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Abstract

Objective

The Pediatric Emergency Care Applied Research Network (PECARN) has developed a clin-

ical-decision instrument (CDI) to identify children at very low risk of intra-abdominal injury.

However, the CDI has not been externally validated. We sought to vet the PECARN CDI

with the Predictability Computability Stability (PCS) data science framework, potentially

increasing its chance of a successful external validation.

Materials & methods

We performed a secondary analysis of two prospectively collected datasets: PECARN

(12,044 children from 20 emergency departments) and an independent external validation

dataset from the Pediatric Surgical Research Collaborative (PedSRC; 2,188 children from

14 emergency departments). We used PCS to reanalyze the original PECARN CDI along

with new interpretable PCS CDIs developed using the PECARN dataset. External validation

was then measured on the PedSRC dataset.

Results

Three predictor variables (abdominal wall trauma, Glasgow Coma Scale Score <14, and

abdominal tenderness) were found to be stable. A CDI using only these three variables

would achieve lower sensitivity than the original PECARN CDI with seven variables on inter-

nal PECARN validation but achieve the same performance on external PedSRC validation

(sensitivity 96.8% and specificity 44%). Using only these variables, we developed a PCS
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CDI which had a lower sensitivity than the original PECARN CDI on internal PECARN vali-

dation but performed the same on external PedSRC validation (sensitivity 96.8% and speci-

ficity 44%).

Conclusion

The PCS data science framework vetted the PECARN CDI and its constituent predictor vari-

ables prior to external validation. We found that the 3 stable predictor variables represented

all of the PECARN CDI’s predictive performance on independent external validation. The

PCS framework offers a less resource-intensive method than prospective validation to vet

CDIs before external validation. We also found that the PECARN CDI will generalize well to

new populations and should be prospectively externally validated. The PCS framework

offers a potential strategy to increase the chance of a successful (costly) prospective

validation.

Author summary

Do predictability and stability testing inform how a clinical decision instrument for

identifying children at low risk of intra-abdominal injuries undergoing intervention

after blunt torso trauma will perform prior to external validation? The PECARN

instrument has high prediction performance and stable predictor variables. The

Predictability, Computability, Stability (PCS) framework identified high performing

instruments after development but before external validation. The PECARN instru-

ment has high predictability and stability for children after blunt torso trauma and

should therefore undergo prospective external validation. PCS is an effective method

for evaluating clinical decision instruments after development but prior to external

validation.

Introduction

Background

Blunt intra-abdominal injury is a leading cause of preventable death and disability in children

in the U.S [1]. Computed tomography scans (CT) are the reference standard to diagnose intra-

abdominal injury. In the last 30 years, CT use in children has increased without proportional

improvements in clinical outcomes [2]. Indiscriminate use of CT is associated with an

increased risk of radiation-induced malignancy [3]. Uncertainty and the lack of evidence in

emergency department risk-stratification strategies lead to wide variation in CT use [4]. Fur-

thermore, variability in practice increases cost and reduces effectiveness, efficiency, and quality

of pediatric trauma care [5]. The Pediatric Emergency Care Applied Research Network

(PECARN) prospectively developed a clinical decision instrument (CDI) to identify children

after blunt torso trauma at very low risk for intra-abdominal injury undergoing acute interven-

tion to decrease indiscriminate CT use [6].

Importance

Emergency care requires rapid and accurate decisions across a diverse group of patients and

practices. CDIs reduce variability for high-prevalence conditions by offering the potential for
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more accurate and reliable diagnostic strategies than clinician judgment alone [7]. However,

before widespread use, CDIs require external validation. External validation is considered a

more robust test of diagnostic performance than internal validation, and is critical to under-

standing the reliability of CDIs as they are generalized to new populations [8,9]. If the CDI per-

forms poorly during external validation, it may be refined, reconsidered, or even abandoned

[10]. However, prospective external validation may be expensive and cumbersome. Therefore,

introducing a step to assess a CDI before prospective external validation can ensure that it is

developed and modeled to be as predictive and stable as possible, to increase the chance of suc-

cessful external validation.

