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Abstract

Rectangular association matrices with binary (0/1) entries are a common data structure in

many research fields. Examples include ecology, economics, mathematics, physics, psycho-

metrics, and others. Because their columns and rows are associated to distinct entities,

these matrices can be equivalently expressed as bipartite networks that, in turn, can be pro-

jected onto pairs of unipartite networks. A variety of diversity statistics and network metrics

can be used to quantify patterns in these matrices and networks. But, to be defined as such,

what should these patterns be compared to? In all of these disciplines, researchers have rec-

ognized the necessity of comparing an empirical matrix to a benchmark ensemble of ‘null’

matrices created by randomizing certain elements of the original data. This common need

has nevertheless promoted the independent development of methodologies by researchers

who come from different backgrounds and use different terminology. Here, we provide a mul-

tidisciplinary review of randomization techniques and null models for matrices representing

binary, bipartite networks. We aim at translating concepts from different technical domains to

a common language that is accessible to a broad scientific audience. Specifically, after briefly

reviewing examples of binary matrix structures encountered across different fields, we intro-

duce the major approaches and strategies for randomizing these matrices. We then explore

the details of and performance of specific techniques and discuss their limitations and

computational challenges. In particular, we focus on the conceptual importance and imple-

mentation of structural constraints on the randomization, such as preserving row and/or col-

umns sums of the original matrix in each of the randomized matrices. Our review serves both

as a guide for empiricists in different disciplines, as well as a reference point for researchers

working on theoretical and methodological developments in matrix randomization methods.
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Introduction

What do ecological metacommunities, biotic interactions, gene mutations, international trade,

public transportation, musical preferences, and organized group events have in common?

They all represent systems that we can conveniently synthesize and investigate as bipartite net-

works [1–7], i.e., networks with nodes of two types, and connections only appearing between

nodes of different type. These graphs provide information about the presence or absence of

relationships between two entities and/or of the strength of these relationships. Accordingly,

numerous examples of application of bipartite networks can be found across multiple research

fields such as anthropology, biology, ecology, economics, engineering, finance, logistics, man-

agement, mathematics, physics, and social sciences (see Fig 1 and Table 1). Indeed, some have

argued that “any complex network [i.e., system] may be viewed as a bipartite graph” [8]. More-

over, various “nominally” unipartite networks (i.e., networks whose nodes are per se not sepa-

rated into two or more distinct sets) have been recently found to display a close-to-bipartite

organization, a situation that is understood to arise when most links in the network connect

complementary, rather than similar, nodes [9,10]. Indeed, the principle of homophily, which

is the one explaining the increased abundance of links between similar nodes in unipartite

graphs (and implying that nodes of the same type are tightly interconnected), is not the only

possible determinant of connections. The principle of complementarity, stating that comple-

mentary nodes connect synergistically when they “need” each other in order to carry out some

functionality, predicts that nodes of the same type are not mutually connected in complemen-

tary-driven networks, therefore giving rise to bipartite- or multipartite-like structural features.

Examples of networks strongly shaped by complementarity are protein–protein interaction

networks [10], production networks [11], and some semantic networks [12]. Indeed, it makes

Fig 1. Bipartite networks are ubiquitous in the real world. Examples of systems that can be represented by bipartite networks (left) and their

corresponding binary matrix representation (right). Black/gray cells in each matrix indicate presence of links (i.e., 1s) between the items in rows and the

items in columns, while white cells indicate the absence of links (i.e., 0s). The networks link, respectively: (a) buyers to purchases; (b) ruminants to

associated microbiota; (c) plants to pollinators; (d) authors to articles; (e) listeners to songs; (f) visitors to exhibitions; (g) genes to samples; (h) species

occurrences to localities; amd (i) countries to exported commodities.

https://doi.org/10.1371/journal.pcsy.0000010.g001
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sense to conjecture that companies and proteins connect to each other more likely if they need

each other, hence because they are different/complementary, rather than similar.

Many contexts benefit from directly analyzing bipartite networks. Additionally, when a

bipartite network’s two disjoint sets of nodes represent distinct types of entities (as they do in

Fig 1), the system is also known as a two-mode network, and it can be used to generate two

one-mode networks, each containing only nodes of the same type, via the following projection:

pairs of same-type nodes that, in the original two-mode network, are connected to common

node(s) in the other layer become connected to each other in the projected one-mode network.

As with bipartite networks, analyses of one-mode projections are commonly used in multiple

fields; e.g., in bibliometrics, a bipartite network connecting scientific publications to their

authors can be projected onto a coauthorship network synthesizing scientific collaborations

[13]. Other common examples of projections of bipartite network include those mapping leg-

islative collaboration through bill cosponsorship in political science [14], gene interactions

through sample coexpression in biology [15], and bacterial interactions through sample co-

occurrence in microbial ecology [16] (see Fig 2). Actually, any matrix/network mapping the

simultaneous presence (i.e., co-occurrence) of items, organisms, or events in space and/or

time can be considered a bipartite network projection of the ideal bipartite network linking

items/organisms/events to different localities and/or times [17–19].

Table 1. Examples of bipartite networks and their applications in the real world.

Field Subfield System/application Example Reference (DOI)

Biology Biomedical bipartite networks Drug–target interaction networks 10.1093/bioinformatics/btaa157

Biology Genetics Gene–sample binary mutation matrices 10.1038/ng.3557; 10.1038/ng.3168

Biology Genetics Gene–tissue networks 10.1101/517565

Biology Molecular biology Transcription factors 10.1126/science.aam8940

Data Science Innovation Patents–technological codes networks 10.1371/journal.pone.0230107

Ecology Archeozoology Species–locality matrices 10.1016/j.jasrep.2015.02.008

Ecology Ecological networks Cleaning symbiosis 10.1098/rsbl.2006.0562

Ecology Ecological networks Dung beetle–mammal networks 10.1111/ele.13095

Ecology Ecological networks Host–microbiota networks 10.1111/1365-2656.13297

Ecology Ecological networks Host–parasite networks 10.1038/ncomms12462

Ecology Ecological networks Plant–herbivore networks 10.1371/journal.pone.0052967

Ecology Ecological networks Mutualistic networks 10.1111/j.1461-0248.2007.01061.x

Ecology Infectious disease ecology Dblα types vs. isolates 10.1002/ece3.3803

Ecology Meta-community ecology Species–locality matrices 10.1007/BF00317508

Economics E-commerce Buyers–products purchase networks 20.500.12469/2899

Economics World trade web Country–commodity networks 10.1038/srep10595

Finance Cryptocurrency Bitcoin lightning network 10.1088/1367-2630/aba062

Finance Interbank networks Exposure (borrower–lender) networks 10.1038/srep03357

Mathematics Combinatorics/graph theory/matrix theory Network enumeration 10.1016/0890-5401(89)90067-9

Physics Social/ecological/economic/financial networks Network reconstruction 10.1088/1367-2630/16/4/043022

Physics Transportation networks Bus route–bus stop networks 10.1016/j.physa.2006.10.071

Physics Transportation networks Ferry vehicle–flight networks 10.1016/j.omega.2019.102178

Social Sciences Blogger communities Users–posts networks 10.1016/j.physa.2012.06.004

Social Sciences Human behavior Listeners–music groups 10.1103/PhysRevE.72.066107

Social Sciences Contact networks Event–participation networks 10.1371/journal.pone.0171565

Social Sciences Political science Bill cosponsorship 10.2478/connections-2019.026

https://doi.org/10.1371/journal.pcsy.0000010.t001
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The ubiquity of bipartite networks and their projections has resulted in a considerable

amount of theoretical and applied knowledge. On the other hand, their vast interdisciplinary

span has prevented the convergence of knowledge into an organic corpus. One critical task

where this lack of convergence presents significant barriers is the detection of patterns in

bipartite networks [20]. While there is widespread consensus that a pattern should be under-

stood as a statistically significant structural feature that, to be identified, requires a comparison

with a null model or randomized benchmark, different research fields have developed their

own (sometimes duplicate) methods for this task, using field-specific terminology and summa-

rizing their findings in specialized reviews (e.g., in ecology [1], social [21] and computer sci-

ence [22], and complex systems [23]). For example, one widely used method is known as

“stochastic degree sequence model” in social science [21], but as a “canonical configuration

model” in statistical physics [24–26]. Despite the widespread applicability of these methods,

their strong intradisciplinary focus has hindered progress, often forcing individual fields to

rediscover methods without fully benefiting from innovations in other areas.

Fig 2. Bipartite networks and their projections. A hypothetical bipartite network connecting different ruminants to associated microorganisms (a),

and its two one-mode projections. One projection (b) connects all the microorganisms that are found together in at least one host. The other projection

(c) connects all the ruminants sharing at least one microorganism, generating a fully connected network in this example.

https://doi.org/10.1371/journal.pcsy.0000010.g002
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To confront and overcome these challenges, this review provides a comprehensive, multi-

disciplinary synthesis of available knowledge on bipartite network null-model definition and

randomization techniques, with the ultimate aim to enhance progress and prevent the wheel

from being reinvented multiple times. It is important to note that the techniques described

here serve as null models and/or randomization methods for both bipartite networks and their

unipartite projections, for the following reason. In order to identify patterns in an empirical

bipartite network, one should obviously randomize the network while preserving its bipartite

nature, and this is what the null models described here can do. Much in the same way, in order

to identify patterns in one-mode projections of a bipartite network, one should first randomize

the original bipartite graph (again preserving its bipartiteness), then generate the unipartite

projection for each of the randomized bipartite variants, and finally compare the ensemble of

these unipartite projections with the empirical unipartite projection. Indeed, randomizing a

one-mode projection directly (as if it were a genuinely unipartite network) would in general

violate its compatibility with a “parent” bipartite network. Therefore, patterns in the unipartite

projection can be effectively regarded as patterns of the orginal bipartite graph, because they

are ultimately (possibly complicated) functions of the topology of the bipartite graph and,

moreover, should “survive” the same bipartite randomization procedure that all inherently

bipartite properties undergo in order to be identified as patterns.

As a useful preliminary clarification, we note that, given the multidisciplinary character of

research on bipartite networks and their projections, there are many different patterns that

researchers may seek to detect, as well as many potential uses they may want to make of those

patterns once identified. Examples of bipartite patterns include the following: the so-called v-

motifs [3,21] (quantifying co-occurrence or common interactions for nodes in one layer,

based on their connections to the other layer), communities [27,28] (representing pairs of

densely connected sets of nodes across the two layers), nestedness [29,30] (quantifying the

degree of “triangularity” of a bipartite adjacency matrix), and the abundance of 4-cycles or

quadrangles [10,31] (while homophily in unipartite networks gives rise to many triangles,

complementarity in bipartite graphs gives rise to many quads). Examples of possible uses of

such patterns are the following: purely descriptive (characterizing and possibly classifying dif-

ferent bipartite networks in terms of their empirical properties); predictive (e.g., does nested-

ness affect network stability under species removal, and can it be used to rank nodes in terms

of the impact they would have if removed? [32]); and inferential (e.g., can 4-cycles enhance the

imputation of missing links, based on the hypothesis that two nodes are more likely to be con-

nected if their neighbors are mutually connected? [31]). In this paper, we are not focused on

any specific type of pattern or potential use of it, but instead review the methods available for

detecting any pattern in bipartite networks or their projections through comparison of an

observed network to a null model obtained via randomization.

