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Abstract

Rectangular association matrices with binary (0/1) entries are a common data structure in
many research fields. Examples include ecology, economics, mathematics, physics, psycho-
metrics, and others. Because their columns and rows are associated to distinct entities,
these matrices can be equivalently expressed as bipartite networks that, in turn, can be pro-
jected onto pairs of unipartite networks. A variety of diversity statistics and network metrics
can be used to quantify patterns in these matrices and networks. But, to be defined as such,
what should these patterns be compared to? In all of these disciplines, researchers have rec-
ognized the necessity of comparing an empirical matrix to a benchmark ensemble of ‘null’
matrices created by randomizing certain elements of the original data. This common need
has nevertheless promoted the independent development of methodologies by researchers
who come from different backgrounds and use different terminology. Here, we provide a mul-
tidisciplinary review of randomization techniques and null models for matrices representing
binary, bipartite networks. We aim at translating concepts from different technical domains to
a common language that is accessible to a broad scientific audience. Specifically, after briefly
reviewing examples of binary matrix structures encountered across different fields, we intro-
duce the major approaches and strategies for randomizing these matrices. We then explore
the details of and performance of specific techniques and discuss their limitations and
computational challenges. In particular, we focus on the conceptual importance and imple-
mentation of structural constraints on the randomization, such as preserving row and/or col-
umns sums of the original matrix in each of the randomized matrices. Our review serves both
as a guide for empiricists in different disciplines, as well as a reference point for researchers
working on theoretical and methodological developments in matrix randomization methods.
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Introduction

What do ecological metacommunities, biotic interactions, gene mutations, international trade,
public transportation, musical preferences, and organized group events have in common?
They all represent systems that we can conveniently synthesize and investigate as bipartite net-
works [1-7], i.e., networks with nodes of two types, and connections only appearing between
nodes of different type. These graphs provide information about the presence or absence of
relationships between two entities and/or of the strength of these relationships. Accordingly,
numerous examples of application of bipartite networks can be found across multiple research
fields such as anthropology, biology, ecology, economics, engineering, finance, logistics, man-
agement, mathematics, physics, and social sciences (see Fig 1 and Table 1). Indeed, some have
argued that “any complex network [i.e., system] may be viewed as a bipartite graph” [8]. More-
over, various “nominally” unipartite networks (i.e., networks whose nodes are per se not sepa-
rated into two or more distinct sets) have been recently found to display a close-to-bipartite
organization, a situation that is understood to arise when most links in the network connect
complementary, rather than similar, nodes [9,10]. Indeed, the principle of homophily, which
is the one explaining the increased abundance of links between similar nodes in unipartite
graphs (and implying that nodes of the same type are tightly interconnected), is not the only
possible determinant of connections. The principle of complementarity, stating that comple-
mentary nodes connect synergistically when they “need” each other in order to carry out some
functionality, predicts that nodes of the same type are not mutually connected in complemen-
tary-driven networks, therefore giving rise to bipartite- or multipartite-like structural features.
Examples of networks strongly shaped by complementarity are protein—protein interaction
networks [10], production networks [11], and some semantic networks [12]. Indeed, it makes
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Fig 1. Bipartite networks are ubiquitous in the real world. Examples of systems that can be represented by bipartite networks (left) and their
corresponding binary matrix representation (right). Black/gray cells in each matrix indicate presence of links (i.e., 1s) between the items in rows and the
items in columns, while white cells indicate the absence of links (i.e., 0s). The networks link, respectively: (a) buyers to purchases; (b) ruminants to
associated microbiota; (c) plants to pollinators; (d) authors to articles; (e) listeners to songs; (f) visitors to exhibitions; (g) genes to samples; (h) species
occurrences to localities; amd (i) countries to exported commodities.

https://doi.org/10.1371/journal.pcsy.0000010.9001
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Table 1. Examples of bipartite networks and their applications in the real world.