Recent progress in data science has led to innovative frameworks to assess the prediction

performance and stability of healthcare-related diagnostic models, such as CDIs. The Predict-

ability-Computability-Stability (PCS) framework is a unified approach to data science that

protects against instability induced by subjective decisions made during the data science life-

cycle [11,12]. PCS has improved drug-response prediction [12], gene-interaction search [13],

and drug subgroup discovery in clinical trials [14]; these case-studies suggest that PCS may

improve the CDI development and validation process before further investment into external

validation. In addition to predictability as a reality check, two critical aspects of PCS are

interpretability and stability analysis. To undergo PCS vetting, a CDI must be developed using

interpretable methods, ensuring reproducibility [15]. Stability measures how much a CDI var-

ies as choices made during the data science life cycle (including data cleaning and modeling),

such as reasonable data alterations or different modeling techniques [16]. Stability is assessed

by comparing model-level and variable-level test characteristics to one another.

The specifics of how to measure predictability, computability, and stability are particular to

a clinical problem and judgment calls. Here, we show how PCS can be used to assess a CDI at

the model-level and variable-level. We show how PCS can be used to assess a CDI at the

model-level and variable-level. First, multiple CDIs are developed by subsampling the original

PECARN dataset. Second, each CDI is screened at the model-level based on diagnostic test

characteristics (predictability) and interpretability. Third, we assess the variability of the

importance of different predictor variables across high-performing CDIs (variable-level

stability)

Goals of This Investigation

The primary objective of this study was to demonstrate the use of the PCS data science frame-

work in vetting clinical decision instrument development. The secondary objective was to

assess and externally validate the original PECARN clinical decision instrument for identifying

children at very low risk of intra-abdominal injuries undergoing acute intervention after blunt

torso trauma.

Results

Results for Objective 1: Demonstrating the PCS Framework in CDI

Development

Characteristics of study patients. The PECARN dataset included 12,044 children

(Table 1). In PECARN, the mean (SD) age was 10.3 (5.4) years (1,167 patients <2 years), rang-

ing from 0 to 18 years. The PedSRC external validation dataset included 2,188 children. The

mean (SD) age was 7.8 (4.6) years (216 patients <2 years), ranging from 0 to 15 years. The

PedSRC had a higher prevalence of motor vehicle collisions, compared to the PECARN
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development and validation datasets, 46.3% vs. 31.8% and 31.4%, and children with intra-

abdominal injuries undergoing acute intervention, 2.8% vs. 1.7% and 1.7%, respectively

(Table 1).

Clinical decision instrument development

We replicated the original PECARN CDI development using the PECARN dataset and rede-

veloped the identical seven ordered decision predictor variables in the PECARN rule list. The

potential alternative CDIs, including Bayesian rule lists, CART Decision Trees, CART Rule

Lists, Iterative Random Forests, and Rulefit are in S1–S3 Figs and S1 and S2 Tables. The ran-

domness for all re-developed models had no effect on any of the final CDIs performances.

Clinical decision instrument internal validation

Each CDI had a decline in performance between the development and internal validation

PECARN datasets (Fig 1); however, the magnitude of the performance drop differed between

different CDIs. The greater the magnitude in reduction suggests a less stable model. For exam-

ple, the Iterative Random Forest CDI (red) and CART decision tree (orange) had the largest

decline in performance between the development and validation datasets, suggesting that the

prediction model was overfitting to the development dataset. In contrast, a fitted Bayesian rule

Table 1. Patient demographics and outcomes of the PECARN dataset split into development and validation (80:20), and the PedSRC external validation dataset.

PECARN PedSRC

Total (N = 12,044) Development (n = 7,985) Internal Validation (n = 4,059) External Validation (N = 2,188)

Age <2 years (%) 1167 (9.7%) 761 (9.5%) 406 (10%) 216 (9.9%)

Sex Male (%) 7384 (61.3%) 4887 (61.2%) 2497 (61.5%) N/A

MVC (%) 3832 (31.8%) 2505 (31.4%) 1327 (32.7%) 1014 (46.3%)

CT scan (%) 5,179 (43.0%) 3,393 (42.5%) 1,786 (44.0%) 967 (44.2%)

IAI (%) 761 (6.3%) 485 (6.1%) 276 (6.8%) 261 (11.9%)