To tackle these aims in a way that is hopefully accessible to a broad audience, we provide

conceptual illustrations and concrete examples to identify overlaps and differences between

the approaches developed in the various fields of science, limiting the use of formal notation to

specific technical sections dedicated to readers interested in the formal specifications of the

models we discuss. To keep focus and simplicity, we deal with presence/absence (0/1) Boolean

matrices only.

What are bipartite networks?

As with any network, a bipartite network is composed of a set of nodes, pairs of which may be

connected by edges. The essential feature of a bipartite network is that these nodes can be parti-

tioned into two sets such that edges exist only between these sets. This feature is clear in each
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panel of Fig 1, where edges connect nodes in the left row (e.g., panel 1, buyers) to nodes in the

right row (e.g., panel 1, purchases), but never to nodes in the same row.

A bipartite network can be represented as a graph, where nodes are drawn as dots and

edges are drawn as lines connecting them (left half of each panel in Fig 1). It can also be repre-

sented as a binary matrix where rows correspond to one set of nodes, columns correspond to

the other set of nodes, and entries contain a 1 if the row-node is connected to the column-

node (right half of each panel in Fig 1). Graph representations are often useful for visualiza-

tion, while matrix representations are more useful for formal analysis.

Whether represented as a graph or matrix, bipartite networks can be characterized by sev-

eral properties. Here, we focus on two properties that play a particularly important role in the

pattern detection methods we discuss below. First, a bipartite network can be characterized by

its density, which is the fraction of possible edges that are present. In its matrix representation,

the density is simply the proportion of filled cells (i.e., cells with entry 1). For example, the den-

sity of the bipartite network shown in Fig 1a is .66 because 6 of a possible 9 edges are present.

Second, a bipartite network can be characterized by its nodes’ degree sequences, which capture

each node’s number of connections. In its matrix representation, the degree sequences are

given by the matrix’s row and column sums. For example, the degree sequence for the row

nodes in Fig 1a is {3,1,2}, while the degree sequence for its column nodes is {2,2,2}.

The defining feature of a bipartite network compared to a general network is its partition-

ability into two sets of nodes, which are only connected in between, but not inside the sets.

However, in real-world bipartite networks, those two sets of nodes often represent distinctly

different types of entities, in which case, as we mentioned, the bipartite network is also called a

two-mode network. For example, the nodes in the bipartite network shown in Fig 2a represent

distinctly different types of entities: ruminants on the left, and microorganisms on the right. A

two-mode network can be analyzed as a bipartite network per se; however, it can also be trans-

formed into two one-mode (unipartite) networks via projection, each consisting of the nodes

of only one mode.” An edge between two nodes in a projection exists if and only if these nodes

are connected to at least one common node of the other mode in the two-mode network. For

example, Fig 2c illustrates that the cow and deer are connected in a one-mode projection

because they are both connected to the same long worm-shaped microorganism in the two-

mode network. The square matrix representation of each one-mode projection (e.g., the one

linking microorganisms occurring in the same ruminant, Fig 2b; and the one linking rumi-

nants sharing microorganisms, Fig 2c) is the product of the two-mode network’s rectangular

matrix representation with its transpose and vice versa.

Where are bipartite networks found?

One primary focus in the analysis of bipartite networks and one-mode projections is pattern

detection. Before turning to the different methods, for the sake of concreteness, we briefly

review the range of contexts where such networks and patterns are observed.

Ecology and biogeography. Employing null models of binary matrices for pattern detec-

tion has a long history in ecology [33] and became particularly important in the context of the

ongoing debate on how species interactions, particularly competition, determine the spatial

distribution of species [34–37]. In this context, the distribution of species across a set of locali-

ties is represented as a bipartite network where the species (one set of nodes) are connected to

the localities (the other set of nodes) where they are found at a given point in time. Comparing

an observed bipartite network of species location to a set of randomized versions of the same

network has allowed researchers to investigate structural patterns in both species–locality

matrices and bipartite plant–pollinator ecological networks [30,38–41]. Additionally, a
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bipartite species location network can be projected into a unipartite species colocation net-

work, where similar methods allow researchers to evaluate whether pairs of species are consis-

tently found in the same locations [1]. This topic has received a lot of interest in recent years.

In fact, it was at the center of a lively scientific debate on the possibility of inferring biotic inter-

actions (and, hence, deriving ecological networks of interacting species) from species co-

occurrence data [42,43], based on the idea that ecological interactions might play a fundamen-

tal role in determining overlapping (or segregated) species distribution patterns.

Social sciences. In the social sciences, bipartite networks are frequently used to represent

individuals’ (one set of nodes) affiliations or preferences with objects (the other set of nodes).

For example, in a sociological context, they can represent individuals’ membership in clubs

[44], while in a political science context, they can represent legislators sponsorship of bills [21].

In rating systems, individuals express preferences toward items in the other layer [45]. Limited

extensions of classical network analytic techniques make it possible to describe and analyze

patterns in social bipartite networks [46,47]; however, it is more common for social scientists

to study one-mode projections. The one-mode projection of a person–club bipartite network

yields a network of individuals connected by their club comemberships, while the one-mode

projection of a legislator–bill bipartite network yields a network of legislators connected by

their bill cosponsorships. Pattern detection methods can be employed to determine when a

dyad’s number of comemberships or cosponsorships exceeds what would be expected by

chance and, therefore, can be treated as a proxy for an unobserved relationship of interest such

as friendship or collaboration [48].

Psychology. In psychology, data capturing individuals’ responses to psychological survey

items can be represented as a bipartite network. In such a network, the respondents serve as

one set of nodes, while the items serve as the other set of nodes, with each respondent nodes

connected to each item nodes by an edge weighted with the response, often arbitrary ordinal

(Likert) values. In psychometrics, such data are frequently analyzed using a dichotomous

Rasch model to construct and score educational and psychological tests [49,50]. Estimation of

a Rasch model involves identifying patterns in the bipartite network by comparing it to a series

of randomized alternatives [51]. More recently, psychologists have also explored the use of

one-mode projections of bipartite clinical data, generating networks of symptom co-occur-

rence or comorbidity [52], which requires determining when such co-occurrence patterns

exceed what would be expected by chance and relies on methods that remain subject to debate

[53].

Economics. Bipartite networks have found broad application in economics where they

can represent products produced by countries [54–60], financial entities exposed to specific

assets [61,62], skills required by occupations [63,64], location of industries in cities [65,66],

occupations [67,68], or patent technologies [69,70]. Analysis of such data often focuses on the

one-mode projection of these networks. For example, a growing branch of research known as

“Economic Complexity” has recently focused on identifying the productive capabilities of the

various countries through the analysis of their exported products [56,57]. As in other cases,

such analysis rests on determining when patterns in countries’ exports of a goods exceed ran-

dom levels, taking into account such factors as the good’s rarity.

How are patterns detected in bipartite networks?

Detecting nonrandom patterns in bipartite networks (i.e., patterns that are not likely to be

seen by chance in a set of networks with certain properties) follows a procedure that, at least

conceptually, is fairly simple (Fig 3). However, as we will discuss extensively below, several dif-

ficulties can arise in the rigorous definition and/or implementation of the simple idea.
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First, a statistic of interest is computed from an observed bipartite network. The specific sta-

tistic depends entirely on the substantive research question. For example, in ecology, the com-

positional change among communities (β-diversity) has been quantified by a dozen of

different measures, each focusing on different aspects of change [72]. In political science, one

may explore the structure of cosponsorship networks in terms of number of bills cosponsored

by two legislators [21].

Second, a random network is generated. For that, the observed bipartite network is ran-

domized (we discuss how in section “Randomization algorithms and procedures”) in a way

Fig 3. Pattern detection in bipartite networks. Schematic example of how matrix randomization is used to detect nonrandom patterns in bipartite

networks/rectangular matrices. Black/gray cells in each matrix indicate presence of links (i.e., 1s) between the items in rows and the items in columns,

while white cells indicate the absence of links (i.e., 0s). First, the structural measure of interest (in this case, a nestedness metric, NODF [71]) is

computed on the target matrix (a). Then, a large set (ideally some hundreds or thousands) of randomized versions of the starting matrix are generated,

and the target metric is computed for each of them (b). The possible rules to be applied in the generation of the random matrices, the reasoning behind,

and the implications of choosing a particular set of rules over another, as well as the practical implementation of randomization procedures will be

described in detail in the sections. The target metric computed on the original matrix will be then compared with the distribution of the metric values

computed on the random matrices. Such comparison would permit to obtain an estimated p-value computed as the frequency of random matrices for

which the target metric is equal or higher than that of the original matrix. In some fields, and particularly in ecology [29], it is also common practice to

compute a standardized effect size (Z) as (μ –x) / σ, where μ and σ are the average and standard deviation of the target metric across the randomized

matrices, and x is the value of the metric in the original matrix. It should be noted that the use of Z values is based on the underlying assumption that

the distribution of the target metric values in the set of randomized matrices follows a normal distribution, which might not be always the case.

https://doi.org/10.1371/journal.pcsy.0000010.g003
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that preserves certain features of the original network (we discuss which ones in section

“Bipartite null models—What characteristics should be preserved”). This new, random bipar-

tite network arises from a “null model,” so called because it implements a pattern-free null

hypothesis, i.e., the pattern of interest, if present in the original network, should be nullified by

the randomization process leading to the null model. The feature being preserved while ran-

domizing the network (technically, the constraints of the null model) in fact define how a ran-

dom pattern should statistically look like in the given context. For a given situation, prior work

and experience provide an indication of the pattern(s) of interest and, consequently, also

about the corresponding null expectation. This expectation restricts the null space and the null

model has to account for these constraints.

Third, the statistic of interest is computed in the random bipartite network. The second

and third steps are performed repeatedly, yielding a distribution of the statistic of interest

observed in a set of random bipartite networks (i.e., under the null model). The set of random

bipartite networks is known as an ensemble, and each randomly generated network can be

viewed as a random sample from this ensemble.

Finally, the statistic of interest from the observed network is compared to its distribution

under the null model. Of particular interest is the proportion of times the statistic of interest

under the null model is greater than or equal to the statistic of interest from the observed net-

work. For example, observing a proportion of 0.02 would indicate that only 2% of the random

networks produced a statistic of interest that is larger than that from the observed network.

This proportion is known as a p-value and can be used in hypothesis testing concerning the

randomness of the pattern captured by the statistic. In this example, using a conventional

threshold of statistical significance, such as p< 0.05, one would reject the null hypothesis that

the pattern measured by the statistic of interest is random and would instead conclude that the

pattern is nonrandom.

