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Abstract

The mathematical modelling of biological systems has historically followed one of two

approaches: comprehensive and minimal. In comprehensive models, the involved biological

pathways are modelled independently, then brought together as an ensemble of equations

that represents the system being studied, most often in the form of a large system of coupled

differential equations. This approach often contains a very large number of tuneable param-

eters (> 100) where each describes some physical or biochemical subproperty. As a result,

such models scale very poorly when assimilation of real world data is needed. Furthermore,

condensing model results into simple indicators is challenging, an important difficulty in sce-

narios where medical diagnosis is required. In this paper, we develop a minimal model of

glucose homeostasis with the potential to yield diagnostics for pre-diabetes. We model glu-

cose homeostasis as a closed control system containing a self-feedback mechanism that

describes the collective effects of the physiological components involved. The model is ana-

lyzed as a planar dynamical system, then tested and verified using data collected with con-

tinuous glucose monitors (CGMs) from healthy individuals in four separate studies. We

show that, although the model has only a small number (3) of tunable parameters, their dis-

tributions are consistent across subjects and studies both for hyperglycemic and for hypo-

glycemic episodes.

Author summary

We present a model of glucose homeostasis that consists of an equation of the mass-

action-kinetics type for glucose levels and a closed propotional-integral control loop. The

control loop models the aggregate effect of all physiological components of homeostasis,

such as the production and uptake of insulin and glucagon. We study the model as a

smooth, planar, dynamical system and show that its solutions are bounded for parameter

values that correspond to healthy individuals. We then fit the model parameters to data-

sets obtained with continuous glucose monitors in four different studies, and show that

they have structured distributions for individuals across a healthy population.
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Introduction

In the 1920s, Walter Cannon condensed a plethora of observations and ideas of early physiolo-

gists into the concept of homeostasis, i.e. the automated regulation of conditions of the human

body, such as temperature, blood pressure and heart rate [1, 2]. This regulation serves to coun-

teract disturbances from outside the body and keep its internal conditions in their safe operat-

ing range. While a monumental leap forwards philosophically, the concept remained largely

qualitative in nature. Cannon carefully based his reasoning on observational evidence, but the

latter is often anecdotal or derived from very small-scale experiments with Cannon himself or

members of his lab as subjects. Nonetheless, his hypotheses on homeostasis were tantalizingly

close to a quantitative description. For instance, he posed that “If a state remains steady it does

so because any tendency towards change is automatically met by increased effectiveness of the

factor or factors which resist the change”—a notion begging to be translated into a mathemati-

cal model. It was not until the 1940s, however, that a connection was made to the theory of

feedback control. Particularly prolific in making this connection was Norbert Wiener, who

devoted multiple sections of his book on Cybernetics to feedback control in human physiology

[3]. From similarities between physiological and servo-mechanical feedback control, Wiener

derived several interesting ideas on the mechanism of homeostasis and how its breakdown is

associated with pathological states such as involuntary tremors. Over the two decades after the

publication of Wiener’s book, the study of homeostasis became more firmly grounded in

mathematics and experiment. Examples include the work of Corson et al. [4] on body water

regulation, that of Stolwijk and Hardy [5] on body temperature and that of Powell [6] on

plasma calcium regulation. Probably the most active topic of research, however, was the regu-

lation of the blood glucose concentration. The malfunction of this particular feedback subsys-

tem is associated with diabetes. The incidence of type-2 diabetes in the USA doubled in the

1960s [7] and this rapid rise likely explains the research focus of many physiologists, physicists

and biochemical engineers entering the new field of homeostasis modelling. The quest to gain

a better understanding of glucose homeostasis is ever more urgent, as diabetes now affects

more than 30 million people in the USA alone (over 9% of the population), while another 84

million Americans have prediabetes [7, 8].

The steady progress in glucose homeostasis modelling, from reasoning by analogy to quan-

titative, predictive theory, can be explained in terms of major advancements in three direc-

tions. First is the gathering of data. Experiments were designed to unveil the interplay of

glucose and regulatory hormones like insulin and glucagon, both in humans and in other

mammals. An example of early work is that by Metz [9], who measured the production of

insulin in response to artificially increased or reduced glucose levels in dogs. A few years later,

Burns et al. [10] was one of several groups to design a continuous blood glucose monitor that

could be used for a number of hours on a human subject in clinical setting. They used the data

to model the oral glucose challenge, in which a subject drinks a calibrated amount of glucose

after fasting, and the recovery of normal blood glucose levels is monitored.

Second is the formulation of mathematical models. Informed by the data that were becom-

ing available, various models, both of the innate glucose dynamics and of the feedback through

hormones, were formulated and tested. Initially, mostly linear models were considered, for

instance by Bolie [11], who used the data of Metz [9] to estimate parameters such as the rate

constants of glucose removal and insulin production. Similar results were obtained by Acke-

man et al. [12], who focused on the oral glucose challenge. Apparently frustrated by the spar-

sity of available data, they revisited the parameter fitting a few years later, finding good

agreement with continuous glucose measurements as well [13]. Bergman et al. [14] systemati-

cally compared several linear and nonlinear models, the nonlinearity appearing in the
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interaction of insulin and glucose. They concluded that the action of insulin on elevated glu-

cose levels is best described by a product of the respective concentrations, akin to mass-action

kinetics. This feedback mechanism is now widely used in glucose control models, including

ours presented in this paper.