IAI-I (%) 203 (1.7%) 133 (1.7%) 70 (1.7%) 62 (2.8%)

PECARN: Pediatric Emergency Care Applied Research Network; PedSRC: Pediatric Surgery Research Collaborative; MVC: motor vehicle collision; CT scan: computed

tomography; IAI: intra-abdominal injury; IAI-I: intra-abdominal injury undergoing acute intervention

https://doi.org/10.1371/journal.pdig.0000076.t001

Fig 1. Sensitivity-specificity curves for clinical decision instruments to evaluate children after blunt torso trauma on the PECARN (a) development dataset (b)

internal validation dataset, and (c) external validation on the PedSRC. The clinical decision instruments were then ranked by predictability from best to worst

(top to bottom).

https://doi.org/10.1371/journal.pdig.0000076.g001
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list (blue), CART rule list (green), and Rule fit (purple) all retained similar predictive accuracy

between development and validation. Table 2 summarizes the results of threshold-specific

weights in which the sensitivity is weighted five times more heavily as specificity.

Predictability

The original PECARN, Rule Fit, and Bayesian Rule List had minimal changes in performance

between the development and internal validation datasets, suggesting relatively high predict-

ability for these CDIs (Fig 1B). In contrast, CART Rule List, CART Decision Tree, and Iterative

Random Forest had greater proportional declines in performance, suggesting lower predict-

ability when heterogeneity in datasets was introduced.

Predictor-variable stability

The most stable predictor variables were abdominal trauma/seat belt sign, Glasgow Coma Scale
Score< 14, and abdominal tenderness. These three variables were the most frequent recurring

predictor variables between CDIs. These three variables also had the highest non-zero permu-

tation scores between the different CDIs (S4 Fig). Therefore, it was recognized that the top

Table 2. Predictive performance of the clinical decision instruments with sensitivity weighted five times more heavily as specificity. (a) PECARN Development data-

set, (b) PECARN Internal Validation Dataset, (c) PedSRC External Validation Dataset.

(a) PECARN Development Dataset PECARN Bayesian Rule List CART Decision Tree CART Rule List Iterative Random Forest Rule Fit

Sensitivity 98% 89% 95% 94% 98% 95%

Specificity 43% 59% 58% 29% 70% 47%

Negative predictive value 99.9% 100% 100% 100% 100% 100%

Positive predictive value 2.8% 4% 4% 2% 5% 3%

Negative likelihood ratio 0.035 0.19 0.09 0.21 0.02 0.1

Positive likelihood ratio 1.74 2.18 2.26 1.33 3.33 1.80

F1 score 0.056 0.07 0.07 0.04 0.10 0.06

Brier score 0.016 0.02 0.58 0.02 0.01 0.08

(b) PECARN Internal Validation Dataset PECARN Bayesian Rule List CART Decision Tree CART Rule List Iterative Random Forest Rule Fit

Sensitivity 94% 90% 84% 91% 71% 97%

Specificity 41% 58% 56% 28% 68% 33%

Negative predictive value 99.8% 100% 100% 99% 99% 100%

Positive predictive value 2.7% 4% 3% 2% 4% 2%

Negative likelihood ratio 0.14 0.17 0.28 0.31 0.42 0.09

Positive likelihood ratio 1.60 2.13 1.93 1.26 2.24 1.45

F1 score 0.053 0.07 0.06 0.04 0.07 0.04

Brier score 0.016 0.02 0.59 0.02 0.02 0.08

(c) PedSRC External Validation Dataset PECARN Bayesian Rule List CART Decision Tree CART Rule List Iterative Random Forest Rule Fit

Sensitivity 96.8% 95% 94% 90% 81% 97%

Specificity 44.0% 60% 60% 39% 63% 55%

Negative predictive value 99.8% 100% 100% 99% 99% 100%

Positive predictive value 4.8% 7% 6% 4% 6% 6%

Negative likelihood ratio 0.073 0.08 0.11 0.25 0.30 0.06

Positive likelihood ratio 1.73 2.39 2.33 1.47 2.21 2.13

F1 score 0.091 0.12 0.12 0.07 0.11 0.11

Brier score 0.026 0.03 0.56 0.03 0.03 0.09

https://doi.org/10.1371/journal.pdig.0000076.t002
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three performing predictor variables were selected in the PECARN CDI and the four top-per-

forming CDIs.