Field Subfield System/application Example Reference (DOI)
Biology Biomedical bipartite networks Drug-target interaction networks 10.1093/bioinformatics/btaal57
Biology Genetics Gene-sample binary mutation matrices 10.1038/ng.3557; 10.1038/ng.3168
Biology Genetics Gene-tissue networks 10.1101/517565

Biology Molecular biology Transcription factors 10.1126/science.aam8940

Data Science Innovation Patents—technological codes networks 10.1371/journal.pone.0230107
Ecology Archeozoology Species—locality matrices 10.1016/j.jasrep.2015.02.008
Ecology Ecological networks Cleaning symbiosis 10.1098/rsb1.2006.0562

Ecology Ecological networks Dung beetle-mammal networks 10.1111/ele.13095

Ecology Ecological networks Host-microbiota networks 10.1111/1365-2656.13297
Ecology Ecological networks Host-parasite networks 10.1038/ncomms12462

Ecology Ecological networks Plant-herbivore networks 10.1371/journal.pone.0052967
Ecology Ecological networks Mutualistic networks 10.1111/j.1461-0248.2007.01061.x
Ecology Infectious disease ecology Dbl types vs. isolates 10.1002/ece3.3803

Ecology Meta-community ecology Species-locality matrices 10.1007/BF00317508
Economics E-commerce Buyers-products purchase networks 20.500.12469/2899

Economics World trade web Country-commodity networks 10.1038/srep10595

Finance Cryptocurrency Bitcoin lightning network 10.1088/1367-2630/aba062
Finance Interbank networks Exposure (borrower-lender) networks 10.1038/srep03357
Mathematics Combinatorics/graph theory/matrix theory Network enumeration 10.1016/0890-5401(89)90067-9
Physics Social/ecological/economic/financial networks Network reconstruction 10.1088/1367-2630/16/4/043022
Physics Transportation networks Bus route-bus stop networks 10.1016/j.physa.2006.10.071
Physics Transportation networks Ferry vehicle-flight networks 10.1016/j.0mega.2019.102178
Social Sciences Blogger communities Users—posts networks 10.1016/j.physa.2012.06.004
Social Sciences Human behavior Listeners—-music groups 10.1103/PhysRevE.72.066107
Social Sciences Contact networks Event-participation networks 10.1371/journal.pone.0171565
Social Sciences Political science Bill cosponsorship 10.2478/connections-2019.026

https://doi.org/10.1371/journal.pcsy.0000010.t001

sense to conjecture that companies and proteins connect to each other more likely if they need
each other, hence because they are different/complementary, rather than similar.

Many contexts benefit from directly analyzing bipartite networks. Additionally, when a
bipartite network’s two disjoint sets of nodes represent distinct types of entities (as they do in
Fig 1), the system is also known as a two-mode network, and it can be used to generate two
one-mode networks, each containing only nodes of the same type, via the following projection:
pairs of same-type nodes that, in the original two-mode network, are connected to common
node(s) in the other layer become connected to each other in the projected one-mode network.
As with bipartite networks, analyses of one-mode projections are commonly used in multiple
fields; e.g., in bibliometrics, a bipartite network connecting scientific publications to their
authors can be projected onto a coauthorship network synthesizing scientific collaborations
[13]. Other common examples of projections of bipartite network include those mapping leg-
islative collaboration through bill cosponsorship in political science [14], gene interactions
through sample coexpression in biology [15], and bacterial interactions through sample co-
occurrence in microbial ecology [16] (see Fig 2). Actually, any matrix/network mapping the
simultaneous presence (i.e., co-occurrence) of items, organisms, or events in space and/or
time can be considered a bipartite network projection of the ideal bipartite network linking
items/organisms/events to different localities and/or times [17-19].
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Fig 2. Bipartite networks and their projections. A hypothetical bipartite network connecting different ruminants to associated microorganisms (a),
and its two one-mode projections. One projection (b) connects all the microorganisms that are found together in at least one host. The other projection
(c) connects all the ruminants sharing at least one microorganism, generating a fully connected network in this example.