Third is the availability of digital computers. While, in the early 1960s, Bolie [11] built his

own analogue computer especially for the purpose of producing numerical predictions with

his model, aptly called the “Hormone Computer”, a decade later digital computers were rap-

idly becoming more accessible and useful, as demonstrated, for instance, by the work of Ceresa

et al. [15] and Gatewood et al. [13]. Even by the standards of 1970s digital computing, time-

stepping glucose homeostasis models in the form of small systems of ordinary differential

equations was a light task. The difficulty lay in the computational cost of systematically explor-

ing parameter space to find physiologically sound behaviour—a process called conformation

by Gatewood et al. [13] that would today be considered a form of data assimilation. Indeed,

the number of simulations one needs to run to gain a comprehensive overview of model

behaviours grows exponentially with the number of parameters to be tuned, such as rate con-

stants and baseline glucose and hormone concentrations. For a model with two variables and

four parameters, like Bergman’s preferred minimal model [14], we can estimate that confor-

mation of a single peak in glucose concentration must have cost at least one hour on the equip-

ment available at the time, like the IBM System/360 Model 50 used by Ličko and Silvers [16].

In summary, by the 1980s various models glucose homeostasis had been developed and

tuned to measured data with the aid of computational algorithms. As a result, much insight

was gained in the hormonal regulation of blood glucose and quantitative estimates of, for

instance, insulin sensitivity [14] and disappearance rate constants of glucose and insulin [16]

were obtained. A more ambitious goal, formulated already by Gatewood et al. [13] is to use the

tuned parameters as diagnostic tools. Since the model parameters quantify the regulation

mechanism itself, rather than the glucose levels it produces, they could conceivably provide an

indication of where a test subject stands on the scale from healthy to pre-diabetic and fully dia-

betic. While not feasible with the data acquisition and processing techniques of the 1970s, in

recent years this goal has come within reach because of rapid progress in the three directions

discussed above.

Most importantly, continuous glucose monitors (CGMs) were developed. CGMs consist of

a tiny needle, inserted in the upper arm and connected to a lightweight electronic device that is

held in place with adhesive tape. Measurements are taken at fixed intervals and can be read

wirelessly by a hand-held receiver. The needle usually causes little or no discomfort and can be

worn during every day activities. Thus, we can now observe the complete feedback system at

work. The modelling of these data requires a closed-loop control approach. In contrast, the

models mentioned above are open-loop in the sense that, rather than a two-way interaction

between glucose and regulatory hormones—or a proxy for those—they contain input terms

that represent the injection of glucose or regulatory hormones in clamp or bolus experiments.

One might say that pioneers like Bolie, Ackerman and Bergman approached the problem like

an electrical engineer would probe a component of an electrical circuit: they isolate it and pres-

ent it with a series of controlled inputs and measure the response. Closed feedback modelling

is more similar to observing the component as it is playing its part in the circuit, unable to

manipulate its input yet assuming it is, in part, determined by its output. Finally, comforma-

tion of mathematical models can now be done on the fly on a device as small as a smart watch

so that diagnostics may be presented immediately upon the appearance of irregularities. Vari-

ous authors have recently explored the use of mathematical models conformed to CGM data,

often focusing on type-2 diabetes patients (Goel et al. [17], Gaynanova et al. [18] and Bartlette

et al. [19]).
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The model we present and validate here can be considered, in the words of Wiener, a

“white box” model. It is designed to reproduce the correct output, i.e. blood glucose concentra-

tion, for given input, in this case glucose released from digestion of food. It comprises only two

variables: the deviation of the glucose concentration from a set point and a proxy for all control

mechanisms. Thus, we do not model any specific pathway of control or hormone, only their

aggregate effect. This idea is similar to that of “reign control” by Saunders et al. [20], who pre-

sented a closed-loop model in which insulin and glucagon concetrations are modelled sepa-

rately. Our control variable is determined both by the instantaneous glucose concentration

and by its recent history, the weight of past glucose concentrations decreasing exponentially

with the delay. This “distributed delay” approach was proposed by Palumbo and De Gaetano

[21]. Thus, our model contains three tunable parameters: the coefficients of the contributions

of the instanteneous and the past glucose concentrations and the time scale of the distributed

delay. To the best of our knowledge, this model is the most parsimonious among closed feed-

back models—Saunders et al. [20], for instance, included three variables and six parameters

while Palumbo and De Gaetano [21] included four variables and six parameters and Goel et al.
[17] use two variables and seven parameters.

Since our model takes the form of a mildly nonlinear, planar dynamical system, it is suscep-

tible to standard analysis. The first goal of this work is to establish that our model has the fol-

lowing desirable properties for physiologically admissible parameter values:

1. It has a unique equilibrium solution which is asymptotically stable. This equilibrium can be

though of as the target of the homeostatic control and it has a glucose concentration within

the safe operating range.

2. No time-periodic solutions can arise for constant input. Such solutions would correspond

to potentially damaging, sustained oscillations of the blood glucose level.

3. For variable input within reasonable bounds, the model glucose concentration and control

variable remain bounded and the maximal glucose concentration lies at the high end of the

safe operating range.

