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Abstract

Predictive models for fall risk classification are valuable for early identification and interven-
tion. However, lower limb amputees are often neglected in fall risk research despite having
increased fall risk compared to age-matched able-bodied individuals. A random forest
model was previously shown to be effective for fall risk classification of lower limb amputees,
however manual labelling of foot strikes was required. In this paper, fall risk classification is
evaluated using the random forest model, using a recently developed automated foot strike
detection approach. 80 participants (27 fallers, 53 non-fallers) with lower limb amputations
completed a six-minute walk test (6MWT) with a smartphone at the posterior pelvis. Smart-
phone signals were collected with The Ottawa Hospital Rehabilitation Centre (TOHRC)
Walk Test app. Automated foot strike detection was completed using a novel Long Short-
Term Memory (LSTM) approach. Step-based features were calculated using manually
labelled or automated foot strikes. Manually labelled foot strikes correctly classified fall risk
for 64 of 80 participants (accuracy 80%, sensitivity 55.6%, specificity 92.5%). Automated
foot strikes correctly classified 58 of 80 participants (accuracy 72.5%, sensitivity 55.6%,
specificity 81.1%). Both approaches had equivalent fall risk classification results, but auto-
mated foot strikes had 6 more false positives. This research demonstrates that automated
foot strikes from a BMWT can be used to calculate step-based features for fall risk classifica-
tion in lower limb amputees. Automated foot strike detection and fall risk classification could
be integrated into a smartphone app to provide clinical assessment immediately after a
6MWT.

Author summary

Lower limb amputees have a high risk of falling. Despite this, most fall risk and prevention
research focuses on healthy older adults. Artificial intelligence (AI) can be used to for fall
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risk analysis by identifying steps during walking for step-based feature calculation. How-
ever, the variability and instability of lower limb amputees make using traditional AI step
detection methods ineffective, so manual labelling of steps was required. In this research,
we validate the clinical application of a new deep learning step detection approach for
lower limb amputees. Steps automatically-detected by a Long-Short Term Memory model
were used to calculate features for fall risk analysis and compared to the previous method
of using features calculated from manually-labelled steps. We demonstrate that both
approaches correctly classify the same number of fall risk participants. Additionally, the
approach using automated steps correctly classified over 80% of non-fall risk participants,
though this approach did misclassify more participants who were not at risk of falls than
the manual approach.

1. Introduction

Falls are the leading cause of death by unintentional injury in Canada [1] and the second high-
est cause worldwide [2], with adults aged 65 and older at the highest risk [3]. While most falls
are non-fatal, injury and permanent disability are common. On average, 20% of falls experi-
enced by older adults in the U.S. resulted in an injury [4]. Early identification and intervention
for those at an elevated risk are critical to preventing falls and prolonging well-being. Screen-
ing tests, such as the Timed Up and Go (TUG), can be used to identify those at elevated risk of
falling. While individual screening tests can be easy to administer and completed in minutes,
they are often done in tandem with a battery of other movement assessments that can be time-
consuming and draining for both patient and clinician.

Artificial intelligence (AI) has been proposed as a method for fall risk prediction and classi-
fication in the elderly by using wearable sensors to collect data during different movement
assessments [5-7]. For example, waist-mounted triaxial accelerometer data collected during
the TUG were used to train machine learning algorithms, such as logistic regression, to esti-
mate postural stability and classify individuals as fall risk or non-fall risk [8]. Another com-
monly used movement assessment is the six-minute walk test (6MWT), which evaluates
functional capacity and can be completed in most clinical settings. While the S MWT is not
clinically used for fall risk predictions, Drover et al. [9] used accelerometer data from the pelvis
and shank during a 6MWT to train a random forest model to classify fall risk in an elderly
population (73.4% accuracy). This demonstrated that richer knowledge can be extracted from
a simple movement assessment instead of requiring multiple assessments from the patient.