Bipartite null models

As we mentioned, detecting patterns in bipartite networks involves comparing an observed

network to an ensemble of random networks. However, there are multiple ways to conceptual-

ize and realize a “random” ensemble, depending on which constraints are chosen and how

they are implemented. Consequently, one can end up in several ensembles and null models. In

this section, we focus on null model choice and describe two features of the null model that are

particularly important: which characteristics of the observed network are preserved in the

ensemble of random networks, and how this ensemble can be generated.

What characteristics should be preserved?. Bipartite null models are primarily defined

by which characteristics of the original bipartite network are preserved in the randomly gener-

ated bipartite ensemble. Note that, in principle, it is possible to imagine a null model that does

not contain any of the original network’s characteristic. In this case, one generates an ensemble

of bipartite networks, uniformly drawn from the set of all possible bipartite networks. How-

ever, for practical but also scientific reasons, it makes more sense to generate an ensemble as a

subset of bipartite networks, which contain some characteristics of the original one, e.g., the

dimension (number of nodes), the fill (density of edges), and/or one or both of the matrix mar-

gins (node degrees). In section “Choosing a null model”, we discuss in detail what sort of theo-

retical and practical considerations can guide the choice of the constraints to be enforced.

Here, we keep this discussion to a minimum, only in order to arrive at the description of the

main methods that, for a given choice of constraints, have been proposed.

First, null models can differ in the way constraints are imposed. The constraints can be

“hard,” i.e., such that, on each of the matrices of the ensemble, the values of the constrained
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quantities match the ones measured on the original network exactly. We will denote hard con-

straints also as “fixed” (and label them as F). Otherwise, constraints can be “soft,” i.e., such that

the constrained quantities in each matrix of the ensemble do not necessarily match the values

observed in the original network, but their averages over the ensemble of matrices do. For rea-

sons that will be clearer later, we may denote soft constraints also as “proportional” (and label

them as P). In statistical physics, ensembles with hard constraints are called “microcanonical,”

while ensembles with soft constraints are called “canonical” [23,25]. Importantly, canonical

and microcanonical ensembles enforcing a given constraint in a hard and soft way, respec-

tively, can asymptotically be either equivalent or inequivalent to each other, depending on the

nature of the constraint itself [73–76]. This has implications for the choice of the method, as

we discuss later on in section “Choosing a null model”. In general, all null models considered

in this review have hard constraints on the network’s dimensions, i.e., they require that each

random bipartite network in the ensemble has the same dimensions (i.e., the same numbers of

nodes of each type) as the original network. For example, if the original network’s matrix

representation has 5 rows and 10 columns, then all random networks generated under a null

model will also have 5 rows and 10 columns. On the other hand, all other constrained proper-

ties can be either hard or soft; e.g., depending on the models (see below), the network’s fill is

replicated either exactly, as a hard constraint, or on average, as a soft constraint.

Second, null models can vary in the constraints they impose on the network’s row and col-

umn marginals (i.e., the degrees of the row and column nodes). Marginals can be uncon-

strained (such that the marginals in the randomly generated networks do not necessarily

match those in the original network) or constrained, and, in the latter case, they can be

enforced either softly or hardly. Note that constraining exactly the marginal totals results in

constraining exactly also the matrix fill; analogously, constraining on average the marginal

totals results in constraining on average also the matrix fill. In section “Choosing a null

model”, we discuss how to decide which margins to preserve, given the scientific question at

hand.

Fig 4 illustrates how the combination of the two ingredients discussed above generates dif-

ferent null models, which we will denote with specific names. For example, the highly con-

strained null model described by lower-left cell in the right panel of Fig 4 (which we can

denote as “Fixed-Fixed,” or FF) requires that every random network in the ensemble has both

row and column marginals that exactly match those in the original. This null model is some-

times called the Fixed Degree Sequence Model [22] or the microcanonical version of the Bipar-

tite Configuration Model [3,30,75]. The somewhat less constrained null model in the central

matrix of the right panel of Fig 4 (which we can denote as “Proportional-Proportional,” or PP)

requires that the row and column marginals of the random networks match those in the origi-

nal only on average. This null model is sometimes called the Stochastic Degree Sequence

Model [21] or the canonical Bipartite Configuration Model [3,30,75] and relies on an ensemble

that is canonical. While many other null models are possible, these two have become the most

widely used. Other combinations, discussed in more detail below, are obtained depending on

how the column and row margins are treated: as hard constraints (“fixed,” or “microcanoni-

cal”), soft constraints (“proportional,” or “canonical”), or as unconstrained (“equiprobable”).

How are random bipartite networks generated? Two broad approaches exist for generat-

ing random bipartite networks: fill methods and swap methods. Fill methods begin with an

empty matrix with a fixed number of rows and columns (fixed number of nodes for two modes)

and incrementally add 0s and 1s as entries (edges between nodes). For example, one microcano-

nical implementation of the configuration model [77] begins with an empty matrix and has the

condition to fill a certain fixed number of 1s in each row and column. This version of the config-

uration model aims at providing a way to generate a network that satisfies the constraints of FF
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uniformly at random. We will describe various implementations of the FF model, along with

their complications in the next section. In contrast, the matrices that satisfy the constraints

described by the PP model, where the column and row sums are fixed on average, can be gener-

ated by assigning each entry M∗
ij an appropriate Bernoulli probability pij. A Bernoulli trial for

each entry gives then the decision if the entry is 1 (with probability pij) or 0 (with probability 1 –

pij). We will describe various implementations of the PP model in the next section.

Swap methods begin with a network (often an observed bipartite network) and swap the

nodes (of one mode) from two randomly chosen edges, but only when the new possible edges

do not already exist. In this case, a swap is not possible. In the matrix perspective, the algo-

rithm starts with the existing matrix and swaps so-called “checkerboards” (e.g., swapping

1 0

0 1
with

0 1

1 0
). This approach was invented by Ryser in 1957 [78]. More advanced algo-

rithms, known as Curveball algorithms, perform multiple swaps from two nodes (two rows)

simultaneously [79,80]. They were proven to be at least as efficient as the Ryser version [81]. In

practice, they perform often much more efficiently than the classical version of Ryser [82].

In the next section, we will show in detail how binary matrices can be randomized main-

taining the constraints summarized in Fig 4. That section is intended for readers interested in

getting a better understanding of the technical aspects behind matrix randomization and

could serve as a “cookbook” for a coding implementation of the various algorithms (or as a

roadmap to help navigating the many implementations that are already available in several

programming languages). Noninterested readers can comfortably skip to section 4.

Fig 4. A classification scheme of bipartite randomization algorithms, based on whether the matrix row and columns sums are preserved exactly

(Fixed, F), preserved on average (Proportional, P), or unconstrained (Equiprobable, E). Black cells in each matrix indicate presence of links (i.e., 1s)

between the items in rows and the items in columns, while white cells indicate the absence of links (i.e., 0s).

https://doi.org/10.1371/journal.pcsy.0000010.g004
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Randomization algorithms and procedures

Basic definitions and notation. We denote a binary (r, c)-matrix as M, where r is the

number of rows and c the number of columns. The size, or dimension, S of M is defined as S =

r × c. In two-mode networks, rows and columns correspond to distinct sets of real-world enti-

ties: for example, each row can be thought as representing an insect species, while each column

can be thought as representing a plant species.

The entry (or cell) Mij of matrix M can have either value 0 or 1: Mij = 1 indicates that the entity

in the i-th row ri has some kind of association with the entity in the j-th column cj (for example,

the i-th insect pollinates the j-th plant); Mij = 0 indicates that no association exists (or has been

observed) between the entities in the i-th row and j-th column. We will often refer to the 1s as

“presences,” “occurrences,” or “filled cells” (with identical meaning) and to the 0s as “absences”

or “empty cells.” The total number of occurrences (i.e., the number of 1s) in the i-th row and in

the j-th column are denoted as ri ¼
Pc

j¼1
Mij and cj ¼

Pr
i¼1

Mij, respectively. We will denote

instances where ri = 0 as “empty rows” and instances where cj = 0 as “empty columns.” Similarly,

we will denote a matrix where all Mij entries are equal to 0 an “empty matrix.” We refer to the

two sets of row and column totals as, respectively, R = {r1, . . ., rr} and C = {c1, . . ., cc}. We denote

the total number of occurrences in the matrix as N ¼
Pr

i¼1
ri ¼

Pc
j¼1

cj and matrix fill as f = N/S.

A binary matrix M defined as above is equivalent to a bipartite network. In a bipartite net-

work, we can identify two distinct sets of nodes, which correspond to the two sets of real-

world entities (e.g., plants and pollinators) identified by M’s rows and columns. Thus, the

number of elements in the first set of nodes (e.g., plants) is equal to r and the number of ele-

ments in the latter set of nodes (e.g., pollinators) is equal to c. The marginal totals of M corre-

spond to the so-called degrees of the nodes in the bipartite network; e.g., ri indicates the degree

of the i-th node in the first set of nodes (e.g., the number of pollinators associated to the i-th

plant), while cj corresponds to the degree of the j-th node in the second set of nodes (e.g., the

number of plants associated to the j-th pollinator). Each entry for which Mij = 1 corresponds

to an edge (or “link”) in the bipartite network connecting the i-th node in the first set of nodes

(e.g., a plant species) to the j-th node in the latter set (i.e., a pollinator species). Thus, N will

also correspond to the total number of edges in the bipartite network. In some scientific fields,

the matrix M is called the biadjacency matrix of the network.

We will refer to a single, randomized version of M (i.e., a new matrix obtained as the output

of a given sampling algorithm) as M* (note that, in the statistical physics literature [23–26,48],

the notation is usually the opposite, since the asterisk is used to denote the single empirical

matrix, while the randomized matrices are left without an asterisk). Each null model produces a

set {M*} of possible randomized versions of M, each of which is one possible outcome of the

method. A given null model will then define a probability distribution P(M*) (which may be

computable or not) over the set {M*}. In practice, one will use the model either to explicitly sam-

ple a sufficiently large subset of all the possible randomized matrices (and then compute

expected matrix properties as sample averages over this subset) or to compute expectation values

analytically over the entire ensemble, if P(M*) is known and sufficiently simple to work with.

The randomization algorithms we consider can preserve, in different ways, the row and/or

column sums of the original matrix M. In the procedure that we denote as F, the row and/or

column sums of the real observed matrix are preserved exactly under the randomization. In

the procedure that we denote as P, the row and/or column sums in the randomized matrices

match only on average (i.e., as an average over the generated set of randomized matrices)

those of the original matrix. Finally, in the procedure that we denote as E, the row and/or col-

umn sums of the randomized matrices are unconstrained and, hence, to a large extent inde-

pendent of those of the focal matrix.