Computability

Computability assesses the computational needs (e.g., hardware and demand for specialized

equipment) of the project to understand the efficiency and feasibility of repeating the task. We

evaluated the computational needs for CDI development and validation by timing each epoch

and run time. In this case, all modeling and data analysis was performed on a standard laptop

computer: CDI development took less than 10 minutes and validation less than 1 second.

Results for objective 2: External validation of original PECARN clinical

decision instrument

Distributions and variable matching for the external validation dataset. Predictor and

outcome variables between the PECARN and PedSRC datasets were matched and evaluated

for variable-level distributions (Fig 2). Most variables had direct matches between datasets

(S3–S5 Tables). Predictor variables were assessed for redundancy and independent associa-

tions (S5 Fig). The distribution of variables was well-matched except for the PECARN dataset

inclusion of patients 15–17 years, and the lower frequency of children presenting after motor

vehicle collisions (MVC) (Fig 2).

Fig 2. Matched demographic and predictor variables from PECARN and PedSRC datasets visually represented for overall distributions.

https://doi.org/10.1371/journal.pdig.0000076.g002
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External validation predictive performance

The original PECARN CDI successfully identified all but six children with intra-abdominal

injuries undergoing acute interventions (sensitivity 97%, specificity 42.5%) on the PECARN

dataset (Table 2B). On external validation using the PedSRC dataset, the original PECARN

CDI maintained high prediction performance with an external validation sensitivity of 97.0%

and specificity 44.0% (Table 2C). However, the original PECARN CDI missed two children

with intra-abdominal injuries undergoing acute interventions; the clinical characteristics of

these two children are presented in S6 Table.

The three predictor variables that were found to be stable on PCS testing identified 60/62

patients with intra-abdominal injuries undergoing acute interventions in the PedSRC dataset,

corresponding to 100% of the PECARN CDI’s predictive power (blue box, Fig 3). The remain-

ing four predictor variables (red box, Fig 3) did not add to the predictive performance of the

PECARN CDI on the PedSRC dataset. The Brier score was 0.026, suggesting the predicted risk

is well-calibrated when using the original PECARN CDI. The same three predictor variables

also captured the majority of the predictive power in the original PECARN validation,

Fig 3. Prediction tree for the original PECARN clinical decision instrument on (a) PECARN internal validation

dataset, and (b) PedSRC external validation dataset. The blue box shows that the top three predictor variables retained

all the predictive power for the clinical decision instrument on external validation. The red box shows the predictor

variables without prediction power on external validation. From the top of the rule to the bottom, risks for the

identified subgroups monotonically decrease, although risks are systematically higher on the PedSRC data.

https://doi.org/10.1371/journal.pdig.0000076.g003
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identifying 186 of 201 outcomes. The additional four predictor variables substantially reduce

the CDI’s specificity. However, without these variables, the CDI misses 11 IAI-I patients in the

PECARN dataset, resulting in unacceptably low sensitivity.

Objective 1 & objective 2: Comparing pcs framework predictions to

external validation of clinical decision instruments

The ranked overall performance of the CDI on external validation matched that of the PCS

framework prediction rankings (Fig 1C). This suggests that the results obtained from the PCS

framework yielded useful information about the CDI’s external validation performance, prior

to collecting or analyzing the external validation dataset. In addition, the predictive perfor-

mance was similar between internal validation and external validation (using the PedSRC

dataset). However, most CDIs slightly improved their performances, suggesting that the CDIs

are not overfitting to the PECARN dataset (Table 2C). The original PECARN CDI, Bayesian

rule list, and Rule Fit had similar performances as in the PECARN datasets. In contrast, Itera-

tive Random Forest, CART decision tree, and CART rule list had large declines in predictive

performance (Fig 1C).

Discussion

In the discussion, first we seek to describe PCS in the context of CDI development and vetting

focusing on three key topics: predictability, stability, and interpretability. Next, we exemplify

these three topics and their implications for the PECARN CDI.