Thus, our model has the properties one expects from a healthy homeostatic control system.

The second goal of this work is to validate the model with CGM data of healthy individuals

from three different studies using two different glucose monitors.

1. Klick Pilot Study. This study was conducted at Klick Health and had 42 subjects, recruited

locally in Toronto, Canada [22]. Preliminary results from this study were reported in van

Veen et al. [23].

2. Klick Follow-up Studies. These studies were conducted at various sites in India and had 146

subjects in total [24, 25].

3. Stanford Study. Results from this study were reported by Hall et al. [26] and the CGM data

for 36 subjects were made publically available.

All Klick studies use the Freestyle Libre Flash Glucose Monitoring System (Abbott Labora-

tories) while the Stanford study used the Dexcom G4. We will establish, that the parameters of

the tuned models are consistent across the different study groups, in the sense that they fall

under distributions that appear to be Gaussian and independent of the equipment used or

demographics of the test subjects.

Thirdly, we will investigate data and model results for hypoglycemic episodes, i.e. excur-

sions to glucose levels below the baseline. This is an extension of the model used by van Veen

et al. [23], which only describes excursions above the base line. Hypoglycemic episodes have
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received relatively little attention in the literature. Palumbo and De Gaetano [21] simulated

hypoglycemic conditions in their closed-loop model but did not conform the it to measured

data. Data-based approaches have mostly been statistical in nature and aimed at type-2 diabe-

tes patients, e.g. Yang et al. [27].

Finally we will demonstrate that, owing to the parsimony of the model, the conformation of

parameters to segments of CGM data can be performed in seconds on a mid-range laptop

computer. The inputs to this procedure are the raw CGM data, often with missing and cor-

rupted measurements, and the output is a list of tuned parameters, one set for each detected

peak or trough. While, in the current work, we focus on the validation of our model for healthy

subjects, this pipeline of data acquisition, feature extraction and parameter conformation has

the potential grow into a cheap, non-invasive, online diagnostic tool once the impact of early-

onset diabetes on the model parameters is known.

Methods and data

Glucose homeostasis as a control system

The dynamics of blood glucose homeostasis and its regulating feedback system are modelled

by a system of coupled differential and integral equations. We assume that there are three com-

ponents contributing to variations in glucose deviation: 1) Base metabolic rate—the rate that

glucose is consumed during rest to maintain basic bodily functions, 2) A negative feedback

mechanism that regulates blood glucose concentration as it deviates from normal levels, and

3) an input function that describes the external intake of glucose such as those received by eat-

ing a meal. The equation is

de
dt
¼ � A3 � u�ðe;�eÞ þ FðtÞ ð1Þ

where e is the excess glucose concentration from some set value �e. The base metabolic rate A3

is assumed constant, and F(t) models the external glucose sources (i.e. food intake) and sinks

(such as vigorous exercise). The control variable u represents the collective effects of the active

mechanisms that promote returning blood glucose levels to normal. The aggregate effect is

modelled using a proportional-integral strategy and is described by the equation

u ¼ A1eþ A2

Z t

t¼� 1

l exp ð� lðt � tÞÞeðtÞdt: ð2Þ

The coefficients of proportional and integral response are A1 and A2 respectively, and 1/λ is

the time scale of the delays in the feedback mechanism. Finally, the feedback term ϕ takes a dif-

ferent form for positive and negative deviations e.
For positive deviations (hyperglycemia), the main feedback mechanism involves the excre-

tion of insulin and the uptake of a fraction of the total glucose concentration per time unit.

This mechanism is modelled by mass action kinetics, resulting in a quadratic term similar to

that used by Bergman [14]. For negative deviations (hypoglycemia), the main feedback mecha-

nism is that of the release of glucagon which, in turn, triggers the release of glucose from the

liver. This process we model with a linear term as we consider the supply of glucose from the

liver instantaneous and unlimited. The feedback ϕ is defined as

�ðe;�eÞ ¼ maxfeþ �e;�eg: ð3Þ

Table 1 summarizes the model parameters with their meaning as well as units used in our

work.
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Data acquisition and model fitting

We validate our proposed model using glucose data collected from individuals who are consid-

ered healthy based on a variety of metrics such as body-mass index (BMI), oral glucose toler-

ance test (OGTT), and measure of glycated haemoglobin (HbA1c). The data is sourced from

three groups: 1) Klick Pilot Study—Employees of Klick Inc. who volunteered for the study

(N = 42) S1 Data, 2) Klick Follow-up Studies—Subjects were recruited across various sites in

India (N = 100) S2 Data, and 3) Stanford study on glucose dysregulation (N = 36) [26].

Individuals selected for the study are considered healthy using the guidelines provided by

the American Diabetes Association, where A1c levels are below 5.7% and OGTT below 7.8

mmol/litre. In addition, the selected participants are not known to be diagnosed with any

medical condition where medication may interfere with the subjects’ blood glucose regulation.

