Other ICU 156 (0.03) 67 (0.02) 78 (0.02) 267 (0.08) 124 (0.03) 138 (0.03) 194 (0.03)

Step-Down Unit (SDU) 94 (0.02) 3 (0.0) 189 (0.04) 417 (0.12) 251 (0.07) 432 (0.1) 49 (0.01)

Chest Pain Center 103 (0.02) 5 (0.0) 0 (0.0) 0 (0.0) 11 (0.0) 0 (0.0) 1 (0.0)

Recovery Room 140 (0.03) 20 (0.01) 372 (0.09) 310 (0.09) 209 (0.06) 21 (0.0) 0 (0.0)

Acute Care/Floor 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 11 (0.0) 0 (0.0)

PACU 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (0.0) 0 (0.0)

ICU 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 10 (0.0) 0 (0.0)

https://doi.org/10.1371/journal.pdig.0000117.t003
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The performance heterogeneity of predictive models across sites and frameworks was eval-

uated by comparing feature importance. For both AKI and sepsis prediction tasks, important

variables identified by predictive models were consistent with prior studies [7]. For example,

creatinine and furosemide exposure showed positive associations with AKI, which is unsur-

prising given their clinical association with AKI. For the same model architecture, importance

of a feature varied depending on the sites, with variable-prediction relationships changing (see

Fig 5, 6, 7). The presence of ‘universally important features’ (i.e., features that were considered

highly important at most sites) and ’uniquely important features’ (i.e., features that were highly

important at a small subset of sites) showed that there was disagreement on relative impor-

tance across sites. The feature heterogeneity plots for federated and pooled frameworks

showed a decreased amount of uniquely important features. This was indicative of both these

frameworks being able to attribute higher importance to features shared across multiple sites.

Our findings also demonstrated that federated and pooled models were not successful at

decreasing feature importance discrepancies between LR and MLP architectures, and that

both pooled and federated frameworks prioritized features that were considered important

across a plurality of sites (i.e., low UIS) and attributed lower importance to features that were

uniquely important at a small subset of sites (i.e., high UIS). These findings also suggest that

the federated model may be better at discriminating the key features of patient-level clinical,

lab, and demographic information that improves risk prediction. In the field of critical care

medicine, the implication of this finding is that across heterogeneous sources of data, federated

models are more likely to highlight the common elements that can better predict sepsis and

AKI between hospital, patient, and practice-specific circumstances, thus highlighting the gen-

eralizability of the model’s value. However, consequently, it is possible that important local

characteristics that may better predict AKI and sepsis within hospitals could be overlooked

when compared to pooled or local models, which may in turn limit the clinical utility of these

tools, a finding that is increasingly being acknowledged in the AI/ML literature.

Within our analysis, differences in features of the hospitals, and ICUs were notable. Many

sites did not have any patients admitted to ICU types that other sites had a high proportion of

patients within, for example the Medical Surgery ICU or SICU. At these hospitals, different

sites treat different conditions. Thus, treatments may vary depending on the etiology and

nature of the condition driving sepsis and AKI [30]. For example, a patient managed for

decompensated heart failure in a cardiac ICU who subsequently develops AKI may be treated

with inotropic support and furosemide, whereas a patient being managed for septic shock in a

medical ICU with AKI may be aggressively repleted with intravenous fluids. As such different

hospitals, which are specialized at treating different conditions, may have slightly differing

medication regimens for treating patients when faced with the same disease, which in turn

may be a function of the practicing physician and their choice of treatment options including

medications, prespecified protocols, or even higher-level decisions about cost within central-

ized hospital pharmacies. Our models highlighted this putative disagreement between medica-

tion usage at hospitals, creating another source of heterogeneity in model training. This

heterogeneity in medications and demographic details was demonstrated in the feature hetero-

geneity plots since features with higher UIS scores tend to be medications and demographic

information. Differently, lab tests and vital signs were generally universally important features

across hospitals, likely because these are commonly standardized across hospitals. Taken

together, local frameworks may heavily suffer in generalizability even when population demo-

graphics are similar across sites, due to disagreements in medication and treatment adminis-

tration. However, clinicians may find use in site-specific factors, which may not be evident in

federated frameworks and only be ascertainable within a local framework. As such, while
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federated frameworks may provide performance increases, local frameworks can still provide

clinical value in determining important site-specific factors for risk prediction.