While seniors account for a large proportion of fallers, people with lower limb amputations
are also at elevated risk of falling at all stages of rehabilitation and also post-rehabilitation. Peo-
ple with lower limb amputations have highly variable gait patterns, even if they are very active
[10]. This variability can result in greater instability, leading to a higher likelihood of falling
than age-matched able-bodied populations [11]. Until recently, despite the high prevalence of
falls, there was limited research available for classifying fall risk using artificial intelligence in
the lower limb amputee population.

Daines et al. [12] proposed a method for fall risk classification in a lower limb amputee pop-
ulation using sensor data from a smartphone located at the posterior pelvis during a 6MW'T.
Most smartphones have integrated sensors (e.g., accelerometers, gyroscopes, magnetometers),
are widely available, and are an accessible alternative to specialized dedicated equipment. Foot
strikes from turns during the 6MWT were manually identified and used to calculate features
from the smartphone signals to train a random forest model for fall risk classification (i.e.,
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features calculated for each stride). The random forest model achieved 81.3% fall risk classifi-
cation accuracy. However, manual foot strike labelling is time-consuming (i.e., project assis-
tant inspected each acceleration signal and video data frame to identify each foot strike) and
not viable for clinical use. Automated foot strike detection would improve the feasibility of
implementing a fall risk classification model in a clinical setting. Rule-based algorithms can
identify steps in elderly individuals with very high accuracy (99.95%) [13]. However, unstable
and asymmetrical lower limb amputee gait makes foot strike detection challenging. There is
limited research on heuristic models for foot strike detection in lower limb amputees, though
the models are trained on data from a small number of participants, and often use sensors
located at the lower limb [14,15]. Thibault et al. [16] explored a custom rule-based algorithm
for foot strike identification in the same retrospective lower limb amputee SMWT dataset as
[12] using only the anterior-posterior (AP) linear acceleration signal. The rule-based approach
resulted in 87% foot strike identification accuracy, noting that steps often needed to be
removed, added, or relocated, suggesting that a more complex algorithm is required to analyze
irregular gait patterns in lower limb amputees.

Recently, a novel method for automated foot strike detection in lower limb amputees using
a deep learning approach was developed [17]. A long-short term memory (LSTM) deep learn-
ing approach was trained on the same retrospective lower limb amputee SMWT dataset as
[12]. Smartphone orientation, XYZ coordinates for raw and linear acceleration, and angular
velocity collected from the posterior pelvis were used as input. The approach in [17] achieved
99.0% foot strike identification accuracy and stride parameters calculated from the automated
foot strikes were equivalent to those of manually labelled foot strikes for most participants.
These results demonstrated that automated foot strike methods can be used to calculate tem-
poral features such as step time, stride time, and cadence for clinical decision-making. How-
ever, that study did not examine if the automated foot strike method is viable within a
smartphone fall risk detection system.

In this paper, we determine if the automated step detection method in [17] can produce equiv-
alent fall risk classification results with the random forest fall risk classifier in [12] that used manu-
ally labelled foot strikes, for people with lower limb amputations. If equivalent fall risk
classification results are found with automated foot strike detection as with manually labelled foot
strikes, this smartphone application could lead to enhanced 6MWT utility by identifying lower
limb amputees who may be at risk of falling without using another specific fall risk test.

2. Methods
2.1 Participants

A convenience sample of 93 transtibial, transfemoral, and bilateral lower limb amputees were
recruited from the University Rehabilitation Institute (Ljubljana, Slovenia) (Table 1). Clinical
records provided self-reported number of falls, with falling at least once in the past six months
prior to testing considered fall risk. The inclusion criteria were: transtibial or higher amputa-
tion; ability to walk with single cane, two crutches, or without any walking aids; minimum of
six months post-amputation; had a functional prosthesis; no wounds on the residual limb; and
was willing to participate. Participants who could not complete the full GMWT test were
excluded from analysis. Excluded trials were due to unknown fall risk status (8) and cell phone
affixed to the side of the hip instead of lower back (5).

All participants provided written informed consent. This research was approved by the
Ethic Committee of the University Rehabilitation Institute, Slovenia (# 46/2018) and re-
approved for an additional 30 participants (# 27/2019). Each participant’s self-reported fall his-
tory was used for classifying participants as “no fall risk” or fall risk.
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Table 1. Participant characteristics.