Glucose data of the both Klick studies were recorded using the Freestyle Libre Flash Glucose

Monitoring System by Abbott Laboratories. For each individual, blood glucose levels were

measured automatically every 15 minutes over a two week duration. This provided each partic-

ipant with their own time series of blood glucose readings. In the Stanford study group, glu-

cose levels were measured using the Dexcom G4 CGM device once every 5 minutes over a

minimum of two weeks, up to a maximum of four weeks. All participants in the Klick pilot

and follow-up studies gave informed written consent and are at least 18 years of age [22, 24,

25]. The studies received full ethics clearance from Advarra IRB Service and from Ontario

Tech University’s research ethics board.

To reduce the amount of noise that may be caused by instrumentation error, each time

series is smoothed with Gaussian smoothing. Then, episodes of hyperglycemia and hypoglyce-

mia were identified by extracting sufficiently large positive and negative deviations within

each time series, which we refer to as peaks and troughs respectively. Peaks and troughs are

determined using the following criterion:

• First derivative changes from positive/negative to negative/positive at the peak’s/trough’s

maximum/minimum.

• Second derivative changes from negative/positive to positive/negative at the endpoints of the

peak/trough.

• The minimum/maximum of each peak/trough are chosen as the baseline glucose level �e.

Each peak and trough extracted were fitted against the proposed model by minimizing the

function

E ¼
Pn

i¼1
ð~eðtiÞ � eðtiÞÞ

2

Pn
i¼1

~eðtiÞ
2

ð4Þ

where ~eðtÞ is the deviation of raw glucose data from the set point, sampled at the peak/trough

locations, and n is the number of recorded points for that particular peak/trough. The base

Table 1. Parameters of the glucose homeostasis model. Parameters of the control model and their expected value ranges across test subjects.

Parameter Meaning Range Units

A1 Proportional control term 0 − 0.03274 litre/(min × mmol)

A2 Integral control term 0 − 0.04627 litre/(min × mmol)

A3 Basic metabolic rate 0.0003 mmol/(min × litre)

λ Inverse delay time scale 0.02434–0.05804 1/min

�e Set point glucose level 4.0–5.9 mmol/litre

https://doi.org/10.1371/journal.pdig.0000072.t001
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metabolic rate A3 is assumed constant as all individuals in the study are considered healthy.

The external input function F(t) is modelled using a Gaussian function with a variable ampli-

tude, center, and variance, as, during hyperglycemia, this agrees reasonably well with data

measured in vitro [28]. In hypoglycemic cases, F(t) takes the same form but with a negative

amplitude to model the source causing a drop in blood glucose levels. The integral term of the

control variable was numerically approximated via the midpoint rule, and forward Euler

method was used for time stepping. The fitting error E is minimized with gradient descent.

Results

Dynamical systems analysis of control model

In the following analysis, we will use an equivalent planar dynamical system obtained by elimi-

nating the integral term. If we define f(u, e) to be the right-hand side of Eq 1, then Eqs 1 and 2

can be described by the equivalent system of differential equations

du
dt
¼ � luþ A1 f ðu; eÞ þ lðA1 þ A2Þe ð5Þ

de
dt
¼ f ðu; eÞ ð6Þ

under the assumption that the initial condition satisfies u0 − A1 e0 = 0 and letting λt0 # −1.

We will consider this dynamical system on the domain D ¼ fðu; eÞ j e > � �eg. If e(t)
approaches � �e, the total blood glucose concentration approaches zero and our model is no

longer valid since it does not describe reaction of the human body to life-threatening

hypoglycemia.

Stability and bifurcation structure. The equilibria of the proposed model satisfy

� A3 þ F � ðA1 þ A2Þe��ðe�;�eÞ ¼ 0: ð7Þ

We first assume that the input is constant and define G = −A3 + F. The sign of G determines

if the input is greater than the resting metabolic rate. Suppose that e� � 0, then � ¼ e� þ �e,
and thus

e� ¼
� ðA1 þ A2Þ�e þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA1 þ A2Þ
2
�e2 þ 4ðA1 þ A2ÞG

q

2ðA1 þ A2Þ
: ð8Þ

is a valid solution provided that G� 0. Suppose now that e� < 0, then � ¼ �e. Then a stationary

point is

e� ¼
G

ðA1 þ A2Þ�e
< 0 ð9Þ

thus requiring that G< 0. Furthermore, we demonstrate the following result:

Theorem 1. The stationary points (Eqs 8 and 9) of the dynamical system described by Eqs 5

and 6 are asymptotically stable for any constant input function.

Proof. See S1 Thm.
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Boundedness of solutions. Consider the following function L 2 C1(D):

Lðu; eÞ ¼

ðu � A1eÞ
2

2lA2

þ
e2

2�e
þ e if e � 0

ðu � A1eÞ
2

2lA2

þ e if e > 0

8
>>>><

>>>>:

ð10Þ

This function increases monotonically away from its minimum at ðu; eÞ ¼ ð� A1
�e; � �eÞ and

plays the role of a Lyapunov function. For its derivative along a solution, we find

dL
dt
¼

�
1

A2

u � A1eþ
A2�e
2

� �2

� A1 eþ
1

2A1

A1�e �
G
�e

� �� �2

þ
A2�e2

4

þ
1

4A1

A1�e �
G
�e

� �2

þ G if e � 0

�
1

A2

u � A1eþ
A2�e
2

� �2

� A1 eþ
�e
2

� �2

þ
�e2

4
ðA1 þ A2Þ þ G if e > 0

8
>>>>>>>>>><

>>>>>>>>>>:

ð11Þ

The zerocline of dL/dt is an ellipsoid centered at ðu; eÞ ¼ ð� ½A1 þ A2��e=2; � �e=2Þ. The

interior of any isocline of L that encloses this ellipsoid, or rather its intersection with the phase

space D, is a trapping region for model (5 and 6). Searching for the smallest possible trapping

region leads to a fourth-order polynomial equation. A simpler bound can be found by enclos-

ing the ellipsoid with a parallelogram and fitting the isocline of L to the latter. This leads to the

following result.