Contextualizing PCS in the context of CDI development

Predictability. The predictive performance of a CDI serves as the benchmark in the clini-

cal literature. The concept of diagnostic test characteristics, such as sensitivity and specificity,

are well-described and clinically used metrics for predictability. For example, previous litera-

ture has found that the PECARN CDI has a higher sensitivity than clinical judgment alone

[17]. This study sought to evaluate the predictability of a CDI using threshold-dependent dis-

criminative metrics (i.e., sensitivity) and threshold-free metrics (i.e. sensitivity-specificity

curves). We found that the PECARN, Bayesian, and Rule Fit CDIs were the most predictable

on external validation (PedSRC). However, CDIs used in clinical practice are designed to

make predictions on varying populations, over time, and within differing conditions. There-

fore, before using a CDI in clinical practice, investigators should validate how well a CDI will

perform under varying conditions.

Stability. Stability should be checked for all aspects of the data science lifecycle. Here, we

largely focus on predictor-level stability, estimating how the feature importance of each predic-

tor variable changes as a result of different judgment calls made during modeling. We also

examine the stability of both the predictive performance and individual predictors to different

calls made during data preprocessing. For example, we tried using GCS as a continuous pre-

dictor variable compared to different binary thresholds. The effect of this and many other

judgment calls were found to be minimal and are omitted here (but can be found on our

github).

Interpretability. Interpretability enables the integration of domain expertise for the

development and implementation of a CDI [18–20]. In contrast, black-box machine-learning

models lack interpretability and may fail for unknown reasons when externally validated [21].

Post-hoc interpretations, such as permutation importance used here, can offer some interpret-

ability [22–25], but are not a substitute for developing an interpretable model [15,26–28].

Therefore, we only consider parsimonious rule-based models. Each CDI is represented as a
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straightforward set or list of logical rules (IF:THEN statements), which can then be visualized.

We restrict each model to a reasonable number of logical steps (fewer than 10), so each CDI

can be assessed in real-time. We additionally fit logistic regression and optimal decision tree

models, but found that they had poor; we find that fast interpretable greedy-tree sums learn

precisely the same rules as CART so we omit this model here. PCS offers clear documentation

guidelines to ensure the process is replicable, reproducible, and interpretable [11].

As stated, black-box machine-learning models lack interpretability and may fail for

unknown reasons when tested on new populations [19]. Examples of such complex models are

neural networks, random forests, and support vector machines. However, even seemingly sim-

ple models such as logistic regression or decision trees can become uninterpretable if they are

large enough and have too many steps [15]. Pennell (2020) utilized such models to re-evaluate

the PECARN dataset [29]. The authors concluded that they had developed and validated a

novel risk model using modern machine learning techniques. However, these complex

machine-learning models lack the interpretability to integrate judgment, thus not allowing

review nor the recognition of bias, which may build mistrust in the user [20]. Therefore, we

use interpretable models with visual representation to allow stability analysis and ensure the

integration of clinical judgment within the CDI [18].

Implications for the PECARN CDI

As the second aim of this paper, we assessed the prediction performance and the stability of

the original PECARN CDI for identifying children at very low risk of intra-abdominal injuries

undergoing acute intervention after blunt torso trauma on external validation. Clinically, there

is no standard, generalizable, validated strategy to identify children after blunt torso trauma in

whom CT scans can safely be avoided. Instead, providers use ad hoc strategies that are inaccu-

rate, and may fail to identify life-threatening injuries, leading to over-reliance on diagnostic

imaging [30–33]. In 2013, PECARN sought to address the variability in accuracy and consis-

tency by prospectively developing a CDI for children after blunt torso trauma [6].

We used two uniquely matched prospectively collected but independent datasets to assess

the CDI predictions and stability on external validation. Through this process, we reexamined

the original PECARN findings using alternative reasonable statistical models and found the

original PECARN CDI to be high performing. The PECARN CDI was highly predictive across

the development, internal validation, and external validation datasets. Therefore, PECARN

has strong predictive performance, which measures how well a CDI predicts in heterogeneous

cohorts. We also found that three predictor variables made up the entirety of the predictive

power on external validation: abdominal wall trauma, Glasgow Coma Scale Score <14, and

abdominal tenderness. This is not surprising, as these three variables were also the most stable

based on the PCS framework and made up the majority of the predictive power on the

PECARN dataset (identifying 94.4% of the correctly predicted IAI-I patients).