Age (years) 64.2 +12.2 (19-90)
Male 63 (78.8%)

Female 17 (21.2%)

Fall risk 27 (33.8%)

No fall risk 53 (66.2%)
Transtibial 72 (90.0%)
Transfemoral 3 (3.8%)

Bilateral (Transtibial) 5(6.2%)

Time since amputation (years) 15.7 £ 18.0 (<1-65)
No aids 42 (52.5%)

Double crutches 25 (31.3%)

Single cane/crutch 12 (15.0%)

Rolling walker 1(1.2%)

https://doi.org/10.1371/journal.pdig.0000088.t001

2.2 Data collection

An Android smartphone was placed on a belt at the lower back of each participant before com-
pleting a 6-minute walk test (6MWT) along a 20m hallway (Fig 1). Each participant completed
one trial. Participants were video recorded during their assessment. Accelerometer, gyroscope,
and smartphone orientation data were collected with The Ottawa Hospital Rehabilitation Cen-
tre (TOHRC) Walk Test app at 50 Hz [13]. Raw accelerometer data, gyroscope data, smart-
phone orientation, and timestamps for each recording were imported into MATLAB 2020b.
Smartphone signals were re-interpolated to 50Hz using linear interpolation, then a fourth-
order zero-lag Butterworth low pass filter with a cut-off frequency of 4 Hz was applied [18].

2.3 Step identification and fall risk classification

Ground truth steps were manually identified and labelled by two assistants prior to model
training as label 0 (no foot strike present) and label 1 (foot strike present) using the following
procedure. Smartphone linear acceleration over time was graphed. Foot strike events typically
correspond to AP acceleration peaks followed by a vertical acceleration peak. Therefore, AP
signal peaks immediately followed by a vertical signal peak were identified and the timestamp
recorded as a foot strike event. Participant video was used to confirm foot strike identification.
In cases where the foot strike event was not easily determined due to poor AP peak definition,
double-peak, or irregular signal shape, the most appropriate location was determined by con-
sensus. All other timestamps were consequently labelled as “no foot strike present”.

The automated step-detection approach is described in detail in [17]. Smartphone 3D ori-
entation, acceleration, and angular velocity signals from 6MWT trials were used as input data
for an LSTM deep-learning approach for foot strike identification. Predicted foot strike labels
were post-processed in MATLAB 2020b to correct for model prediction errors. This included
extra foot strike predictions and missed steps. To identify missed steps, a method similar to
that employed by Capela et al. [13] was applied. An adaptive locking period specific to each
participant’s trial was defined from a 5 second sample of the filtered vertical acceleration signal
from the beginning of the 6SMWTT trial. Periods where the duration between two consecutive
steps was greater than 1.5 times the previous step were identified and searched for potential
missed steps. The start of the period was increased by half the locking period, and end of the
period was decreased by the same amount to prevent an inappropriately inserted step at the
start or end of the original selected period. A foot strike was inserted at the timestamp for the
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Fig 1. Experimental set-up.
https://doi.org/10.1371/journal.pdig.0000088.g001
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Fig 2. Example frame demonstrating a missed step identified within the locking period. A missed step (vertical
blue line, frame 1468) identified within adjusted search range (black dotted line). A foot strike was inserted (vertical
orange line, frame 1468) at timestamp corresponding to the peak AP acceleration (green curve) in this period.

https://doi.org/10.1371/journal.pdig.0000088.9002

peak AP acceleration within the adaptive locking period (Fig 2). Extra predictions were
removed by identifying instances where two or more consecutive foot strike classifications
occurred. The start and end of periods of consecutive predictions were located and the peak
AP acceleration within the band was identified. The foot strike event corresponding to the AP
peak was selected and all other predictions in this period were removed. Final cleaned predic-
tions were used for feature calculation.