Theorem 2. Solutions to the system of Eqs (5 and 6) with constant net input G = −A3 + F
eventually enter the interior of the curve L = C and remain there. The minimal value of C is
bounded from above by

C� ¼
1

8A1l�e2

�

2�e2
ffiffiffiffiffiffiffiffiffiffi
A1A2

p
þ 4�el

h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1A2�e4 þ ½A1�e2 þ G�2
q

þA1ðA1 þ 2A2Þ�e4 � 4A1�e3lþ 2A1G�e2 þ 4G�elþ G2

� ð12Þ

if G � � A2�e2=4 and by

Cþ ¼
1

8A1l�e2

�

2
ffiffiffiffiffiffiffiffiffiffi
A1A2

p
�e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1A2�e4 þ ½A1�e2 þ G�2
q

þ ðA1�e
2 þ GÞ2

þ4l�e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1½A1 þ A2��e2 þ 4A1G

p
þ 2A1A2

�e4 � 4A1
�e3l

� ð13Þ

if G > � A2�e2=4.Moreover, no periodic solutions can exist in this region.

See S2 Thm.

A visualization of the trapping region described in Theorem 2 is shown in Fig 1.

The results of Theorem 2 can be extended to establish the boundedness of solutions with

variable forcing G(t). Let us assume that G is bounded, i.e. Gmin� G(t)� Gmax for t 2 [0,1).

We then find the trapping region of Theorem 2, but with the constant C± replaced by their

supremum for G 2 [Gmin, Gmax]. Most importantly, if Gmax > 0 we have the following.

Corollary 1. Let G(t) = −A3 + F(t) be bounded and let Gmax > 0. Then solutions to to the sys-
tem of Eqs (5 and 6) eventually enter the interior of the curve L = C and remain there. The
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constant C is given by

C ¼ maxfC� ðGminÞ;CþðGmaxÞg ð14Þ

Proof. See S1 Cor.

If we fix the parameters to the middle of the range given in Table 1 then the largest value

the glucose concentration attains inside the trapping region varies from 9(mmol/litre), for G =

−0.15(mmol/litre min), to 13.5(mmol/litre) for G = 0.15(mmol/litre min). This range of G is in

line with experiments [28] as well as with our data. In our datasets, we discovered that the

maximum value of G for all individuals is 0.1098 (mmol/litre min) and the minimum value of

G is −0.0964 (mmol/litre min). The methodology of the experiments will be discussed in fur-

ther detail below. A blood glucose level of over 11.1(mmol/litre) is generally considered an

indication that the glucose homeostasis is dysfunctional.

Model fitting with CGM data

Upon extracting the peaks and troughs of individual CGM data, the peaks and troughs of indi-

viduals were fitted to the model with a fitting error of 0.3028 ± 0.6297 (Emax = 3.7545) and

0.1159 ± 0.1780 (Emax = 1.2578) respectively, as defined in Eq 4. In a small number of cases

(<0.5% of all selected peaks), fitting error was comparatively high due to the shape of the

Fig 1. Schematic illustration of the trapping region, shown in the case G> 0. The inner ellipse is defined by dL/dt = 0 and the outer one by L = C+.

Both are sheared by the transformation (v, e)!(u, e) = (v + A1 e, e). The rectangle vmin� v� vmax, emin� e� emax, used to obtain an explicit upper

bound for C, is shown with dashed lines. The stable equilibrium is shown in the first quadrant.

https://doi.org/10.1371/journal.pdig.0000072.g001
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selected peaks. In these instances, two or more smaller peaks were combined together into one

automatically selected peak, resulting in a glucose deviation that was multi-modal. Two of

each representative peaks and troughs are shown in Figs 2 and 3 with similar error to the

mean.

We then compared the results of Fig 2 against the models proposesd by Ackerman et al.

[12], Bergman et al. [14], and Palumbo et al. [21]. The model by Ackerman proposed a general

glucose-regulating hormone, where its interaction with excess blood glucose is modelled as a

linear feedback system. Bergman, instead, modeled an insulin-dependent system as opposed

to a general glucose-regulating hormone. We compared our model against Model VI of his

work [14] as it was indicated that it was the most robust option. Note that Model VI requires

an external insulin source, which we have set to zero as there is no injection of insulin in any

stage of our model. Palumbo also followed the approach of including insulin-sensitivity as part

of the modelling procedure. A notable difference is that they have chosen a different memory

Fig 2. Example results of the hyperglycemic model. Two example representative peaks extracted from measured CGM data. The original glucose data

is represented by the red dashed lines. The set of black crosses is the model glucose output, and the black curve is the cubic spline interpolation of the

model outputs.

https://doi.org/10.1371/journal.pdig.0000072.g002

Fig 3. Example results of the hypoglycemic model. Two example representative troughs extracted from measured CGM data. The original glucose

data is represented by the red dashed lines. The set of black crosses is the model glucose output, and the black curve is the cubic spline interpolation of

the model outputs.

https://doi.org/10.1371/journal.pdig.0000072.g003
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kernel that maximizes at t = λ−1 in their memory/delay term, versus our model which is based

on a strictly decreasing kernel. Another difference between the models of Bergman and ours is

that the former assumes a base glucose uptake that is proportional to the current glucose con-

centration, rather than a constant rate as described in our model. Based on the time scales of

each selected peak/trough (up to two hours), the difference between these approaches are

negligible.