Limitations

There are several limitations to our study. First, we mainly considered structured clinical infor-

mation to construct the features. Integrating unstructured free text to build predictive models

may obtain better predictive performance and allow a new level of explainability of prediction.

Second, we only considered LR and MLP to build predictive models based on local, pooled,

and federated frameworks. Other algorithmic solutions such as support vector machines may

have a potential to improve model performance. Third, we mainly focus on describing the

effects of data heterogeneity in FL in terms of disease risk prediction. Considering data harmo-

nization techniques and other federated techniques to mitigate the problem and improve the

performance is one of future research topics. Moreover, federated techniques that deal with

data heterogeneity while simultaneously reducing communication costs may be required for

real-time medical use.

Methods

Ethics statement

This study analyzed a publicly available anonymized database (eICU Collaborative Research

Database) with preexisting institutional review board approval. Collection of data was in

accordance with the ethical standards set out by the IRB no. 0403000206 of the Massachusetts

Institute of Technology and with the 1964 Declaration of Helsinki and its later amendments.

Because the database is fully anonymized, formal consent was not required to use the data.

Data aggregation

Patient data was extracted from the eICU Collaborative Research Database, a multi-center crit-

ical care database made publicly available through Philips Healthcare and the MIT Laboratory

for Computational Physiology (https://eicu-crd.mit.edu/). The database contains detailed

information regarding the clinical care of ICU patients. We investigated three disease settings

(24h or 48h observation window (OW) AKI, and sepsis). An AKI (non-graded) is defined as

any of the following: Increase in serum creatinine (SCr) by> = 0.3 mg/dl (> = 26.5 μmol/l)

within 48 hours, increase in SCr to> = 1.5 times baseline which is known or presumed to

have occurred within the prior 7 days, or urine volume < 0.5 ml/kg/h for 6 hours. We predict

AKI risk using an accumulating OW (S1 Fig). We predicted AKI within the next 24 hours

(prediction window, PW) following the end of the OW, focusing only on the first 3 days (72

hours) of a patients’ inpatient hospital stay (max OW = 48 hours). For each patient, we created

2 pairs of OW/PWs, specifically using from OW = 1–24 hours (1-day) after admission, 1–48

hours (2-days). We do not consider the onset point. For the AKI prediction experimental set-

ting, positive cases are samples that are diagnosed as AKI in the prediction window whereas

controls are samples that are not diagnosed as AKI in the prediction window. For sepsis pre-

diction, we labeled patient data in accordance with Sepsis-3 clinical criteria. We predicted

whether patients would suffer from sepsis 6 hours prior to onset, onset point included. For

sepsis prediction experimental setting, positive cases are samples that are diagnosed as sepsis.

Controls are samples that are not diagnosed as sepsis. For patients who did not develop sepsis,

predictor values were selected from a random T-hour time window (T is usually set as 48 or 24

hours) during the patient’s ICU stay. For those who developed sepsis, a time was selected for

the patient within admission to 6 hours prior to the onset of sepsis, and the predictor values
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were extracted. Data was collected from seven hospitals with the following IDs: 420, 122, 243,

252, 458, 199, and 73. For all three disease predictions (24h or 48h AKI, and sepsis), all hospital

sites shared all features including: general demographic information (8 variables), vital signs/

lab tests (29 variables), and medications (254 medications). For 28 vital signs and lab tests, the

max, min, first, and last values are calculated. For urine, only the summation is calculated.

Taken together, a total of 354 features were available at every hospital site for each patient.

Data processing

For all datasets, we performed an automated curation process outlined as follows: (1) systemat-

ically identified extreme values of numerical features (e.g., vital signs/lab tests and some demo-

graphic information) that were beyond the 1st and 99th percentile as outliers. We marked

these values as missing. Primarily, this step marked values within demographic data (BMI,

age) and some vital signs as missing. Values marked as missing were investigated through clin-

ical literature to confirm that they were physiologically impossible. Previous studies utilizing

the eICU Collaborative Research Database have noted these errors are at random and can be

removed in downstream analyses [31–32]. (2) We standardized all our variables appropriately

by normalizing all our numerical features and converting binary features to either 1 or -1. (3)

For all missing measurements, the Multiple Imputation by Chained Equations algorithm

(MICE) was used. MICE imputation can calculate missing information by taking advantage of

the relationships between non-missing measurements within the dataset. Because overall

patient distributions are conserved after outlier removal (due to limited number of values

being considered outliers), MICE imputation can provide robust estimation of these values as

well [33].