PLOS COMPLEX SYSTEMS Pattern detection in bipartite networks

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010 October 3, 2024 12 / 34

https://doi.org/10.1371/journal.pcsy.0000010


To add more to the zoology of possible randomization algorithms, we note that some of

them apply to the row and column sums different choices of the procedures F, P, and E. For

this reason, we will describe the nature of the constraints of a given algorithm using the nota-

tion XY, where X (respectively, Y) indicates the procedure applied to the row (respectively, col-

umn) sums of the original matrix. Both X and Y can take any of the three values F, P, and E,

hence producing the 9 possible cases illustrated in Fig 4. These algorithms have been imple-

mented in multiple packages across different programming languages. To help readers navi-

gate the options, we have compiled a nonexhaustive table (that we plan to update dynamically)

listing R and Python packages and scripts implementing specific randomization procedures.

The table can be accessed at https://github.com/giovannistrona/bipartite_randomization_

review.

Unconstrained rows, Unconstrained columns (EE). Method EE is the most trivial

method out of our 9 possible ones, which requires to leave both margins of the matrix uncon-

strained. If this were the only prescription, technically the resulting ensemble would be entirely

uniform, i.e., each of the 2S Boolean matrices of dimension S would be assigned the same prob-

ability 2−S, irrespective of any property of the empirical matrix. A more informative, yet still

quite unstructured, alternative is that of leaving the two margins unconstrained (so we can still

denote the model as EE), while specifying only the overall fill f as a constraint. As for all other

properties, the total fill can be in principle enforced either as a hard constraint or as a soft one.

If the fill f is treated as a hard constraint, the resulting ensemble contains all possible
S
N
� �

matrices with fixed size S and fixed fill f = N/S each taken with the same probability. This is

sometimes called the microcanonical Bipartite Random Graph Model [3,75]. Sampling uni-

formly from this ensemble can be achieved by a variety of different approaches. In the class of

swap methods, an efficient recipe is of that of exchanging entries 0s and 1s in the initial matrix

in the following way. All entries Mij of matrix M get a different number, starting from 1 to S
(the matrix size). These numbers can be permuted uniformly by a classical random permuta-

tion algorithm to get a new ordering of the numbers, and, hence, their corresponding entries

Mij. Let, for example, be a (2,2)-matrix with entries M11 = 0, M12 = 1, M21 = 1, M22 = 1. M11,

M12, M21, M22 get the numbers 1, 2, 3, 4 in this order. We randomly permute the numbers and

get the new order 2, 4, 3, 1. Then, the new matrix M* has the following entries:

M∗
11
¼ 1; M∗

12
¼ 1; M∗

21
¼ 1; M∗

22
¼ 0. Classical random permutation algorithms come from

mixing card decks and are known as random shuffles [83]. They all have efficient running

times. Note, that the number of all possible Boolean matrices of this class is S
N
� �

. EE sampling

can be also performed using filling approaches. There, we consider an empty (r, c)-matrix M*,
with M∗

ij ¼ 0 for all i and j. Our goal is to fill that matrix with N 1s and (S–N) 0s. These values

are taken from the initial matrix M. We give all entries M∗
ij a different number from 1 to S. N

times we use one after another a classical random number generator to first choose a number

uniformly at random and then delete it from the set of numbers. The corresponding entries

M∗
ij of all chosen numbers are set to 1. The remaining entries to 0. Classical random number

generators are efficient and can be found, for example, in [84].

If the fill is enforced as a soft constraint, the resulting ensemble contains again all the possi-

ble 2S Boolean matrices of dimension S, however, with the requirement that the expected fill

equals the desired (empirical) value f = N/S. This is sometimes called the canonical Bipartite

Random Graph Model [3,75]. The probability distribution over matrices in the ensemble is

obtained by maximizing the Shannon–Gibbs entropy [25] under the average constraint on the

overall fill, and the result is a model where all the entries of the matrix are i.i.d. and take value

M∗
ij ¼ 1 with probability p = f and value M∗

ij ¼ 0 with probability 1 − p.
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One important aspect to take into account is that all the above procedures might generate

empty rows and/or columns. This might or might not be desirable/acceptable. If not, there are

ad hoc potential solutions. In the filling approach that starts from an empty matrix, assuming

N� (r + c) one might first assign a 1 to each entry M∗
ix 8 i 2 ½1; r�, with x being a random inte-

ger in [1 . . . c], and then to each entry M∗
yj 8 j 2 ½1; c�, with y being a random integer in [1 . . .

r]. In sparse matrices where N < (r + c), then a different approach would be needed. Assuming

that, for example, r > c and N� r, one might first convert to 1 all the M∗
ij entries where i = j and

then attribute one presence in the each entry M∗
ix8 i 2 ½c; r� and x being a random integer in

[1 . . . c]. We note, however, that these approaches are superseded by the following models,

which, by placing soft (resp. hard) constraints on the row and/or column sums, largely (resp.

completely) reduce the probability of having zero margins in the randomized matrices, given

that the empirical margins are typically nonzero (unless there are isolated nodes in the data).

Unconstrained rows and Fixed columns, or vice versa (EF or FE). In these models,

either the r row sums R = {r1, . . ., rr} (for FE) or the c column sums C = {c1, . . ., cc} (for EF) are

treated as hard constraints, while the other margin is left unconstrained. For EF, this means

that each randomized matrix M* generated by the null model is such that
Pr

i¼1
M∗

ij ¼ cj (for

j = 1, c), where cj denotes the empirical value of the column sum measured in the data. For FE,

each randomized matrix M* is such that
Pc

j¼1
M∗

ij ¼ ri (for i = 1, r), where ri denotes the

empirical row sum. In the jargon of physics, when the rectangular matrix represents the adja-

cency matrix of a bipartite network, both models are examples of the microcanonical Bipartite

Partial Configuration Model (BiPCM) [48,75], because the constraint is the degree of each

node (“configuration model”) but it is enforced “partially,” i.e., on only one of the two layers.

As for the EE case, the FE (and the analogous EF) can be easily and efficiently implemented

using different approaches. Conceptually, FE requires sampling uniformly all the (
Yr

i¼1
ric)

matrices with given R (similarly, EF requires sampling uniformly all the (
Yc

i¼1
cjr) matrices

with given C). Practically, this can be achieved by randomizing the positions of the 0s and 1s in

each individual row (column) of M. If only the position of presences and absences within a

row (column) is randomized but not their respective numbers, it is intuitive that R in the ran-

domized matrix M* will remain the same as in M. A simple algorithmic implementation of FE
might consist of generating r random lists each including ri 1s and c–ri 0s and then combining

those lists into a matrix M*. Similarly, for EF, one might generate c random lists each including

cj 1s and r–cj 0s and then combine those lists into a matrix M*.
As in the case of EE, such approaches might result in generating empty columns or rows. If

this is not desirable, one can implement additional steps/constraints in the randomization algo-

rithms. For example, for FE, one might preassign a presence to the j-th position to a randomly

selected row 8 j 2[1, c]. Then, the algorithm will be implemented as above, but presences and

absences will be randomly placed in each row conditionally to the preassignments (with the prob-

ability distribution of edge weights in MM0 being given by the hypergeometric distribution [85]).

Constrained rows and columns (FF). This null model constrains both margins R and C
in a hard fashion (usually taking their values from the empirical matrix): each randomized

matrix M* is such that
Pr

i¼1
M∗

ij ¼ cj (for j = 1, c) and
Pc

j¼1
M∗

ij ¼ ri (for i = 1, r), where cj and

ri denote the empirical values of the jth column sum and ith row sum observed in the data,

respectively. Let us denote any such matrix by M* (R, C). Ideally, this model assigns the same

probability to all such matrices, for fixed R and C. In the jargon of physics, this model is

known under the name of microcanonical Bipartite Configuration Model (BiCM) [48,75] as it

samples uniformly all bipartite networks with the same hard degree sequences R and C. This is

one of the null models that has received most of the attention from different fields, as it is
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relevant not only for a variety of practical applications but also for important theoretical ques-

tions in mathematics. Indeed, in this case, even enumerating how many matrices with given

margins R and C is an open problem, and only asymptotic expressions are known in certain

regimes [75,86,87]. For this reason, it has been the object of a large number of studies that have

produced a large corpus of methods that is constantly growing. As anticipated, such methods

can be roughly classified into those that obtain a random matrix from scratch, i.e., by filling up

at random an empty matrix, and those that randomize an existing matrix. We will first cover

filling strategies and then move to randomization algorithms.

In principle, in the filling approach, any extant matrix M* (R, C) of size S = r × c with row

and column totals equal, respectively, to R and C can be obtained by starting with an empty r ×
c matrix where each entry is initially M∗

ij ¼ 0 and then converting progressively entries to 1

until the marginal totals matches exactly the expected R and C. We emphasized the term

“extant” as it is not for granted that an r × c matrix with margins matching arbitrary integer

numbers R = {r1, . . ., rr} and C = {c1, . . ., cc} exists. In other words, in general, a matrix M* (R,

C) does not exist for all values of R and C. In the language of graph theory, the bipartite degree

sequences R and C must be graphic, i.e., realizable by at least one bipartite graph. Intuitively,

an obvious necessary condition for the existence of the matrix is that
Pc

i¼1
ci ¼

Pr
j¼1

rj (the

total number N of 1s in the matrix is the same if computed by first summing over columns, and

then over rows, or the other way around). However, such necessary condition does not ensure

the existence of M* (R, C), i.e., it is not sufficient. Indeed, a necessary and sufficient condition

for the existence of M* (R, C) is provided by the classic Gale–Ryser theorem [78,88]. If we fol-

low the simple example provided by Gale [88], we can imagine that our matrix maps the place-

ment of r families going to a picnic across c buses. There, rj is the total number of members in

the j-th family, and ci is the total number of places available in the i-th bus. The theorem

answers the question, “When is it possible to seat all passengers in such a way that no two mem-

bers of the same family are in the same bus?” Such a question is equivalent to asking whether it

is theoretically possible to generate at least one M* (R, C) matrix. The theorem provides the fol-

lowing necessary and sufficient condition for the existence of a solution to the problem:

Xk

j¼1

rj �
Xk

j¼1

sj

for all integers k, where sj = {ci|ci� j}, ci = 0 for i > c, and ri = 0 for i > r and with ci and rj being

listed in decreasing order [78,88].

The existence of the M* (R, C) matrix does not imply that generating it is an easy task; e.g.,

if we start from an empty matrix M* and then progressively modify randomly selected entries

to 1 while checking at each step that the observed marginal totals do not exceed the desired R
and C, we will most likely end up in a situation where any further addition of a 1 to M∗

ij will

lead to exceed either ri or cj. However, the sufficient condition provided by the Gale–Ryser

problem offers also an efficient way to generate a matrix M* (R, C). In the example of the fami-

lies and buses, if a solution exists, it will be always possible to succeed in placing all members

of the different families in different buses (i.e., avoiding that two members of the same family

are in the same bus) by allocating first all the members of the largest family to the buses having

the largest number of available seats, then all the members of the second largest family to the

buses having most free seats after the allocation of the first family, then all the members of the

third family to the buses having most free seats after the allocation of the first and second fam-

ily, and so on. This procedure will always end with all persons seated, all members of each fam-

ily seated in a different bus, and no empty seats left in any bus. It is clear, however, that
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although this procedure permits to generate one M* (R, C) matrix, it will always generate the

same matrix, while it is clear that we need to succeed in generating different matrices (without

getting stuck in the allocation of 1s to the matrix entries before reaching the target R and C)

and, crucially, to sample them with uniform probability from the universe of all possible M*
(R, C) matrices (whose number, as we mentioned, is not even known in full generality).