Through the PCS framework, we found that the predictability, and stability of the original

PECARN CDI warrants further investment and investigation, including prospective external

validation. In contrast, if we found that the model or predictor variables were unstable in the

original study, we would recommend against further validation. Our study can serve as an

example for how investigators may evaluate the predictability and stability of a CDI for inher-

ent weakness, prior to investing in a prospective external validation.

We found that if PCS could be successfully integrated as a novel step into prediction and

diagnostic model development before external validation, there is a potential to streamline and

evaluate CDIs to improve performance or expose weaknesses and avoid further investment in

CDIs with poor stability. This is important because many CDIs have reduced accuracy during
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external validation [34]. Introducing a PCS step between CDI development and external vali-

dation, or using PCS directly for CDI development before external validation, will allow

researchers, funders, and clinicians to understand better how CDIs may perform on future

populations before external validation, impact analysis, or implementation into clinical prac-

tice. However, PCS is not able to replace external validation.

There are limitations to this study. First, we sought to develop high performing but inter-

pretable CDIs. Therefore, we chose only rule-based models, including simple regression-based

and complex machine learning models with interpretable visual outputs. The inclusion of less

interpretable models may have improved diagnostic accuracy but interfered with conducting

stability analysis, introducing domain expertise, and more easily recognizing bias. Second, the

PECARN and PedSRC datasets were collected from different research groups. There is a

potential for partial verification bias on external validation because the PedSRC dataset was

not based on consecutive patient enrollment, and follow-up was limited to medical record

review. Third, three predictor variables did not match between datasets. Two variables could

not be matched because they were present in only one of the datasets: gender (PECARN only)

and femur fracture (PedSRC only). The third predictor variable was distracting injury (pro-

spectively collected in PECARN but retrospectively aggregated in PedSRC). Given the limita-

tions of this study, we believe prospective external validation is required before implementing

the CDI.

In conclusion, the PCS data science framework helped vet CDI predictive performance and

stability before external validation. The PCS framework offers a computational and less

resource-intensive method than external validation. Even though it does not replace prospec-

tive external validation, PCS offers a method to vet for unstable CDIs to avoid further invest-

ment. We found that the predictive performance and stability of the PECARN CDI warranted

further investigation, including prospective external validation. We used the external PSRC

dataset to carry out this investigation, validating the PECARN CDI and a similar but simpler

PCS-driven CDI.

Methods

Ethics statement

This study is a secondary analysis of two datasets. The study protocols are described in the

original trial investigations, PECARN [6] and PedSRC [35]. The institutional review boards at

each participating site approved the original studies. This secondary analysis of anonymized

data was deemed exempt from review by the University of California, San Francisco, and Med-

ical University of South Carolina institutional review boards. Confidentiality was maintained

by using only de-identified data. All analysis was performed on de-identified data without

access to a lookup key. All authors completed Human Subjects research requirements.

We analyzed two independent prospectively collected datasets from two large pediatric

research networks, PECARN and the Pediatric Surgical Research Collaborative (PedSRC).

There were two objectives of this study. The first (Section 2.1) was to demonstrate the PCS

framework for improving CDI development. The second (Section 2.2) was to assess prediction

performance and stability of the original PECARN CDI on external validation.

Objective 1: Demonstrate predictability-computability-stability (PCS) data

science framework for improving cdi development

We followed the PCS framework, which goes beyond traditional reporting guidelines to assess

the impact of reasonable human judgment calls by conducting reasonable data/model
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perturbations across the entire data science lifecycle [7,16]. PCS offers a framework to assess a

CDI for diagnostic performance based on predictive performance (i.e. sensitivity and specific-

ity) and computational needs, putting weight on stability. During the development of a CDI,

investigators make many “judgment calls”, i.e. subjective decisions which may lead to variabil-

ity in the final developed CDI. PCS recommends that investigators ensure that study conclu-

sions are stable to any such judgment calls. These judgment calls can be checked by measuring

the stability of conclusions when alternative “reasonable” judgment calls are made. Reasonable

judgment calls are those solicited through direct engagement between clinicians and data sci-

entists (see the Discussion section for a more detailed look at PCS in the context of CDIs).