Experimental design

There were three prediction tasks including 24-hour and 48-hour prediction of AKI, and sep-

sis prediction. Three model frameworks were designed including local, pooled, and federated

model frameworks. The local model framework only used data from each site itself. The

pooled model framework combined data from all sites. In the federated model framework,

each local site does not have access to other sites’ data. A model was trained locally, and its

parameters were shared to a central aggregator, which was used to update global model param-

eters which were subsequently sent back to each site. For each framework, LR and MLP were

used as model architectures, so there are 54 tasks in total were performed (7 site-specific

(local) x 3 prediction tasks x 2 architectures + 1 pooled model x 3 prediction tasks x 2 architec-

tures + 1 federated model x 3 prediction tasks x 2 architectures). For all settings, five-fold

cross-validation was used during training models. The Shapely Additive exPlanations (SHAP)

tool was used to calculate feature importance rankings for each task. The Markov Chain Type

4 rank aggregation was used to combine the feature importance rankings for all five folds.

Learning algorithm

To investigate the effects of heterogeneity across architectures, we focused on two learning

models: multilayer perceptron (MLP) and logistic regression (LR). The MLP is a class of feed-

forward artificial neural network (ANN) with a non-parametric functional form [34]. An MLP

consists of at least three layers of nodes: an input layer, a hidden layer, and an output layer.

Except for the input nodes, each node is a neuron that uses a nonlinear activation function.

MLP utilizes a supervised learning technique called backpropagation for training. Its multiple

layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish

data that is not linearly separable. Since MLPs are fully connected, each node in one layer
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connects with a certain weight to every node in the following layer [35]. To implement the MLP

model, Python’s PyTorch library was used. PyTorch is an open-source machine learning frame-

work based on the Torch library, used for applications such as computer vision and natural lan-

guage processing, primarily developed by Facebook’s AI Research lab [36]. All MLP models had

one hidden dense layer of 10 units, learning rate = 0.001, used binary cross-entropy loss, and

stochastic gradient descent optimization. To mitigate class imbalance, class weights were used

to penalize the loss for positive class inaccuracies. This allows the model to pay increased atten-

tion to examples from the positive class despite a skewed class distribution [37]. Each model

was trained for 200 epochs and the batch size was 64. An epoch is the total number of iterations

it takes all the training data to make one pass through the model whereas, the batch size is the

number of samples processed in each iteration before the model is updated [38].

In addition to the MLP model, we implemented a LR model. The LR model has a paramet-

ric functional form and formulates the log-odds of an event as a linear combination of inde-

pendent variables [39]. The LR model consists of one linear layer followed by sigmoid

activation. Like the MLP, a learning rate = 0.001, binary cross-entropy loss, and stochastic gra-

dient descent optimization was used. Class weights were applied in a similar fashion to the

MLP model. For consistency and to enable direct comparisons, all models of each framework

for all tasks were built with the same architecture.

Because the output of an MLP model is a nonlinear function of the inputs, the decision

boundary for classification from an MLP is also nonlinear, which provides more flexibility

than LR models [34]. As such, we wanted to investigate the effects of heterogeneity across

these two different architectures.

Our primary model framework of interest was a federated learning model. In this model,

training was performed in different sites, and parameters were shared to a central location. To

create a federated model using both the MLP and LR architecture, the federated averaging

technique was used. The process was as follows: a central aggregator initialized the federated

model with random parameters. This model was sent to each site, then trained for one epoch.

Next, model parameters were sent back to the central aggregator where federated averaging

was performed. Updated parameters from the central aggregator were then sent back to each

site, and this cycle was repeated for multiple epochs. Federated averaging scales the parameters

of each site according to the number of available data points and sums all parameters by layer.

Through this technique, federated models did not receive any raw data. Class weighting was

performed at each site on every cycle, which ensured local data distribution information was

not sent to the global server. All parameters for local server models were kept the same to

enable comparison. We were able to perform federated class weighting through this mecha-

nism because local data distributions were similar across hospitals.