Various approaches have been proposed for this purpose, but most of them either have

problems in terms of computational efficiency or sample M* (R, C) matrices with biased (i.e.,

nonuniform) probability (or both) [89–91]. The “knight tour” algorithm proposed by Sander-

son [92] and its variations [93] try to fill progressively the matrix choosing cells randomly one

at a time and “backtracking,” i.e., returning to a previous state, when the procedure gets stuck,

that is when it is no longer possible to fill a cell without exceeding R or C. Besides being prone

to biases [93], these methods are impractical for even moderately sized matrices as the algo-

rithm might spend a considerable (and hardly predictable) amount of time for backtracking

[93].

More recently, Chen and colleagues [94] have proposed an approach based on “sequential

importance sampling,” which generates the matrix by sampling columns progressively. As

noted by the authors, if the position of the cj 1s of the jth column is determined uniformly at

random, it becomes extremely difficult to sample a valid column, which makes the process

exceedingly computationally intensive. To overcome this issue, they proposed to generate the

columns using the conditional-Poisson sampling method [95,96], which, in a simplification,

increases the chances to allocate a 1 in the ith position of the target jth column if ri is large.

This choice dramatically improves the computational efficiency of the method but prevents it

from sampling matrices exactly from the uniform distribution, with the extent of the bias

depending on both the actual setup of the conditional-Poisson sampling (i.e., the degree to

which ri affects the probability of the ith element in the jth column to be a 1) and the distribu-

tion of values in R and C.

The alternative approach is that of using Markov Chain procedures where small incremen-

tal changes are applied to the target matrix. Those changes progressively bring the matrix far

from its initial status. Ideally, if enough small changes are applied to the starting matrix, the

probability of sampling any of all M* (R, C) matrices will converge to a uniform distribution.

Clearly, the changes will need to ensure that the marginal totals of the initial matrix, R and C,

remain unaltered. The easiest—and most classical—way to achieve this goal consists in pro-

gressively selecting “checkerboards” and swapping their diagonal elements [93,97]. A checker-

board is a specific pattern in the matrix, involving two row nodes (say, i and z) and two

column nodes (say, j and k), where M∗
ij ¼ 0; M∗

ik ¼ 1; M∗
zj ¼ 1, and M∗

zk ¼ 0. It is intuitive that

if we modify the matrix by “swapping” the diagonal elements of the checkerboard, i.e., by set-

ting M∗
ij ¼ 1; M∗

ik ¼ 0; M∗
zj ¼ 0, and M∗

zk ¼ 1, then the row (ri and rz) and column (cj and ck)
totals will not change, leaving R and C unaltered. Note that the rows and columns forming the

checkerboard do not need to be contiguous in the matrix. The move that is iteratively applied

to the initial configuration in order to generate a family of randomized variants has been popu-

larized with the name of local rewiring algorithm (LRA) in the literature concerning unipartite

networks [98–101].

One obvious drawback of this procedure is that each swap will produce a small modifica-

tion in the matrix so that a very large number of swaps will be required to generate “sufficiently

random” matrices (i.e., matrices sampled uniformly from all possible ones). How many swaps

ensure that each randomized matrix is sampled uniformly from the universe of possible M*
(R, C) matrices is not clear. In practical implementations in the ecological literature, the num-

ber of swaps used has been one or more orders of magnitude larger than the number of cells in
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the matrix; e.g., a common choice has been that of using 30 to 50k swaps for matrices having

size smaller than 100 × 100 cells [102–104]. However, performing many swaps does not ensure

unbiasedness of the algorithm; e.g., a rule of thumb for the LRA on unipartite networks

(hence, in a setting different from the one considered here) recommends the number of swaps

to be larger than 4N, i.e., four times the total number of 1s in the network [99,100]. Yet, when

the margins of the matrix (i.e., the node degrees) are very heterogeneous (i.e., when the second

moment of the empirical degree distribution is larger than a certain threshold), it has been

shown rigorously that, irrespective of the number of swaps being executed, the LRA remains

biased as it fails to sample the desired matrices uniformly [89–91], and no computationally fea-

sible corrections to this bias have been proposed. In particular, uniformity holds (at least

approximately) only when the degrees are such that kmax �
�k2=ð�kÞ2 is much smaller than the

total number of nodes—with kmax being the largest degree in the network, �kbeing the average

degree, and �k2 being the second moment [90]. In order to restore uniformity, at each iteration,

the attempted “rewiring move” must be accepted with a probability that depends on some

complicated property of the current network configuration. Since this property must be recal-

culated at each step, the resulting algorithm is extremely time consuming. Unfortunately, on

real-world networks, the matrix margins (node degrees) are typically very heterogeneously dis-

tributed, and their second moment exceeds the aforementioned threshold, which implies that

the LRA is prone to bias in most practical situations [26,90].

Even in the “weakly heterogeneous” regime for which uniformity can be in principle

ensured, the computational costs involved in the execution of many swaps and checks to pro-

duce a single “sufficiently randomized” matrix should be multiplied by the (large) number of

random matrices that are needed to perform robust tests when comparing the empirical net-

work with the randomized ones. To partially reduce these costs, two modified approaches

have proposed, i.e., the so-called “sequential” and “independent” swap algorithms

[93,105,106]. In the former class of algorithms, a predefined randomly chosen number of

swaps (e.g., 30k) is applied to the original matrix to generate a single random matrix. In the lat-

ter class, an initial, large number of swaps is applied to the starting matrix to generate the first

random matrix, while each subsequent random matrix is generated by applying a smaller

number of swaps to the last generated matrix in the sequence. Clearly, the second approach is

less computationally intensive when there is a need for generating a large set of random matri-

ces. Still, biases in hypothesis testing might emerge from the potential non-independence of

the random matrices in the sequence.

Recently, the computational challenges associated with classical swap algorithms have been

partially overcome by more efficient approaches where the swaps are replaced by trades of ele-

ments between adjacency lists representing the set of neighbors of a focal node in the network

representation of M* [51,79,107]. As in the original example [79], we can consider a matrix

M* where the r rows correspond to a set of kids, and the c columns correspond to a set of dif-

ferent baseball cards. Each cell M∗
ij in the matrix indicates whether (1) or not (0) the i-th kid

owns the j-th card. Then, we can imagine that the kids meet during class break to trade cards

and that trades happen according to the following two rules: (i) cards have identical value,

meaning that one card is traded with exactly one card; and (ii) kids are not interested in own-

ing duplicated cards, thus a trade cannot take place if leading to such a situation. Now, a situa-

tion where, in compliance with the above rules, a kid trades a Babe Ruth with a Willie Mays

will correspond to a typical swap in the matrix. The number of cards owned by the two kids

will remain the same, as well as the number of owners for the two cards. However, nothing

prevents the two kids from trading more than one card. If we call {a} and {b} the sets of cards

owned, respectively, by the first (ka) and the second kid (kb), we can identify the set of cards

PLOS COMPLEX SYSTEMS Pattern detection in bipartite networks

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010 October 3, 2024 17 / 34

https://doi.org/10.1371/journal.pcsy.0000010


that ka can potentially trade with kb as ab = {b}–{a}, and the set of cards that kb can potentially

trade with ka as ba = {a}–{b}. The two kids will be in a position to make a trade where ka gives

n cards sampled from ab to kb while receiving from kb and identical number of cards sampled

from ba, with n being an integer varying between 0 and the minimum of ab and ba sizes. Intui-

tively, as in the case of the single card trade, this exchange will result in no changes to the total

number of cards, respectively, owned by ka and kb, nor in the number of kids owning any of

the traded cards.

The algorithmic implementation of such multiple card trades consist in first converting the

matrix in a set of adjacency lists mapping the position of 1s in each column for each row (or

the position of 1s in each row for each column). In the example above, such lists will include

the set of cards owned by each kid (or the set of kids owning a certain card). Then, at each

step, two lists will be drawn at random, and a trade of size n (with n being an integer randomly

sampled with uniform probability between 0 and the maximum number of tradable cards) will

be performed. There are two distinct cases where a step will result in no changes in the under-

lying M*, namely, when the maximum number of tradable cards is 0 (i.e., when ab or ba or

both are empty) or when n is randomly assigned a value of 0. A formal proof that the Curveball

algorithm is unbiased, i.e., it samples uniformly from the universe of all possible M* (R, C)

matrices, has been provided [81]. However, it has also been shown that, while the algorithm

remains unbiased even if “no-trade shuffles” are excluded from the Markov Chain (i.e., if n is

sampled between 1 and the maximum number of tradable cards when the latter is� 1), the

sampling is no longer guaranteed to be uniform if “no-trade row pairs,” i.e., all the list compar-

isons where there are no tradable cards, are excluded.

By modifying larger portions of M* at each step, the Curveball and other similar algorithms

[51,107] speeds up dramatically the Markov Chain convergence with respect to older swap

algorithms, i.e., they reach a virtually uniform sampling of M* (R, C) matrices in a much

smaller number of steps [79–82]. However, both for the “classical” and the more recent

approaches, how fast (i.e., in how many steps) the selected algorithm converges toward the

uniform sampling of random matrices for a given M* (R, C) is an open question.

Unconstrained rows and Proportionally constrained columns, or vice versa (EP, PE).

We now come to models where one margin of the matrix is left unconstrained (E), while the

other margin is fixed in a soft/proportional way (P). In statistical physics, these models are

known as canonical Bipartite Partial Configuration Models (BiPCMs) [48,75]. These models

are naturally sampled in the filling approach, starting from an empty matrix and sampling

each of its S entries as independent Bernoulli trials, each entry M∗
ij being given value M∗

ij ¼ 1

with an appropriate success probability pij, and value M∗
ij ¼ 0 with the complementary proba-

bility 1 –pij. This means that the distribution P(M*) over randomized matrices factorizes in

this case as independent trials over different pair of nodes. If the angular brackets h�i denote

expected values over this distribution, then clearly hM∗
iji ¼ pij.

In the EP case, the probability pij should be chosen in such a way that the expected column

sums hCi = {hc1i, hc2i,. . .,hcci} equal the corresponding empirical values C = {c1, c2, . . ., cc}.
This means cj ¼

Pr
i¼1
hM∗

iji ¼
Pr

i¼1
pij for all j = 1, c. It is straightforward to show that a solu-

tion for pij, which realizes the requirement, is pij = cj /r; this solution coincides with the one

producing the maximum-entropy probability P(M*), given the observed margin C
[3,45,48,75].