Despite having fewer parameters, our model is able to provide a better fit than the previ-

ously proposed methods (S1 Fig). The fitting errors are provided in S1 Table. This demon-

strates that our model is able to reproduce glucose levels of healthy individuals with good

agreement to real world measurements. We excluded the comparisons for hypoglycemic cases

because the aforementioned models were not designed for this purpose, and thus a direct com-

parison would not make sense.

S2 Table outlines the range of parameter values across each of the three datasets. In each

study, the mean of each parameter value fall within 15% of the overall mean. In addition, the

largest coefficient of variation is 0.3402 (Hyperglycemic, A1, Klick Follow-up), indicating low

variances across all model parameters. This suggests that the distributions of A1, A2, and λ are

independent from the source of data. From this it can be concluded that the model results are

consistent regardless of the presence of intangibles such as cultural and demographic differ-

ences. Due to our peak/trough selection method and length differences in CGM data, the

number of peaks/troughs extracted vary between different individuals. The means of A1 and

A2 for each individual were computed (via bootstrapping) to compensate for this inconsis-

tency. We observed that the means of A1 and A2 result in a clustering behaviour, demonstrated

graphically in S2 Fig.

The parameters A1, A2, and λ for all selected peaks for each individual were bootstrapped,

then normalized as standard-normal variables in order to derive an estimation of the distribu-

tion of parameter values. Their respective distributions were tested for normality using the

Shapiro-Wilk test with 0.05 as the critical p-value. The distributions of parameter values and

Gaussian overlays are shown in S3 and S4 Figs respectively. The data suggests that all parame-

ters follow a normal distribution except hypoglycemic λ. Upon further investigation, we dis-

covered that λ falls under a log-normal distribution. This was confirmed by the performing

the Shapiro-Wilk test on logλ, resulting in a p-value of 0.419. The results of the Shapiro-Wilk

test are included in S2 Table.

The experiments were performed on a HP EliteBook x360 1030 G4 laptop, with an Intel

Core i7–8665U at 1.9GHz, and 16.0 GB of system memory. On average, 55.7 peaks/troughs

were extracted from individuals’ CGM data over the course of a week (with standard deviation

of 14.4). This leads to our experiments requiring five to ten minutes to analyze the glucose data

of a single subject, depending on the length of the time series. Note that, however, the vast

majority (90%+) of single peaks/troughs require less than one second to compute their corre-

sponding parameter values. We can, therefore, obtain results in real time whenever peaks/

troughs are detected by wearable glucose monitoring sensors. The remaining peaks/troughs

required five to ten seconds for convergence. The computation time can be improved by

choosing initial parameter values near their expected convergence values. This will reduce the

number of iterations needed for gradient descent to converge, effectively lowering the total

runtime required.

Our data supports that the parameters of our model are normally distributed, with the

exception λ for hypoglycemia, which falls under a log-normal distribution. This suggests

that the model parameters remain fairly structured among healthy individuals regardless of

the source of the data. We observed that all three parameters were noticeably different in

value between hyperglycemic and hypoglycemic cases. In particular, parameter values for
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hyperglycemia are lower than that of hypoglycemia. This was expected because the control

systems modelling hyperglycemic/hypoglycemic cases are fundamentally different,

mathematically speaking. At sufficiently large deviations, the quadratic control of the

hyperglycemic model provides a much stronger feedback mechanism compared to the lin-

ear control found in the hypoglycemic counterpart. Therefore, lower parameter values are

needed for the hyperglycemic model to achieve similar levels of feedback impact. As we

extend our data to include pre-diabetic and diabetic individuals for future studies, we

expect values for A1 and A2 to decrease as individual’s state of health worsens. In extreme

cases, we suspect that the structure of the model parameters will quickly deteriorate. Should

these claims prove to be correct, a variation and/or combination of A1 and A2 may be used

as potential biomarkers for early detection of glucose homeostatic dysfunction of

individuals.

Conclusion

As instances of diabetes continue to rise, it is imperative that the overall function of glucose

regulation is examined compared to observing just a single-valued output in diagnostics such

as the Oral Glucose Tolerance Test (OGTT) and Fasting Blood Glucose (FBG) test. Mathe-

matical models of glucose homeostasis provide a powerful tool in the quantification of glu-

cose homeostasis functionality. With this in mind, we investigated the viability of using a

simple proportional-integral (PI) model to simulate glucose variation. By doing so we were

able to tune the model to suit an individual’s particular homeostasis. We showed that our

pipeline of data acquisition, peak extraction and data assimilation has the potential to give a

cheap, non-invasive and quick assessment of subject’s glucose homeostasis, in spite of the

parsimony of the model. We determined that there will be a unique, stable equilibrium for all

individuals, no periodic solutions for constant glucose input, and practical upper bounds for

both glucose concentration and the control variable based on the parameter ranges of healthy

individuals. All conformed model parameters have low variances and are approximately nor-

mally distributed, with the sole exception of the time scale of the delay in the hypoglycemic

case, which is closer to log-normal. This indicates a consistency in the assessment of glucose

homeostasis between individuals that is independent of study location and measurement

device.