In this study, the PCS framework was applied to CDI development (S6 Fig), including all

CDI development and validation stages (it could also be applied to the data cleaning stage, but

was not done here). First, the PCS framework (1) defines the clinical problem, then reviews all

aspects of (2) collecting and preprocessing data, and (3) develops CDIs using interpretable and

rule-based models. Next, these CDIs are vetted for their (4) predictive performance (predict-

ability) and the importance of predictor variables. Last, PCS (5) supports the interpretation of

results by identifying variability in all the PCS steps (stability), ensuring CDIs are developed to

be supported by both data and domain knowledge (provider input). In addition, PCS guided

all aspects of data documentation and analysis; code is available on Github (https://github.

com/csinva/iai-clinical-decision-rule) [10].

Development and validation dataset. The PECARN dataset is a prospective cohort of

12,044 children after blunt torso trauma between May 2007 and January 2010 in 20 emergency

departments [6]. Predictor variables were collected prospectively using a standard data collec-

tion tool. We used the PECARN definition for the a priori outcome of interest of intra-abdom-

inal injury undergoing acute intervention [6].

Following the original PECARN methods, we excluded any variable that was missing more

than 5%, and used predictor variables with at least moderate inter-rater agreement, with the

lower bound of the 95% confidence interval (CI) of the k measurements being at least 0.4 [17].

Missing values for a predictor variable were imputed via its median, and we manually com-

bined predictors that conveyed redundant information based on their correlations (S5 Fig).

Original PECARN CDI development. Redevelopment of the PECARN CDI ensures the

replicability of the original trial. We followed the original PECARN development and internal

cross-validation process to redevelop the PECARN CDI to identify children at very low risk

for intra-abdominal injuries undergoing acute intervention [6]. We used a Classification and

Regression Trees (CART) rule list [36], which involves binary recursive partitioning using the

Gini criterion [37].

PCS CDI development. We developed several alternative CDIs (corresponding to differ-

ent judgment calls during modeling) to compare the predictive performance and perform sta-

bility analysis of the PECARN CDI. A critical difference of PCS and the original PECARN

study is that we use a sample-split, which ensures that our test characteristics are more reliable

and do not overestimate a CDI’s performance due to overfitting. The following models were

used to develop CDIs: logistic regression, CART decision trees, rule lists, [36] Bayesian Rule

Lists [38], iterative Random Forests [13], RuleFit [39], Optimal sparse decision trees [40], Fast

interpretable greedy-tree sums [26] and manual subgroup analysis. Each rule-based predictive

model was chosen for its interpretability, taking the form of either a parsimonious list, tree, or

set of binary rules. We used a stratified splitting technique to divide the PECARN dataset into

a development set (i.e. a training set), 7,985 children (66%), and a validation set, 4,059 children

(34%). Predictive models were fit using the imodels python package [27] (version 0.2.5).

Hyperparameters were selected via manual tuning using only the development dataset.
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CDI predictive performance. We calculated standard diagnostic statistics to report CDI

performance. We used sensitivity and specificity curves to compare the diagnostic test charac-

teristics of each CDI in the PECARN development and internal validation datasets. Further-

more, many more test characteristics were reported for each CDI, including their positive

predictive value and Brier score (which helps evaluate the calibration of a CDI) [41]. The CDIs

were ranked heuristically from the sensitivity-specificity curves by weighting (threshold-

dependent) sensitivity five times more than specificity. CDIs with poor predictive performance

(i.e., achieving a sensitivity below 90%) were eliminated before further analysis.

CDI stability. We assessed CDI stability by performing side-by-side comparisons of the

PECARN CDI and alternative CDIs. The original PECARN study does not report stability at

the model-level or variable level. To assess predictor-variable stability, we report the frequency

and non-zero permutation-importance score of each predictor variable for each CDI [42]. The

permutation importance measures the effect a predictor variable has on the overall prediction

model’s error. If a predictor variable is important, permuting or shuffling the value increases

the model’s error. The predictor variables with high permutation importance, especially across

many different CDIs have greater stability.