https://doi.org/10.1371/journal.pcsy.0000010.g002

The ubiquity of bipartite networks and their projections has resulted in a considerable
amount of theoretical and applied knowledge. On the other hand, their vast interdisciplinary
span has prevented the convergence of knowledge into an organic corpus. One critical task
where this lack of convergence presents significant barriers is the detection of patterns in
bipartite networks [20]. While there is widespread consensus that a pattern should be under-
stood as a statistically significant structural feature that, to be identified, requires a comparison
with a null model or randomized benchmark, different research fields have developed their
own (sometimes duplicate) methods for this task, using field-specific terminology and summa-
rizing their findings in specialized reviews (e.g., in ecology [1], social [21] and computer sci-
ence [22], and complex systems [23]). For example, one widely used method is known as
“stochastic degree sequence model” in social science [21], but as a “canonical configuration
model” in statistical physics [24-26]. Despite the widespread applicability of these methods,
their strong intradisciplinary focus has hindered progress, often forcing individual fields to
rediscover methods without fully benefiting from innovations in other areas.
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To confront and overcome these challenges, this review provides a comprehensive, multi-
disciplinary synthesis of available knowledge on bipartite network null-model definition and
randomization techniques, with the ultimate aim to enhance progress and prevent the wheel
from being reinvented multiple times. It is important to note that the techniques described
here serve as null models and/or randomization methods for both bipartite networks and their
unipartite projections, for the following reason. In order to identify patterns in an empirical
bipartite network, one should obviously randomize the network while preserving its bipartite
nature, and this is what the null models described here can do. Much in the same way, in order
to identify patterns in one-mode projections of a bipartite network, one should first randomize
the original bipartite graph (again preserving its bipartiteness), then generate the unipartite
projection for each of the randomized bipartite variants, and finally compare the ensemble of
these unipartite projections with the empirical unipartite projection. Indeed, randomizing a
one-mode projection directly (as if it were a genuinely unipartite network) would in general
violate its compatibility with a “parent” bipartite network. Therefore, patterns in the unipartite
projection can be effectively regarded as patterns of the orginal bipartite graph, because they
are ultimately (possibly complicated) functions of the topology of the bipartite graph and,
moreover, should “survive” the same bipartite randomization procedure that all inherently
bipartite properties undergo in order to be identified as patterns.

As a useful preliminary clarification, we note that, given the multidisciplinary character of
research on bipartite networks and their projections, there are many different patterns that
researchers may seek to detect, as well as many potential uses they may want to make of those
patterns once identified. Examples of bipartite patterns include the following: the so-called v-
motifs [3,21] (quantifying co-occurrence or common interactions for nodes in one layer,
based on their connections to the other layer), communities [27,28] (representing pairs of
densely connected sets of nodes across the two layers), nestedness [29,30] (quantifying the
degree of “triangularity” of a bipartite adjacency matrix), and the abundance of 4-cycles or
quadrangles [10,31] (while homophily in unipartite networks gives rise to many triangles,
complementarity in bipartite graphs gives rise to many quads). Examples of possible uses of
such patterns are the following: purely descriptive (characterizing and possibly classifying dif-
ferent bipartite networks in terms of their empirical properties); predictive (e.g., does nested-
ness affect network stability under species removal, and can it be used to rank nodes in terms
of the impact they would have if removed? [32]); and inferential (e.g., can 4-cycles enhance the
imputation of missing links, based on the hypothesis that two nodes are more likely to be con-
nected if their neighbors are mutually connected? [31]). In this paper, we are not focused on
any specific type of pattern or potential use of it, but instead review the methods available for
detecting any pattern in bipartite networks or their projections through comparison of an
observed network to a null model obtained via randomization.

To tackle these aims in a way that is hopefully accessible to a broad audience, we provide
conceptual illustrations and concrete examples to identify overlaps and differences between
the approaches developed in the various fields of science, limiting the use of formal notation to
specific technical sections dedicated to readers interested in the formal specifications of the
models we discuss. To keep focus and simplicity, we deal with presence/absence (0/1) Boolean
matrices only.