Since this method relies exclusively on an individual’s CGM data, it has the potential to pro-

vide insight into an individual’s glucose homeostasis functionality without requiring a visit to

a health care provider. This model is formulated to only have a few features that change

between individuals. As such, in order to check the regularity of glucose homeostasis, one only

has to ensure that their parameter values are within the normal ranges as previously indicated.

Due to this, the requirement to undergo fasting or blood tests (which is necessary for standard

tests such as OGTT, FBG, and HbA1c) can be eliminated. Furthermore, our model is able to

determine its parameter values given a single peak/trough in less then one second. This sug-

gests that the proposed method is lightweight, computationally. Upon further code optimiza-

tion, this can potentially be performed on portable devices, or translated to a web-based

diagnostic tool where feedback can be provided in real time.

Future work for this model involves analyzing the glucose dynamics of diagnosed type 2

diabetics and prediabetic individuals. The resulting parameter values could then be used as a

biomarker of homeostasis dysfunction, potentially becoming another metric of disease diagno-

sis and prediction. Additionally, using a model that measures the glucose homeostasis itself

and not the output may allow for earlier detection of a faulty homeostasis, ultimately resulting

in diabetes prevention methods being implemented sooner.
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Supporting information

S1 Thm. Proof of Theorem 1. On the stability of stationary points of the glucose homeostasis

control model.

Proof. Under the assumption of a constant input, consider first that the input is greater than

the resting metabolic rate, i.e. F> A3, then G> 0. Therefore the stationary point correspond-

ing to e� < 0 no longer exists. If the solution is of class C2(D), linearizing around (u�, e�) to get

the Jacobian matrix

J ¼
� lþ A1

@f
@u
jðu� ;e�Þ lðA1 þ A2Þ þ A1

@f
@e
jðu� ;e�Þ

@f
@u
j
ðu� ;e�Þ

@f
@e
j
ðu� ;e�Þ

2

6
6
6
4

3

7
7
7
5

ð15Þ

where

2
@f
@u

¼ � ðe� þ �eÞ;
@f
@e
¼ � u�: ð16Þ

Thus

trJ ¼ � l � A1ðe� þ �eÞ � u� < 0

detJ ¼ lu� þ lðA1 þ A2Þðe� þ �eÞ > 0

Therefore the stationary point is a stable node or focus for G> 0. If G< 0, the linearization

has the properties trJ ¼ � l � A1�e < 0 and det J ¼ l�eðA1 þ A2Þ > 0 which yields a stable

node or focus. Hence the stationary point (u�, e�) is always asymptotically stable.

(PDF)

S2 Thm. Proof of Theorem 2. On determining a trapping region under the assumption of a

constant input.

Proof. For ease of notation, we introduce the auxiliary variable v = u − A1 e. In the coordinate

system (v, e), the ellipsoid implicitly defined by dL/dt = 0 has its major and minor axes aligned

with the coordinate axes. It is enclosed by a rectangle with sides at v = vmin, vmax and e = emin,

emax. A direct computation shows that vmin < -vmax < 0< vmax. Since L is a monotonically

increasing function of e on the domain D, the maximal value of L over the rectangle is then

obtained at

ðvmin; e�maxÞ ¼

�

�
A2�e
2
�

1

2�e

ffiffiffiffiffi
A2

A1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1A2�e4 þ ½A1�e2 þ G�2
q

;

�
�e
2
þ

G
2A1�e

þ
1

2A1�e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1A2�e4 þ ½A1�e2 þ G�2
q �

if G � � A2
�e2=4, in which case emax < 0, and at

ðvmin; eþmaxÞ ¼

�

�
A2�e
2
�

1

2�e

ffiffiffiffiffi
A2

A1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1A2�e4 þ ½A1�e2 þ G�2
q

;

�
�e
2
þ

1

2A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1
�e2 þ A1A2�e2 þ 4A1G

p
�
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if G > � A2
�e2=4, in which case emax > 0. At this point we have Lðvmin þ A1e�max; e

�
maxÞ ¼ C�

with C± as stated in the theorem.

We now use the Bendixson-Dulac theorem to demonstrate that it is impossible for solutions

that enter this region to be periodic, consider the equivalent dynamical system

_v ¼ � lðvþ A2eÞ � F1ðv; eÞ;

_e ¼ � A3 � ðvþ A1eÞ�ðe;�eÞ � F2ðv; eÞ:

We now show that Q = @v F1 + @e F2 has the same sign in D. Computing Q directly, we get

Q ¼
� l � A1ð2eþ �eÞ � v; if e > 0

� l � A1�e; if e < 0:

(

It is clear that Q is constant and negative for any e< 0. Hence we only need to consider e> 0.