We also compared the variability of diagnostic test characteristics between the PECARN

development and internal validation datasets to assess the generalization of the model (i.e. sta-

bility of the predictive performance). Large changes in test characteristics suggest that the

model is unstable in generalizing to new data. Moreover, a CDI can be unstable even when

being re-developed to the same data. This is because many models contain some randomness

in fitting, which can produce a different result when a model is re-developed. Therefore, we

also measure randomness when each model is re-developed as a marker of stability. Prediction

models were then ranked based on predictive performance (sensitivity and specificity), and

then on variable-level stability.

Objective 2: Predictability and stability of the original PECARN CDI on

external validation

External validation dataset. The PedSRC dataset is based on a prospective cohort of

2,188 children with blunt trauma at 14 non-PECARN Level I pediatric trauma centers [35].

Predictor variables were collected prospectively using a standard data collection tool. The

PedSRC study defined intra-abdominal injury as any injury to an intra-abdominal structure

identified on abdominal CT or at laparotomy. We matched the a priori PedSRC outcome of

intra-abdominal injury undergoing intervention to the PECARN outcome.

We matched predictor and outcome variables between the datasets through distribution

assessment and expert review. To ensure consistent matching, all variable linkages between

datasets were reviewed by domain experts, including PECARN and PedSRC study principal

investigators, to ensure biologic plausibility and ensure original data definition was congruent

between the respective datasets. Variables with subjectivity were further screened, original

documentation reviewed, and expert authorship team consensus was used to match variables.

The same missing data strategy was used on the PedSRC and PECARN datasets.

PCS external validation. To externally validate each CDI, we calculated threshold-bound

and threshold-free standard diagnostic statistics. We calculated sensitivity, specificity, negative

and positive predictive values, positive and negative likelihood ratios. We also included false

positives, false negatives, accuracy, and F1 score. The F1 score, an accuracy indicator, empha-

sizes the clinical relevance of sensitivity over specificity and ranges from 1 (best value) to 0

(worst value). We used sensitivity-specificity curves to compare the test characteristics of each

candidate CDI on the external test dataset. We ranked predictor variable importance by
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assessing each variable’s redundancy and weighted predictive power on the external validation

dataset. Finally, we assessed overall CDI performance by evaluating the diagnostics test charac-

teristics and variable importance.

We considered clinical context, predictive performance, computational speed, and stability

to assign each CDI a rank. To compare the PCS framework to external validation, we first

ranked predictive performance and stability. As the goal of the CDI is to limit unnecessary CT

use in children after blunt torso trauma, we set a comparison threshold for predictive perfor-

mance as a sensitivity five times more than specificity with a lower bound sensitivity of at least

95%. We calculated standard diagnostic statistics to report CDI performance, including sensi-

tivity, specificity, negative and positive predictive values, positive, negative likelihood ratios,

false positives, false negatives, accuracy, and F1 score. We also ranked predictor variable

importance by assessing each variable’s redundancy and weighted predictive power on the

external validation dataset. Similarly, we measured overall stability as the proportion of the

CDI’s predictive performance assigned to predictor variables with the highest and lowest vari-

able-level stability.
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validation dataset.

(DOCX)

S1 Fig. Bayesian rule list.

(EPS)

S2 Fig. CART decision tree.

(EPS)

S3 Fig. CART rule list.

(EPS)

S4 Fig. Non-zero permutation importance scores for predictor variables across high-per-
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S5 Fig. Redundant predictor variables are compared in this heatmap of (a) all predictors and

(b) subset of key predictors. Darker blue signifies a direct correlation. Darker red signifies an

inverse correlation. White signifies no correlation.

(EPS)

S6 Fig. Five stages of the Predictability Computability Stability (PCS) framework as

adapted for clinical decision instrument assessment. First, the PCS framework (1) defines

the clinical problem, then reviews all aspects of (2) collecting and preprocessing data, and (3)

models clinical decision instruments using interpretable and rule-based models. Next, the PCS

framework (4) performs a validity (predictability), stability, and validation analysis. Last, the

PCS framework (5) supports the interpretation of the results by identifying limitations in all

the PCS steps, ensuring clinical decision instruments are developed to be supported by both

data and domain expertise.

(EPS)
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