Similarly, in the PE case, the probability pij is chosen in such a way that the expected row

sums hRi = {hr1i, hr2i,. . .,hrri} equal the corresponding empirical values R = {r1, r2, . . ., rr}. This

means ri ¼
Pc

j¼1
hM∗

iji ¼
Pc

j¼1
pij for all i = 1, r. The solution, which again coincides with the

maximum-entropy one given the observed margin R, is pij = ri/c [3,45,48,75].
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So, both the EP and the PE models can be easily sampled in the filling approach via inde-

pendent Bernoulli trials, with success probabilities immediately calculated from the empirical

margins (C or R, respectively). In each case, the success probability is proportional to the value

of the margin in the corresponding row or column (hence the term “proportional”).

Proportionally constrained rows and columns (PP). This model samples in principle

each possible binary matrix M* with the same dimensions (r and c) as the empirical matrix but

assigns different probabilities to different matrices in such a way that the mean values of both

row and column sums over the ensemble match the empirical ones. In other words, the proba-

bilities given by different matrices are such that hcji ¼
Pr

i¼1
hM∗

iji ¼ cj (for j = 1, c) and hrii ¼
Pc

j¼1
hM∗

iji ¼ ri (for i = 1, r), where cj and ri denote the empirical values of the jth column sum

and ith row sum observed in the data, respectively, while the angular brackets denote average

values of the ensemble probability P(M*), as above. In the jargon of physics, this model is

known under the name of canonical Bipartite Configuration Model [3,75].

As for the EP or PE models, in the PP case, most randomization methods generate an

instance M* via a filling approach, by looking for an appropriate probability pij for the event

M∗
ij ¼ 1 (so that M∗

ij with probability 1 –pij; note also that the probability distribution of edge

weights in the projected one-mode matrix MM0 is given by the Poisson-binomial distribution,

where the parameters are derived from pij [85]). This means that the probability P(M*) is again

assumed to be factorizable into independent Bernoulli trials, each with appropriate success

probability pij, over distinct pairs of nodes. This assumption is correct, as we discuss below;

however, in the PP model, finding the explicit expression for pij given the observed values of R
and C is not as easy as in the simpler EP and PE cases. Indeed, different methods differ in how

they define pij. Note that valid values of pij are subject to at least three constraints. First,

because they must be well-defined probabilities, they need to take values in 0� pij� 1 for all i,
j. Second, since the expected value of M∗

ij is hM∗
iji ¼ pij, enforcing the average row constraints

requires that
Pc

j¼1
pij ¼ ri. Third, enforcing the average column constraints similarly requires

Pr
i¼1

pij ¼ cj. In principle, within these minimum constraints, many different choices for pij
are still possible. Three prototypical choices are discussed below.

First, defining pij = ricj/N directly matches the last two constraints (whence, again, the term

“proportional”) but does not necessarily ensure the first one. Indeed, it is possible to show

that, for empirical values of ri and cj that are too broadly distributed over rows and/or columns,

respectively, one gets pij > 1. This creates a situation akin to the one we discussed in section

“Randomization algorithms and procedures-Constrained rows and columns (FF)” in the FF
case: If the second moment of the degree distribution of row and column nodes is too large,

then it becomes much harder to impose double constraints on the margins of the matrix.

Unfortunately, real-world bipartite networks are typically so heterogeneous that this problem

cannot be avoided. If out-of-bound values of pij are truncated, so that the values are forced to

remain between 0 and 1 [1], then the first constraint is respected, but one loses the last two

constraints and the average margins no longer match the empirical values.

Second, fitted linear models can be used to define pij as the value of M∗
ij predicted as a func-

tion of ri and cj [21]. We note that these Bernoulli trial approaches generate random matrices

that do not retain the original marginal total distribution. This is because these trials follow a

Poisson distribution that is nearly symmetrical at larger marginal values while being positively

skewed at small values, by this causing higher simulated node numbers for comparatively low

row or column total values.

Third, entropy maximization can be carried out explicitly to find the exact values of pij real-

izing the joint row and column constraints [48,75]. The result is given in implicit form,
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through the parametric expression pij = xiyj/(1 + xiyj), where the r + c parameters (x1, . . ., xr)
and (y1, . . ., yc) are the (provably unique [87,108]) nonnegative solution to the following set of

r + c coupled nonlinear equations:

ri ¼
Xc

j¼1

xiyj
1þ xiyj

; i ¼ 1; r ð1Þ

cj ¼
Xr

i¼1

xiyj
1þ xiyj

; j ¼ 1; c: ð2Þ

Efficient algorithms to solve the above equations exist [108]. It is possible to show that, for

sufficiently narrow distributions of ri and cj over rows and columns, respectively, the solution

to the above equation becomes approximately pij� xiyj� ricj/N, consistently with the expres-

sion discussed above. Unfortunately, as we mentioned, typical real-world distributions of the

matrix margins are instead too broad for this approximation to hold. Therefore, the correct

procedure to implement the PP model remains the one of solving Eqs 1 and 2 and using the

resulting, exact values of pij. A recent review [85] found that the Bipartite Configuration Model

is the fastest and most accurate method for computing pij.
Recently, [109] proposed another PP randomization model that does not rely on probabil-

ity-based cell filling. Rather than randomizing whether a cell is filled or not, this approach first

randomly sets the target values for ri and ci in M* and then fills the cells of M* to achieve these

target values.

Constrained rows and proportionally constrained columns, or vice versa (FP and PF).

Algorithms where the proportional constraints are applied only to rows (or columns) while

the marginal totals of columns (or rows) are kept fixed to C (or R), i.e., the PF (or FP) case, are

a theoretical possibility but have not received much attention and have been rarely used in

real-world analyses. Some straightforward implementations have, however, been proposed [1].

For the FP model, one might start with an empty matrix and then add presences to rows one

row at a time. For each i-th row, the algorithm reiterates the procedure of sampling a random j
with probability cj/N and setting M∗

ij to 1 until the total number of presences in the target row

matches the desired value (ri). For PF, for each j-th column, the algorithm reiterates the proce-

dure of sampling a random i with probability ri/N and setting M∗
ij to 1 until the total number of

presences in the target column matches the desired value (cj). The procedure can sometimes

end up in matrices with either empty rows or columns [1]. Adjustments similar to those dis-

cussed for the EF and FE cases can be used to tackle this potential issue.

Choosing a null model

In the previous sections, we have listed the most common constraints/rules that can be taken

into account to randomize a bipartite matrix, and we have described how such rules can be

implemented into dedicated algorithms. However, we have not discussed a fundamental ques-

tion that, even if not in itself central to the technical details of the randomization procedures,

constitutes the main reason for which these are developed. Why—or under which circum-

stances—one should choose one specific set of constraints over another? This is an important

question because, as Fig 5 illustrates, the choice of randomization constraints can impact the

patterns that are detected.

Each choice could be equally valid and useful to answer specific questions. In fact, identify-

ing such questions within a specific research context is an essential and dire challenge in itself,

which should be regarded by researchers as a first—possibly the most important—step to be
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completed before even starting to think about the actual implementation of randomization

routines. Unfortunately, this is not often the case, and sometimes researchers make a fairly

blind use of null models, without a clear reasoning behind the choice of the enforced con-

straints. Overseeing the importance of linking solid questions about processes to null model

pattern analysis might lead to a difficult or biased interpretation of the results. In the worst

possible situation, one could even take advantage of the fact that different, sometimes contrast-

ing, results can arise when processing the same data using different randomization strategies

(Fig 5) and adjust procedural choices to steer the results in the desired direction.

In this section, we discuss different methodological considerations, both theoretical and

practical in nature, that are relevant to choosing how to generate the random networks and

which characteristics to preserve.

Analytical versus numerical simplicity. We start with some practical considerations

about the choice of null models based on their simplicity. Before delving into this, we should,

however, make a general warning: Choosing a null model based solely on simplicity, e.g.,

computational efficiency or mathematical convenience, is of course not recommended and

not scientifically acceptable in general. This is because the choice of the null model should rely

primarily on the soundness of the underlying null hypothesis, leading to the identification of

the margins to be preserved and of whether they are enforced as soft or hard constraints.

Generally, one expects that the statistical power of matrix randomization techniques

increases as more matrix features are controlled [85]. This implies that the most constrained

Fig 5. Effect of different randomization constraints on pattern detection. Example of how applying different constraints to matrix randomization

can lead to contrasting resulst in pattern detection. In this example, we apply the same pattern detection workflow as described in Fig 3. Black/gray cells

in each matrix indicate presence of links (i.e., 1s) between the items in rows and the items in columns, while white cells indicate the absence of links

(i.e., 0s). First, the structural measure of interest (in this case, a nestedness metric, NODF [71]) is computed on the target matrix (a). Then, two sets of

1,000 randomized versions of the starting matrix are generated using, alternatively, an algorithm that generates random matrices with the same exact

row and column totals of the starting matrix (FF), and an algorithm that generates random matrices having the same size, shape, and fraction of

occupied cells of the starting matrix, but with varying (equiprobable) row and column totals (EE). The target metric is computed for each random

matrix in the two sets (b, d). Then, the starting NODF value is compared against the two distribution of “null” values in the two sets of randomized

matrices. In this example, the starting NODF does not depart significantly from the null expectation from the set of matrices generated with the FF
algorithm (Z = 1; p = 0.186). Conversely, the pattern is identified as particularly strong when compared with the metrics measured in the random

matrices generated with the EE algorithm (Z = 6; p = 0).

https://doi.org/10.1371/journal.pcsy.0000010.g005
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models (FF or PP), which are also the most complex ones, may represent the most statistically

robust choice (provided there is no concurrent risk of overfitting). In practice, implementing

these models is feasible when a sufficient number of bipartite networks can be generated in a

practical amount of time. When the FF/PP models are computationally impractical, the next

less complicated choices are the FE/PE or the EF/EP models, because these at least fully control

for one dimension of the network and can be computed one row (or one column) at a time.

The choice between the FE/PE and EF/EP models depends on a substantive and context-

dependent judgment concerning whether it is more important to control the effects of the

rows or columns. An alternative approach would be that of exploring simultaneously a wide

range of possible combinations of constraints and then placing and discussing the results

within the multidimensional null modeling space identified by such constraints [20]. On the

one hand, this might provide a more comprehensive information on network structure, but at

the cost of a more challenging interpretation and increased computational demand.

As another dimension along which simplicity considerations apply, generating and/or

handling a null model entails different levels of numerical and mathematical complexity,

depending on whether constraints are enforced in a hard or soft manner. Basically, hard con-

straints are easier to work with via numerical sampling of randomized matrices (using one of

the various algorithms discussed in the previous sections), while they are very difficult to be

implemented in an analytically tractable way. This is because the hardness of the constraints

makes the entries of the randomized matrices dependent on each other, since such entries

must always sum up to the same value. For this reason, filling algorithms generally do not

lead to unbiased (uniform) sampling, and the reliable schemes are indeed based on iterative

randomizations of the original matrix. As an extreme example of the unfeasibility of analyti-

cal approaches under hard constraints, we recall that in the doubly constrained (FF) case, the

(uniform) probability distribution over configurations cannot even be calculated in the gen-

eral case, because it requires the solution of an unsolved combinatorial enumeration

problem.