Notice that Q is linear with respect to v and e, therefore any extrema of Qmust be on the

boundary of D. The maximal value can be found by the method of Lagrange multipliers, lead-

ing to

Qðv�; e�Þ ¼ �
8A2

1
þ 4A2

1
�e þ 4lA1 þ lA2

4A1

< 0

and so Q(v, e) < 0 in D. Therefore no periodic solution exists in the trapping region.

Remark: Although the Bendixson-Dulac theorem is stated for differentiable vector fields, its

property still holds for our model despite F2(v, e) being nondifferentiable along e = 0.

(PDF)

S1 Cor. Proof of Corollary 1. On determining a trapping region for any bounded input

function. Proof.
The curve L = C takes the form C = C− if G < � A2

�e2=4 and C = C+ if G � � A2
�e2=4, and

defines the boundary of a trapping region to Eqs 5 and 6. If Gmin � � A2�e2=4, then C = C+

everywhere in the domain. Notice that C+ is a strictly increasing function of G, therefore its

maximum is C+(Gmax). Suppose now that Gmin < � A2�e2=4. A direct computation of the sec-

ond derivative of C− gives

d2C�
dG2

¼ ð2�e2
ffiffiffiffiffiffiffiffiffiffi
A1A2

p
þ 4�elÞ

A1A2�e4

½A1A2�e4 þ ðA1�e2 þ GÞ2�
3
2

 !

þ 2 > 0 ð17Þ

with the inequality holding for all values of G. Therefore the maximum of C− occurs at one of

its endpoints. Since C is continuous over all of G, and C+ is strictly increasing, then

C� ð� A2�e2=4Þ < CþðGmaxÞ, meaning that the right endpoint (relative to values of G(t)) of C−
cannot be a maximum of C. Thus the largest value of Cmust be the larger of C−(Gmin) or

C+(Gmax) as required.

(PDF)

S1 Table. Comparison of fitting errors of our model against previous models. The fitting

error of the two sample hyperglycemic cases across different models shown in S1 Fig. The

errors computed here are based on raw glucose data to accomodate for the specifications of

the models compared.

(TIF)
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S2 Table. Ranges of model parameters. Model parameter ranges for hyperglycemic and

hypoglycemic cases with their respectively p-values of the Shapiro-Wilk test for normality. The

null-hypothesis H0 states that the model parameters are normally distributed. The decision to

reject or not reject H0 is based on a critical p-value of 0.05. The units of each parameter are

listed in Table 1.

(TIF)

S1 Fig. A comparison of our example results against existing models for hyperglycemic

cases. The black crosses are the model predictions at the time of each CGM measurement. The

black curve is a cubic spline interpolation of the model prediction. The faded green, light blue,

and purple curves are the glucose predictions based on the models proposed by Palumbo et al.

[21], Bergman et al. [14], and Ackerman et al. [12], respectively.

(TIF)

S2 Fig. Comparison of model parameter clustering between hyperglycemic and hypoglyce-

mic episodes. Mean (by subject) model parameter values for peaks and troughs found in

hyperglycemic and hypoglycemic cases respectively. Parameter values for hyperglycemic cases

are depicted by the circle markers, and in contrast, star markers represent parameter values for

hypoglycemic cases. The units of A1 and A2 are both in litre/(min × mmol). The numerical val-

ues of each data point is found in S3 Data.

(TIF)

S3 Fig. Normalized model parameter values for hyperglycemic cases. In the left column, the

blue columns form the histogram for each normalized parameter value distributed into ten

bins of equal width. The red curve denotes the normal distribution with mean and variance

that matches the sample mean and variance of each corresponding parameter. The right col-

umn are Q-Q plots for each model parameter. The rows, from top to bottom, correspond to

the parameters A1, A2, and λ. The units of the parameters are [A1] = [A2] = litre/

(min × mmol), and [λ] = 1/min.

(TIF)

S4 Fig. Normalized model parameter values for hypoglycemic episodes. In the left column,

the blue columns form the histogram for each normalized parameter value distributed into ten

bins of equal width. The red curve denotes the normal distribution with mean and variance

that matches the sample mean and variance of each corresponding parameter. The right col-

umn are Q-Q plots for each model parameter. The rows, from top to bottom, correspond to

the parameters A1, A2, and logλ. The units of the parameters are [A1] = [A2] = litre/

(min × mmol), and [logλ] = log(1/min).

(TIF)

S1 Data. Blood glucose data of Klick Pilot Study. Blood glucose data of Klick Pilot Study

measured using the Freestyle Libre Flash Glucose device. The data are presented in comma

separated values (.csv) format for each healthy individual (N = 42). The filenames represent

the unique identification of the individual to preserve anonymity.

(ZIP)

S2 Data. Blood glucose data of Klick Follow-up Studies. Blood glucose data of Klick Pilot

Study measured using the Freestyle Libre Flash Glucose device. The data are presented in

comma separated values (.csv) format for each healthy individual (N = 100). The filenames

represent the unique identification of the individual to preserve anonymity.

(ZIP)
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S3 Data. Parameters values for A1, A2 and λ for peaks and troughs of each individual.

Model parameter values obtained for each participant across all three studies. The data are pre-

sented in comma separated values (.csv) format.

(ZIP)
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