What are bipartite networks?

As with any network, a bipartite network is composed of a set of nodes, pairs of which may be
connected by edges. The essential feature of a bipartite network is that these nodes can be parti-
tioned into two sets such that edges exist only between these sets. This feature is clear in each
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panel of Fig 1, where edges connect nodes in the left row (e.g., panel 1, buyers) to nodes in the
right row (e.g., panel 1, purchases), but never to nodes in the same row.

A bipartite network can be represented as a graph, where nodes are drawn as dots and
edges are drawn as lines connecting them (left half of each panel in Fig 1). It can also be repre-
sented as a binary matrix where rows correspond to one set of nodes, columns correspond to
the other set of nodes, and entries contain a 1 if the row-node is connected to the column-
node (right half of each panel in Fig 1). Graph representations are often useful for visualiza-
tion, while matrix representations are more useful for formal analysis.

Whether represented as a graph or matrix, bipartite networks can be characterized by sev-
eral properties. Here, we focus on two properties that play a particularly important role in the
pattern detection methods we discuss below. First, a bipartite network can be characterized by
its density, which is the fraction of possible edges that are present. In its matrix representation,
the density is simply the proportion of filled cells (i.e., cells with entry 1). For example, the den-
sity of the bipartite network shown in Fig 1a is .66 because 6 of a possible 9 edges are present.
Second, a bipartite network can be characterized by its nodes’ degree sequences, which capture
each node’s number of connections. In its matrix representation, the degree sequences are
given by the matrix’s row and column sums. For example, the degree sequence for the row
nodes in Fig 1a is {3,1,2}, while the degree sequence for its column nodes is {2,2,2}.

The defining feature of a bipartite network compared to a general network is its partition-
ability into two sets of nodes, which are only connected in between, but not inside the sets.
However, in real-world bipartite networks, those two sets of nodes often represent distinctly
different types of entities, in which case, as we mentioned, the bipartite network is also called a
two-mode network. For example, the nodes in the bipartite network shown in Fig 2a represent
distinctly different types of entities: ruminants on the left, and microorganisms on the right. A
two-mode network can be analyzed as a bipartite network per se; however, it can also be trans-
formed into two one-mode (unipartite) networks via projection, each consisting of the nodes
of only one mode.” An edge between two nodes in a projection exists if and only if these nodes
are connected to at least one common node of the other mode in the two-mode network. For
example, Fig 2c illustrates that the cow and deer are connected in a one-mode projection
because they are both connected to the same long worm-shaped microorganism in the two-
mode network. The square matrix representation of each one-mode projection (e.g., the one
linking microorganisms occurring in the same ruminant, Fig 2b; and the one linking rumi-
nants sharing microorganisms, Fig 2¢) is the product of the two-mode network’s rectangular
matrix representation with its transpose and vice versa.

Where are bipartite networks found?

One primary focus in the analysis of bipartite networks and one-mode projections is pattern
detection. Before turning to the different methods, for the sake of concreteness, we briefly
review the range of contexts where such networks and patterns are observed.

Ecology and biogeography. Employing null models of binary matrices for pattern detec-
tion has a long history in ecology [33] and became particularly important in the context of the
ongoing debate on how species interactions, particularly competition, determine the spatial
distribution of species [34-37]. In this context, the distribution of species across a set of locali-
ties is represented as a bipartite network where the species (one set of nodes) are connected to
the localities (the other set of nodes) where they are found at a given point in time. Comparing
an observed bipartite network of species location to a set of randomized versions of the same
network has allowed researchers to investigate structural patterns in both species-locality
matrices and bipartite plant-pollinator ecological networks [30,38-41]. Additionally, a
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bipartite species location network can be projected into a unipartite species colocation net-
work, where similar methods allow researchers to evaluate whether pairs of species are consis-
tently found in the same locations [1]. This topic has received a lot of interest in recent years.
In fact, it was at the center of a lively scientific debate on the possibility of inferring biotic inter-
actions (and, hence, deriving ecological networks of interacting species) from species co-
occurrence data [42,43], based on the idea that ecological interactions might play a fundamen-
tal role in determining overlapping (or segregated) species distribution patterns.