A random forest machine learning model developed by Daines et al. [12] was used for
amputee fall risk classification. Random forests are machine learning algorithms that consist
of multiple decision tree classifiers. Each decision tree in the ensemble provides an individual
class prediction. The final classification is the class with the most predictions [19]. Features
(i.e., variables calculated from the signal data) are used as input for each decision tree.

To evaluate the fall risk model using input based on manually labelled foot strikes or
automated foot strike detection, two sets of features were calculated. Smartphone acceler-
ation and angular velocity signals were used to calculate step-based features, using manu-
ally labelled foot strikes (M-FS) or automated foot strikes (A-FS). 62 features were
extracted for each feature set (Table 2). Once features were extracted for each step, the
minimum, maximum, mean, and standard deviation were calculated over all included
steps for a total of 248 features (62 features multiplied by 4 statistics) per data set. These
features were used in the random forest fall risk model to classify fall risk for each person,
with results for A-FS and M-FS groups. Correlation-based feature selection (CFS) was
used to reduce dimensionality, based on research completed in [12]. Leave-one-out cross
validation was used to evaluate model performance.

3. Results

For this study, 80 participants were suitable for fall risk classification, 27 fall risk and 53 no fall
risk. Table 3 displays the fall risk classifier confusion matrices for A-FS and M-FS. The fall risk
classifier trained on features calculated from M-FS correctly classified 64 of 80 participants
and achieved 80% accuracy, 55.6% sensitivity, and 92.5% specificity. The A-FS approach
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Table 2. Feature list for fall risk classification. AP = anterior-posterior; ML = medio-lateral; RMS = root-mean
square; FFT = fast Fourier transform; REOH = ratio of even/odd harmonic frequencies.

Temporal Descriptive Statistics Frequency Domain Features

Cadence Minimum ML Quartile FFT ML

Step time right Minimum AP Quartile FFT AP

Step time left Minimum Vert Quartile FFT Vert

Stride time Maximum ML Quartile FFT Tilt

Symmetry index Maximum AP Quartile FFT Rotation
Maximum Vert Quartile FFT Obliquity
Mean ML Maximum FFT ML
Mean AP Maximum FFT AP
Mean Vert Maximum FFT Vert
Mean Tilt Maximum FFT Tilt
Mean Rotation Maximum FFT Rotation
Mean Obliquity Maximum FFT Obliquity
Range Tilt Standard Deviation FFT ML
Range Rotation Standard Deviation FFT AP
Range Obliquity Standard Deviation FFT Vert
Standard Deviation ML Standard Deviation FFT Tilt
Standard Deviation AP Standard Deviation FFT Rotation

Standard Deviation Vert

Standard Deviation FFT Obliquity

Standard Deviation Tilt

Peak Distinction FFT ML

Standard Deviation Rotation

Peak Distinction FFT AP

Standard Deviation Obliquity

Peak Distinction FFT Vert

RMS ML Peak Distinction FFT Tilt
RMS AP Peak Distinction FFT Rotation
RMS Vert Peak Distinction FFT Obliquity
RMS Tilt REOH ML
RMS Rotation REOH AP
RMS Obliquity REOH Vert

REOH Tilt

REOH Rotation

REOH Obliquity

Symmetry index: symmetry in right and left limb step times [20]

https://doi.org/10.

1371/journal.pdig.0000088.t002

resulted in 58 of 80 correctly classified participants and achieved 72.5% accuracy, 55.6% sensi-
tivity, and 81.1% specificity. Classification of fall risk was the same for both approaches.

Manual labelling was used as ground truth comparator for LSTM foot strike identification.
For the participants included in this analysis, the LSTM foot strike identification model
achieved 99.2% accuracy, 81.8% sensitivity, 99.7% specificity.

Table 3. Confusion matrices for automated and manual foot strike identification approaches.

Automated Foot Strike Manual Foot Strike
No fall risk Fall risk No fall risk Fall risk
No fall risk 43 10 No fall risk 49 4
Fall risk 12 15 Fall risk 12 15

https://doi.org/10.