By contrast, soft constraints lead to independent entries in the randomized matrices, even

in the doubly constrained (PP) case [75]. This makes the probability distribution for the entire

matrix factorize as independent (but not identically distributed) Bernoulli trials over distinct

matrix entries, so that filling algorithms becomes exact, once the correct success probability pij
is determined for each entry i, j. Moreover, these probabilities coincide with the expected val-

ues hM∗
iji of each matrix entry. Therefore, using these (exact) expectation values, the averages

of many quantities of interest across randomized versions of the orginal network can be calcu-

lated analytically, without even having to sample matrices from the distribution [24,26]. This is

a considerable speed-up compared with the generation of several random matrices and averag-

ing of the quantities of interest across the sample. However, the soft and hard enforcements of

the same constraint(s) lead to nonequivalent null models as soon as (at least) one of the two

margins is constrained [75,87], which implies that one cannot use the two implementations

interchangeably.

As a final consideration, we note that, once the above choices (which constraints and

whether hard or soft) are made, it is of course reasonable to implement the selected null model

in the simplest and/or more efficient way. Indeed, for a given randomization goal, there might

be tradeoffs between the computational demand of a given algorithm, its reliability (e.g., in

terms of sampling uniformly from the universe of possible matrix configurations), and its easi-

ness of implementation and integration in different analytical workflows; e.g., the recently

introduced fastball algorithm [107] has a theoretical time complexity O(n) time, while the ear-

lier curveball algorithm [79] has a theoretical time complexity of O(n log n), but the practical
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running times of both algorithms depend on the programming language used to implement

them. Since both algorithms permit sampling random matrices without biases, the choice of

using one or another method depends on practical considerations related, among the others,

to the actual amount of data to be processed and the coding integration with other analyses. If

one has to randomize a few, small matrices, then using a simpler but less efficient code imple-

mentation might be a reasonable choice, while for larger analyses, the performance advantage

might outweigh the potential additional effort in coding integration.

Constrained versus unconstrained margins. Conceptually, the most important choice is

realizing which constraints to apply to the randomized matrices, or, in other words, which

margins to constrain. This consideration revolves around the nature of the features the

researcher wishes to control, and how those features translate into specific matrix properties.

A typical example is provided by the analysis of rectangular matrices representing the presence

or absence of a set of plant or animal species across a set of localities (often islands or, in any

case, isolated habitat patches). In that context, the marginal totals could be linked to different

kind of ecological information. Specifically, for a matrix where rows correspond to species and

columns correspond to islands, the column totals, representing species richness across locali-

ties, might be linked to various features affecting local species diversity. Some of these might

be obvious and/or known, such as island size, while others, such as habitat heterogeneity or

resource availability, or particular biogeographical features, might be less intuitive or not

known. Still, one might assume that the effect of all of these features combined is actually

reflected in column totals. Similarly, one could consider row totals, i.e., the prevalence of spe-

cies across the islands, as a proxy for various features of the species, such as their ability to dis-

perse and colonize islands and the generalism or specialization in their needs for resources.

Based on these considerations, one should then decide whether or not to preserve the mar-

ginal totals in the randomized matrices. To understand the choice, we need to make a clear dis-

tinction between “patterns,” i.e., the different forms of organization of the various entities,

which are represented in the matrix and that are captured by ad hoc metrics (such as nested-

ness [38,110]), and the “processes” that led to the emergence of such patterns. Research ques-

tions usually target both patterns and processes, i.e., one could be interested in measuring

whether and to what extent species are distributed across islands in a certain, nonrandom pat-

tern, and what are the causes (i.e., processes) that led to such a pattern. However, these two

objectives are not independent of one another. On the contrary, they are two sides of the same

coin.

To assess the relevance of a given process, one should ideally identify some way to isolate

the effect of that process on the observed pattern from all the other processes that might be

also involved in the emergence of the pattern. The null model approach, which is central to

this review, offers one straightforward way to achieve this objective. In principle, one could

explore the importance of a given process by comparing the target pattern in the original

matrix with the same pattern in a large set of randomized matrices obtained by preserving all

the features that might affect the emergence of the the observed pattern, with the exclusion of

those features potentially emerging from the process of interest. But this also means that the

assessed magnitude of the pattern could vary depending on the identity of the target process.

Thus, a matrix might show a strong structural pattern when examined with a focus on a given

process, but no structure in a different context [20].

Patterns in a matrix can be often described and measured by single values; e.g., one could

measure the “temperature” (the original metric used to describe nestedness [38]) of a given

matrix and then use that only information to assess whether or not the matrix is structured, by

placing the observed temperature within the theoretical range of possible values (0 to 100).

However, as already emphasized multiple times within this review, such an approach might
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not be particularly enlightening. Specifically, most metrics of matrix structural patterns are not

independent from matrix structural properties such as matrix size, shape, fill, and marginal

totals. Therefore, the metrics’ raw values are a simultaneous result of the processes that deter-

mined the matrix properties and of other processes. Such other processes are usually central to

interesting and meaningful questions, and standardizing the target metrics by controlling for

matrix structural patterns is an obvious way to try isolating them. For example, by comparing

the structure of a target species–island matrix with that of randomized versions having the

same marginal totals, one might be able to assess the structuring importance of some ecologi-

cal processes other than those which determine local species richness and species prevalence

across islands. Similarly, one could constrain selected structural properties to explore specific

hypotheses or to answer specific questions; e.g., one could test the importance of local species

richness in determining nestedness by comparing the target matrix with randomized versions

obtained by constraining row marginal totals only (i.e., species prevalence across sites in our

species–island matrix).

To make a different example, we might consider a matrix mapping the authorship of scien-

tific publications (with authors in rows and publications in columns). We can imagine a situa-

tion where one would be interested in quantifying the overall tendency for collaboration

between authors. It is obvious that the frequency of coauthorship would naturally increase

with the overall productivity of the scientific community represented by the matrix. However,

it might be also reasonable to assume that the overall productivity is both a driver and a result

of collaborations. Thus, it might be meaningful to assess the degree of coauthorship both tak-

ing or not taking into account the overall community productivity. One could also advance

hypotheses on how the individual productivity of the different authors might affect the overall

intensity of coauthorships (quantified by row totals in the matrix); i.e., we might expect that a

situation where all the authors have similar productivity would lead to different coauthorship

patterns/levels compared to a situation where a few authors are highly productive while most

authors are associated with few publications. A similar reasoning applies to the number of

authors per publication (quantified by column totals in the matrix). Intuitively, we might

expect different coauthorship patterns in a situation where most publications tend to have a

similar number of coauthors compared to a situation where we have a few articles signed by

many authors and most papers authored by few scientists. Again, depending on their actual

goals, the investigators might decide to either constrain or not row and/or column totals when

generating the randomized matrices to be used as a frame of reference to assess the target com-

munity’s tendency for scientific collaboration.

Another example could be that of exploring the determinants of modularity in a network

mapping listeners’ musical preferences. There, one could be interested in exploring how gener-

alism in listeners’ tastes affects network modularity. In that context, the observed degree of

modularity should be compared to that in randomized versions of the initial network having

identical number of listeners per musical genre, but unconstrained number of genres per

listener.

In general, enforcing one margin of the matrix implements the idea that, in order to charac-

terize the null behavior of the system’s properties, it is essential to control for the empirically

observed heterogeneity of the nodes of the corresponding layer of the bipartite network. So, in

short, choosing which margins to constrain boils down to choosing whether it is appropriate

to control for the heterogeneity of nodes in one layer, in the other layer, or in both layers.

Soft versus hard constraints. Once the formal choice of the constraints is made, the next

important choice is whether these constraints should be enforced in a hard (F) or soft (P) way.

In the literature, there is a tendency of regarding the two alternatives as two basically equiva-

lent routes to the implementation of the same null model. This is true “asymptotically” (i.e.,
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when the size of the matrix becomes larger and larger), but only for certain constraints: e.g.,

for a single constraint that is global in nature (e.g., the total number of 1s in the matrix, or

equivalently the matrix fill f as in the EE case), the probability distribution of matrices in the

soft (canonical) ensemble concentrates around the smaller set of matrices that realize the con-

straints in the hard (microcanonical) ensemble [75]. In information theory, this property is

known as asymptotic equipartition property (AEP) [111], while in statistical physics, it is

known as asymtptotic equivalence between canonical and microcanonical ensembles, or, more

compactly, ensemble equivalence [25,75].

While attractive and convenient, the property of ensemble equivalence breaks down as

soon as the enforced constraints are local, i.e., node-specific in nature [25,73–75]. This deep

and somewhat surprising result means that, for the cases of interest here, the FF and PP null

models are not asymptotically equivalent to each other, and the same goes for FE versus PE
and for EF versus EP. To some researchers, the breakdown of ensemble equivalence might

seem primarily a theoretical curiosity with abstract significance and no operational implica-

tions. However, this is not the case: It is possible to prove rigorously that if the probability of

configurations with soft constraints does not concentrate around those with hard constraints

(a notion known as “measure nonequivalence”), then there must necessarily exist properties of

the system that have different expected values under the two ensembles (which is known as

“macrostate nonequivalence”) [112]. This means that the two null models will produce differ-

ent reference values for certain properties and may, therefore, single out different patterns

when such reference values are compared with the empirical ones observed in the data. As a

notable example for bipartite plant–pollinator networks in ecology, it has been found that (i)

certain definitions of the nestedness property mentioned above indeed display different

expected values in the FF and PP null models and (ii) even more surprisingly, alternative defi-

nitions of nestedness turn out to be mutually positively correlated in the canonical ensemble

and negatively correlated in the microcanonical one [113]. This means that the empirical net-

work might appear as “positively nested” under one null model and “negatively nested” under

the other null model. This seemingly puzzling conclusion is actually a direct consequence of

the fact that, since the nestedness is strongly influenced by the values of the margins of the

matrix (as we have already noted above), it can obey very different statistical distributions

when the margins are fixed exactly and when they are allowed to fluctuate.

An important consequence of ensemble nonequivalence for models with constrained mar-

gins is that the choice between PP and FF null models (as similarly between PE and FE, or

between EP and EF) should come from a guiding principle, i.e., an assumption about what

specification is theoretically more appropriate, and cannot be left to mathematical or numeri-

cal convenience [25,26,74]. Clearly, such guiding principle should focus primarily on the fol-

lowing question: In its “null behavior,” i.e., in absence of the higher-order patterns we are

looking for in the data, do we expect the system to be equally represented by alternative config-

urations where the margins chosen as constraints are kept fixed exactly, or only on average? In

other words, do we expect the constraints to fluctuate around their mean under the null

hypothesis? As we exemplify below, there are arguments in favor of choosing hard constraints,

and other arguments in favor of choosing soft constraints. Finally, it is possible to resort to

model selection to make a choice in absence of a prior guiding principle.