Social sciences. In the social sciences, bipartite networks are frequently used to represent
individuals’ (one set of nodes) affiliations or preferences with objects (the other set of nodes).
For example, in a sociological context, they can represent individuals’ membership in clubs
[44], while in a political science context, they can represent legislators sponsorship of bills [21].
In rating systems, individuals express preferences toward items in the other layer [45]. Limited
extensions of classical network analytic techniques make it possible to describe and analyze
patterns in social bipartite networks [46,47]; however, it is more common for social scientists
to study one-mode projections. The one-mode projection of a person-club bipartite network
yields a network of individuals connected by their club comemberships, while the one-mode
projection of a legislator-bill bipartite network yields a network of legislators connected by
their bill cosponsorships. Pattern detection methods can be employed to determine when a
dyad’s number of comemberships or cosponsorships exceeds what would be expected by
chance and, therefore, can be treated as a proxy for an unobserved relationship of interest such
as friendship or collaboration [48].

Psychology. In psychology, data capturing individuals’ responses to psychological survey
items can be represented as a bipartite network. In such a network, the respondents serve as
one set of nodes, while the items serve as the other set of nodes, with each respondent nodes
connected to each item nodes by an edge weighted with the response, often arbitrary ordinal
(Likert) values. In psychometrics, such data are frequently analyzed using a dichotomous
Rasch model to construct and score educational and psychological tests [49,50]. Estimation of
a Rasch model involves identifying patterns in the bipartite network by comparing it to a series
of randomized alternatives [51]. More recently, psychologists have also explored the use of
one-mode projections of bipartite clinical data, generating networks of symptom co-occur-
rence or comorbidity [52], which requires determining when such co-occurrence patterns
exceed what would be expected by chance and relies on methods that remain subject to debate
[53].

Economics. Bipartite networks have found broad application in economics where they
can represent products produced by countries [54-60], financial entities exposed to specific
assets [61,62], skills required by occupations [63,64], location of industries in cities [65,66],
occupations [67,68], or patent technologies [69,70]. Analysis of such data often focuses on the
one-mode projection of these networks. For example, a growing branch of research known as
“Economic Complexity” has recently focused on identifying the productive capabilities of the
various countries through the analysis of their exported products [56,57]. As in other cases,
such analysis rests on determining when patterns in countries’ exports of a goods exceed ran-
dom levels, taking into account such factors as the good’s rarity.

How are patterns detected in bipartite networks?

Detecting nonrandom patterns in bipartite networks (i.e., patterns that are not likely to be
seen by chance in a set of networks with certain properties) follows a procedure that, at least
conceptually, is fairly simple (Fig 3). However, as we will discuss extensively below, several dif-
ficulties can arise in the rigorous definition and/or implementation of the simple idea.
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Fig 3. Pattern detection in bipartite networks. Schematic example of how matrix randomization is used to detect nonrandom patterns in bipartite
networks/rectangular matrices. Black/gray cells in each matrix indicate presence of links (i.e., Ls) between the items in rows and the items in columns,
while white cells indicate the absence of links (i.e., 0s). First, the structural measure of interest (in this case, a nestedness metric, NODF [71]) is
computed on the target matrix (a). Then, a large set (ideally some hundreds or thousands) of randomized versions of the starting matrix are generated,
and the target metric is computed for each of them (b). The possible rules to be applied in the generation of the random matrices, the reasoning behind,
and the implications of choosing a particular set of rules over another, as well as the practical implementation of randomization procedures will be
described in detail in the sections. The target metric computed on the original matrix will be then compared with the distribution of the metric values
computed on the random matrices. Such comparison would permit to obtain an estimated p-value computed as the frequency of random matrices for
which the target metric is equal or higher than that of the original matrix. In some fields, and particularly in ecology [29], it is also common practice to
compute a standardized effect size (Z) as (u -x) / 0, where y and o are the average and standard deviation of the target metric across the randomized
matrices, and x is the value of the metric in the original matrix. It should be noted that the use of Z values is based on the underlying assumption that
the distribution of the target metric values in the set of randomized matrices follows a normal distribution, which might not be always the case.