1371/journal.pdig.0000088.t003
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4. Discussion

This research demonstrated that automated foot strike identification is viable for smartphone-
based fall risk classification with lower limb amputees. Fall risk classification was similar for
both automated and manually labelled foot strike approaches, but the automated foot strike
fall risk approach had more false positives (i.e., non-fall risk classified as fall risk). Automated
foot strike detection is necessary in a clinical environment, where timely manual labelling is
not feasible. A smartphone-based fall risk classification model from a 6MWT can benefit the
patient and clinician since one assessment with a single sensor placement can provide func-
tional capacity, stride parameters, and fall risk information to aid clinical decision-making.

The automated fall risk classification model could be used as a screening tool for lower limb
amputees. Over 50% of fall risk participants and >80% of non-fall risk participants were cor-
rectly classified from signals collected during a 6MWT. The 6MWT is used to measure a per-
son’s functional capacity, and fall risk information is not typically available from this
assessment. A smartphone application integrating automated foot strike detection with fall
risk classification could provide fall risk information to a clinician immediately after complet-
ing a 6MWT. However, to ensure that those who are at risk of future falls but were misclassi-
fied as no fall risk are not overlooked, patients could complete an additional assessment with
higher fall risk sensitivity (e.g., TUG or L-test) to determine if an intervention strategy is
necessary.

Six people who had not fallen in the 6 months before the study were misclassified as fall risk
when features were calculated from automated foot strikes. A sub-group analysis of these par-
ticipants did not identify any notable similarities that might explain their misclassification.
They had varying ages, time since amputation, gait aid use, etc., mirroring the diversity of the
people included in this study. Fall mechanisms are diverse and individual differences from per-
son to person can contribute to the cause of a fall. More research is needed to better under-
stand these mechanisms and determine what, if any, gait characteristics can be used to predict
fall risk when using Al for fall risk classification.

Foot strike identification accuracy of the 6 participants misclassified as fall risk was also
investigated. For these 6 participants, the LSTM foot strike identification model had 99.1%
accuracy, 79.8% sensitivity, and 99.7% specificity. While the accuracy and specificity were sim-
ilar to the classification results of the full dataset, sensitivity was 2% lower, representing a
greater number of missed foot strikes. Errors in foot strike identification could have contrib-
uted to the misclassification of these participants. Increasing the training set size for foot strike
identification and may help to improve foot strike detection and increase specificity for lower
limb amputees.

The LSTM, with post-processing to correct errors such as extra predictions and missed
steps, classified foot strike and non-foot strike events with 99.2% accuracy for the participants
in this analysis. Other errors in foot strike identification included foot strike predictions that
were within +2 frames (+0.04 seconds). Some errors could not be corrected during post-pro-
cessing, such as manually labelled steps that were not identified by the LSTM and extra foot
strikes inserted in an inappropriate location. Despite these errors, clinical outcome measures,
including stride parameters, were equivalent to manually labelled foot strikes for most
participants.

A limitation of this research was the small number of people with transfemoral and bilateral
amputations included in the dataset. While transtibial amputees are at a higher risk of falling
in the post-operative period, people with transfemoral and bilateral amputations are at an ele-
vated risk of falling post-rehabilitation [21,22]. A greater number of transfemoral and bilateral
participants included in training and testing sets could improve fall risk model generalizability.
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Future research in this area would benefit from a greater number of transfemoral and bilateral
amputees, with sub-group analysis.

Conclusions

This study demonstrated that automatically detected foot strikes from a single smartphone
sensor location on the body can be used to calculate step-based features for lower limb ampu-
tees after completing a 6MW'T, leading to preliminary fall risk classification, an outcome that
is not typically available for the 6SMWT. This AI-enhanced 6MWT could be used to screen for
people at risk of falls and then proceed with further assessments. Integration of this fall risk
model into a smartphone application would improve the immediacy of the results, providing
instant decision-making information. Future model development should include a greater
number of people with transfemoral and bilateral transtibial amputations. This could improve
the ability of the fall risk model to appropriately identify fall risk in these populations for fur-
ther clinical assessment.
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