A theoretical guiding principle in favor of enforcing constraints in a hard manner is the

2-fold confidence that (i) the experimentally measured values of the constraints themselves are

error-free (so that the empirical values coincide with the true values), and (ii) the same system,

under the null hypothesis of absence of higher-order structural patterns, would retain exactly

the same values for the constraints. Indeed, if one is confident that both hypotheses are true

for the specific system at hand, it would make no sense to let the values of the constraints
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themselves fluctuate, because in that way, the null model would explore matrix configurations

that neither the real network nor its randomized variants are expected to exhibit [74,75]. Since

the statistical power of matrix randomization techniques generally increases as the constraints

are enforced in a stricter way [85], one might argue that, under the two hypotheses above, it is

important to enforce the constraints in a hard way.

In the other side of the same coin, one finds a principled argument in favor of enforcing

constraints in a soft manner. Indeed, if one has reasons to assume that, as in virtually all exper-

imental sciences, the observed network data are affected by error or noise, one has to conclude

that the empirical values of the constraints are different from (albeit hopefully close to) the cor-

responding true values that one would observe in absence of noise; e.g., if some associations

between plants and pollinators in an ecological networks are not observed because of poor

sampling, or if spurious associations are incorrectly interpreted as observed, the number of 1s

along the rows or columns of the empirical rectangular matrix might be smaller or larger than

the true value. In such a situation, enforcing constraints in a hard manner would paradoxically

give, in the null model, zero probability to the “true” configuration and to all configurations

with the same margins. By contrast, enforcing constraints in a soft way would instead let the

null model capture the true configuration and give it only a slightly smaller probability (if the

errors in the data are small) with respect to the configurations sampled under hard constraints

[26,74,75]. The same would happen for all other configurations where the values of the con-

straints are close to, even if not necessarily equal to, the empirically observed values. In the eco-

logical context, this observation has led to the consideration that, due to their intrinsic

variability, real-world bipartite networks might be inherently understood as realizations of a

process described by soft constraints [41].

Finally, if there is no theoretical prior expectation available about the presence or absence

of noise in the empirical values of the constraints, one might argue that the decision between

hard and soft constraints should be based on posterior evidence, i.e., on which of the two null

models achieves the best fit to the data. The state of the art in statistical model selection, which

is based on (variations of) the minimum description length principle [114], identifies the best

model as the one that achieves the best combination of accuracy and parsimony: Among mod-

els with the same complexity, it should be the model with maximum likelihood; however, for

models with different complexity (e.g., different numbers of parameters, or different uses of

the same number of parameters), it should be the model with maximum difference between

likelihood and complexity. Model complexity is, therefore, a penalizing term to be subtracted

from the likelihood, to reduce the risk of overfitting, i.e., greedily achieving higher likelihood

via the introduction of too many parameters that, however, may end up fitting a particular,

contingent realization of the randomness, rather than the structural information behind it

[114]. Recent results have indicated that, given the same constraints, “hard” (microcanonical)

null models have always higher likelihood, but also higher complexity, than the corresponding

“soft” (canonical) null models [76]. The net result, i.e., the best-scoring model in terms of real-

ized difference between likelihood and complexity, is surprisingly found to depend crucially

on the numerical values of the constraints: In particular, for bipartite matrices with given row

and/or column margins, this means that whether the best fitting model is the “fixed” (FE, EF,

or FF) or the corresponding “proportional” (PE, EP, or PP, respectively) variant of the null

model depends on the specific observed values of the marginals defining the model themselves

[76]. In this perspective, one should therefore simply input the empirical margins into a for-

mula that calculates the model score (likelihood minus complexity) and identify the best-scor-

ing null model accordingly.
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Concluding remarks

In this review, we have provided readers from different fields (such as, but not limited to,

mathematics, physics, social sciences, and ecology) with the conceptual tools needed to prop-

erly embark in matrix randomization exercises. Our hope is that it could also help unifying

future theoretical and applied research and avoid the accumulation of further confusion due to

duplicated efforts from different disciplines. However, there are various, additional outstand-

ing issues and open questions that we could not discuss here but which we deem essential

mentioning.

In most practical situations, and especially when referring to the natural world, detecting

the existence of a link between two nodes (e.g., by observing a pollinator’s visit to a flower or

by detecting the presence of a parasite on a host) is much easier than quantifying the strength

of the underlying association (e.g., the actual importance of the pollinator for the target plant,

or the prevalence of the parasite species in the target host’s population). Furthermore, different

quantities could often be attributed to the same 0/1 link, depending on the specific process

that the target interaction represents; e.g., binary links connecting pollinators to plants might

be associated to quantitative measures of pollinator preference but also of pollination efficiency

[115]. As a consequence, there is a disproportion of studies—and tools—on binary matrices

compared to quantitative ones.

Nevertheless, although presence–absence matrices can be used to represent many, different

entities, 0s and 1s cannot capture all the nuances and complexity, which permeate the real

world. Now, despite the challenges mentioned above, also thanks to novel tools and technolo-

gies, quantitative matrices are becoming increasingly available in many fields, and there is a

growing recognition of the fact that weighting interactions might reveal different structural

patterns from those identified after translating the same data into 0/1 links [116]. The analysis

of structural patterns in quantitative matrices might also require the use of randomization

techniques. However, identifying a well-defined set of criteria and constraints to be applied to

the randomization procedures for quantitative matrices is not straightforward and present

many more possible cases than those identified for binary matrices (as in the classification

scheme proposed in Fig 4). Since quantitative matrices underlie a binary structure (since each

cell can be identified as either occupied or not), one could ideally perform randomizations by

applying the same principles and techniques developed for 0/1 matrices. However, in doing

that, one should also decide whether to apply random changes to the individual values within

each cell or to preserve the original values while randomizing their position within the matrix,

or to combine the two approaches. This opens up an extremely wide spectrum of possibilities,

which becomes even wider when one starts thinking at possible alternative criteria and rules to

modify (or not) the cell values [117]. Remarkably, some of the approaches described here have

already been straightforwardly extended to weighted bipartite networks, both in abstract mod-

els [75] and in applications to, e.g., financial [61,62], economic [118,119], rating [45], and eco-

logical [41] systems.

Another obvious limitation of presence–absence or, more in general, of rectangular matri-

ces is that they can only capture a single feature of the system they are representing. That is to

say, a rectangular matrix representing species occurrences across localities cannot provide any

information on species and localities going beyond those we can directly derive from matrix

structure; e.g., the matrix can tell us whether a given location has a high species richness, or

whether a species is rare (clearly with specific reference to the set of localities included in the

matrix). But it cannot tell us anything more about other “exogenous” features of species and

localities. However, there are many possible contexts where such features not captured by the

matrix itself could be relevant in the context of pattern detection. Such features might be used
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to define additional, external constraints. In addition to “endogenous” criteria for randomiza-

tion looking at specific network/matrix properties, we might consider also “exogenous” crite-

ria based on properties of the entities represented in the matrix, which cannot be inferred by

the matrix itself, but which can be made available by additional datasets. These can be, for

example, additional data matrices with information relating to the rows or columns of the tar-

get matrix. This kind of information might be absolute, which is a simple covariate or attribute

of an individual component, or relative, which is a measure relating the component to other

components. Considering again the species per locality matrix example, one could associate

covariate vectors representing individual traits (body size, geographic range) to species, as well

as relative measures such as the phylogenetic relationship of each species to all others. For

sites, there might be physical covariates (soil nutrients, island area), but also relative measures

such as the pairwise distances between all possible pairs of locations. The problem is particu-

larly compelling in ecology, where it has led to the development of a few statistical approaches

trying to improve pattern detection in species per site matrices by pairing them to additional

information, incorporating, e.g., species functional traits and/or environmental characteristics

of the sites [120]. Although the implementation of exogenous constraints into “typical” ran-

domization strategies might appear more as a conceptual challenge that one could tackle in

practice by simply adding a few more lines to extant algorithms, the issue might be much more

delicate. In fact, the additional constraints could modify fundamental properties of robust ran-

domization techniques and lead to unexpected (and hardly detectable) biases. This calls for a

more in-depth and formally structured investigation of the problem to identify potential

extensions of extant, robust algorithms ideally capable of preserving the desired qualities of

their original counterparts while accommodating extra rules dictated by features external to

the target matrix. In this review, we focused on a set of different approaches to generate matri-

ces under different constraints, such as that of ensuring that the randomized matrices gener-

ated by the selected approach have some predefined marginal totals. Such constraints, in

principle, should permit a user’s need to replicate the potential effects of real-world or hypo-

thetical processes on matrix structure; e.g., by constraining column totals when applying a ran-

domization algorithm to a species × locality matrix, one would generate random matrices

where species richness in each locality matches that of the initial matrix. In turn, that would

ideally make it possible to compare the structure of the starting matrix with that of the ran-

domized matrices while controlling for all the processes affecting local species richness. How-

ever, depending on the research questions, the actual study setting and the nature of the data

under investigation, the choice of which structural properties of the matrix to be controlled for

in the randomization process might be not so obvious and, possibly, biased by subjectivity.

Additionally, one might be interested in exploring a gradient of assumptions and multiple sce-

narios. In such a context, a potential solution is that of comparing the target matrix not just

with a specific set of null matrices obtained using a specific algorithm but, instead, with multi-

ple sets of null matrices covering a larger—ideally continuous—portion of the null space

entailed by different, specific combinations of constraint; e.g., in the ecological context, an

algorithm has been proposed [20] to explore thoroughly the null space delimited by the 9 dif-

ferent combinations of constraints we focused on in this review (see Fig 4). Such an algorithm

can produce a “bidimensional landscape” of significance and effect size, in contrast with the

typical single significance and effect size values provided by the standard null model analysis

focusing on a specific set of constraints. The landscapes of significance/effect size offer a more

comprehensive and less subjective representation of matrix structural patterns, by showing

how the intensity and significance of such patterns vary under a continuous range of different

hypotheses. Similarly, we have mentioned various theoretical guiding principles aiding the

choice of whether constraints should be enforced in a hard or soft manner (the two choices
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leading in general to different statistical conclusions [26,30]). In absence of a clear preference

for any of these guiding principles, the choice can be left to posterior evidence by selecting the

best-scoring null model in terms of the optimal combination of accuracy and parsimony [76].

While many open questions remain regarding the randomization of matrices and the detec-

tion of patterns in bipartite networks, we hope this review lays the groundwork for future

research on these topics. Two directions for future research are particularly pressing. First, to

facilitate researchers’ use of these methods, it will be important to develop a standardized

library of efficient implementations of each of these randomization methods. Second, to

inform the selection of randomization methods, it will be important to systematically compare

the circumstances under which each method is most appropriate, and specifically when differ-

ent methods may be more or less able to detect patterns.
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