Assume M local sites, each with Nm samples (number of samples in m-th local site). wðmÞn is

the weight of the n-th sample at the m-th site, yðmÞn is the ground-truth label for sample xðmÞn ,

which is the n-th sample at m-th site:

fxðmÞn ; yðmÞn wðmÞn g
M;Nm
m¼1;n¼1

The base model O is initialized at the global server. Without loss of generalizability, the fol-

lowing steps assume a LR model described by Eq (1). byn is the predicted value for sample xn by

the LR model with parameters β:

byn ¼
1

1þ e� bxn
ð1Þ
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At the start of each epoch, model O is copied from the global server to the local site Om:

Om  O

Om is trained on local site data for one epoch. Loss at the m-th site (lm) is calculated using

modified binary-cross entropy which considers class weighting at site, described by Eq (2).
dyðmÞn

is the model prediction for sample xðmÞn and bce() is the binary cross-entropy function:

lm ¼
XNm

n¼1

wðmÞn bceðyðmÞn ;
dyðmÞn Þ ð2Þ

Local model Om is updated through back propagation and gradient descent:

Om  Om �
@lm
@Om

All βm are transferred to the global server where the layer weights of all βm are averaged

through Eq (3), generating an updated global model for the next epoch:

O ¼
1

M

XM

m¼1

Om ð3Þ

The time complexity of one iteration of federated averaging is O(ZmNm) for client m, where

Zm is the number of parameters in the model. The communication cost of one iteration is O

(Zm).

Evaluations

We used the area under the receiver operator curve (AUROC) to compare the overall predic-

tion performance, which is known to be more robust to imbalanced datasets. In addition to

AUROC, accuracy, precision, and recall were calculated. In addition to aggregate performance

metrics for each model, training loss and training/testing AUROC histories were measured.

Tests of significance were performed using the student’s t-test. Feature importance rankings

for each task were computed using SHAP. To focus more on the most impactful features (i.e.,

variables ranked among top 100) without losing information on the weaker features, we

assigned a “soft” membership of a feature as how high up the rank is relative to tops (s = 100)

by applying an exponentially decreasing function to the original ranks (r), i.e., f(r) = exp{−r/s}.

For some top features, SHAP dependence plots were generated to illustrate the effect that each

feature has on the predictions made by the model. Locally Weighted Scatterplot Smoothing

(LOWESS) was used to fit a smooth trend line to the dependence plots.

The unique importance score (UIS) was calculated for each model architecture-setting-

framework combination. For local model analysis, the mean importance ilj for each feature j
was calculated by averaging all soft rankings for said feature across all sites. This was done for

all top 100 features at each local site. For both pooled and federated analysis, importance (ipj or

ifj) of each feature j was set to the soft ranking of said feature within the pooled or federated

model. In all model frameworks, the frequency f of each feature was calculated by determining

the proportion of local sites the feature was a top 100 feature. Given ilj, ipj, ifj, and f:

UISlocal;j ¼ ilj x ð1 � fjÞ

UISpooled;j ¼ ipj x ð1 � fjÞ
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UISfederated;j ¼ ifj x ð1 � fjÞ

Supporting information

S1 Table. Performance summaries of all sepsis models. Performances of LR and MLP mod-

els are shown for each model framework. Four metrics are captured: accuracy, AUC, precision,

and recall.

(DOCX)

S2 Table. Performance summaries of all AKI 24h models. Performances of LR and MLP

models are shown for each model framework. Four metrics are captured: accuracy, AUC, pre-

cision, and recall.

(DOCX)

S3 Table. Performance summaries of all AKI 48h models. Performances of LR and MLP

models are shown for each model framework. Four metrics are captured: accuracy, AUC, pre-

cision, and recall.

(DOCX)

S1 Fig. Prediction setting details of AKI and Sepsis. For AKI prediction, there are two obser-

vation windows (2 OWs) which creates 2 AKI prediction settings. The observation window for

AKI settings can be 24 or 48 hours. For sepsis prediction, the observation window is the entire

period from admission to 6 hours prior to the onset of sepsis.

(TIF)

S2 Fig. Sepsis training and testing histories for local and federated models. Training AUC,

testing AUC, and training loss at each epoch (from left to right) has been shown. (a, c) show

local histories where each color indicates the histories of a different site. (b, d) show histories

for the federated model, where each color shows the history of the model while training/testing

on that site’s data. Training and testing histories for AKI settings show similar patterns to the

sepsis setting.

(TIF)

S3 Fig. AKI 24h training and testing histories for local and federated models. Training

AUC, testing AUC, and training loss at each epoch (from left to right) has been shown. (a, c)

show local histories where each color indicates the histories of a different site. (b, d) show his-

tories for the federated model, where each color shows the history of the model while training/

testing on that site’s data. Training and testing histories for AKI settings show similar patterns

to the sepsis setting.

(TIF)

S4 Fig. Shapley dependence plots for 10 important features for local models. Each panel

shows the marginal effects of impactful features for predicting sepsis, AKI 24h, or 48h in all

local site models. All 7 sites are plotted in each panel, where each color corresponds to a differ-

ent site (see legend). The x-axis gives the raw values of each feature, and the y-axis gives the

logarithmic of estimated odds ratio (i.e., the SHAP value) for sepsis, AKI 24h or AKI 48h,

when a feature takes a certain value. Each dot represents the SHAP value of a sample. The

LOWESS curve, used for smoother extrapolating across all the dots, is plotted in all panels for

each site. (a, c, and e) show Shapley dependence plots for federated MLP models and (b, d, and

f) show Shapley dependence plots for federated LR models. (a, b) show plots for sepsis, (c, d)
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show plots for AKI 24h, and (e, f) show plots for AKI 48h.

(TIF)

S5 Fig. Medication usage across local sites. (a, b) shows frequency of medications across hos-

pitals. X-axis is the number of hospitals and y-axis is the number of medications. For example,

there are ~20 medications that only appear at 1 hospital. (c, d) show disagreement of medica-

tion usage across hospitals for medications that appear at 2 or more hospitals. X-axis shows the

standard deviation bins of proportions of patients using the medication at each hospital (i.e.,

larger values of standard deviation indicate more disagreement). Y-axis shows the number of

medications within the histogram bin.

(TIF)

S6 Fig. Area Under Receiver Operating Curve (AUROC) for sepsis Setting. Each plot shows

performances for the sepsis prediction setting. Blue bars depict each local site’s model perfor-

mance on their respective site test data. Orange bars depict pooled model performance on

each local site’s test data. Green bars depict federated model performance on each local site’s

test data.

(TIF)

S7 Fig. Shapley dependence plots for top 10 features for pooled and federated sepsis mod-

els. Each panel shows the marginal effects of each of the most impactful features ranked

among the top 10 for predicting sepsis using pooled and federated models. The x-axis gives the

raw values of each feature, and the y-axis gives the logarithmic of estimated odds ratio (i.e., the

SHAP value) for sepsis when a feature takes a certain value. Each dot represents the SHAP

value of a sample. The LOWESS curve, used for smoother extrapolating across all the dots, is

plotted in red for all panels. (a, c) show Shapley dependence plots for MLP models and (b, d)

show Shapley dependence plots for LR models. (a, b) show plots for pooled models, (c, d)

show plots for federated models.

(TIF)

S8 Fig. Distribution of important features at all local, pooled, and federated models across

local sites. The figure demonstrates feature importance disparities for the sepsis setting and

model architectures (MLP and LR). (a-c) show feature importance disparities for MLP models.

(d-f) show feature importances for LR models. Each dot corresponds to one of the most

important features ranked among the top-100 by at least one of the seven models; y-axis mea-

sures the proportions of sites that identified the feature as top-100, or “commonality across

sites”; x-axis measures the mean of feature importance rankings measured as “soft ranking”

(the closer it is to 1, the higher the feature ranks). Top-100 is an arbitrary cutoff we used to

analyze the most important features to illustrate heterogeneity. In (a, d) each feature is also

color coded by the interquartile range (IQR) of the ranks across sites (the higher the IQR is,

the more disagreement across sites on the importance of that feature). (b, e) show the most

important features for the pooled models. (c, f) show the most important features for the feder-

ated models.

(TIF)

S9 Fig. Important features comparison across model architectures for sepsis setting. The

figure shows correlations between important features in the MLP and LR models. Each dot

corresponds to one of the most important features ranked among the top-100 by both the

MLP and LR model. The y-axis measures the importance of the feature in the LR model

whereas the x-axis measures the importance in the MLP model. The shaded portion represents

a 95% confidence interval. PC (Pearson correlation coefficient) for each comparison is denoted
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on the top-left of each plot. (a) shows the comparisons for local sites, 420, 252, and 73. (b)

shows comparisons for the pooled models. (c) shows comparisons for the federated models.

(TIF)

S1 Text. Abbreviations.

(DOCX)

S2 Text. Validation on Sepsis Prediction Setting.

(DOCX)
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