https://doi.org/10.1371/journal.pcsy.0000010.g003

First, a statistic of interest is computed from an observed bipartite network. The specific sta-
tistic depends entirely on the substantive research question. For example, in ecology, the com-
positional change among communities (f-diversity) has been quantified by a dozen of
different measures, each focusing on different aspects of change [72]. In political science, one
may explore the structure of cosponsorship networks in terms of number of bills cosponsored
by two legislators [21].

Second, a random network is generated. For that, the observed bipartite network is ran-
domized (we discuss how in section “Randomization algorithms and procedures”) in a way
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that preserves certain features of the original network (we discuss which ones in section
“Bipartite null models—What characteristics should be preserved”). This new, random bipar-
tite network arises from a “null model,” so called because it implements a pattern-free null
hypothesis, i.e., the pattern of interest, if present in the original network, should be nullified by
the randomization process leading to the null model. The feature being preserved while ran-
domizing the network (technically, the constraints of the null model) in fact define how a ran-
dom pattern should statistically look like in the given context. For a given situation, prior work
and experience provide an indication of the pattern(s) of interest and, consequently, also
about the corresponding null expectation. This expectation restricts the null space and the null
model has to account for these constraints.

Third, the statistic of interest is computed in the random bipartite network. The second
and third steps are performed repeatedly, yielding a distribution of the statistic of interest
observed in a set of random bipartite networks (i.e., under the null model). The set of random
bipartite networks is known as an ensemble, and each randomly generated network can be
viewed as a random sample from this ensemble.

Finally, the statistic of interest from the observed network is compared to its distribution
under the null model. Of particular interest is the proportion of times the statistic of interest
under the null model is greater than or equal to the statistic of interest from the observed net-
work. For example, observing a proportion of 0.02 would indicate that only 2% of the random
networks produced a statistic of interest that is larger than that from the observed network.
This proportion is known as a p-value and can be used in hypothesis testing concerning the
randomness of the pattern captured by the statistic. In this example, using a conventional
threshold of statistical significance, such as p < 0.05, one would reject the null hypothesis that
the pattern measured by the statistic of interest is random and would instead conclude that the
pattern is nonrandom.

Bipartite null models

As we mentioned, detecting patterns in bipartite networks involves comparing an observed
network to an ensemble of random networks. However, there are multiple ways to conceptual-
ize and realize a “random” ensemble, depending on which constraints are chosen and how
they are implemented. Consequently, one can end up in several ensembles and null models. In
this section, we focus on null model choice and describe two features of the null model that are
particularly important: which characteristics of the observed network are preserved in the
ensemble of random networks, and how this ensemble can be generated.

What characteristics should be preserved?. Bipartite null models are primarily defined
by which characteristics of the original bipartite network are preserved in the randomly gener-
ated bipartite ensemble. Note that, in principle, it is possible to imagine a null model that does
not contain any of the original network’s characteristic. In this case, one generates an ensemble
of bipartite networks, uniformly drawn from the set of all possible bipartite networks. How-
ever, for practical but also scientific reasons, it makes more sense to generate an ensemble as a
subset of bipartite networks, which contain some characteristics of the original one, e.g., the
dimension (number of nodes), the fill (density of edges), and/or one or both of the matrix mar-
gins (node degrees). In section “Choosing a null model”, we discuss in detail what sort of theo-
retical and practical considerations can guide the choice of the constraints to be enforced.
Here, we keep this discussion to a minimum, only in order to arrive at the description of the
main methods that, for a given choice of constraints, have been proposed.

First, null models can differ in the way constraints are imposed. The constraints can be
“hard,” i.e., such that, on each of the matrices of the ensemble, the values of the constrained
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quantities match the ones measured on the original network exactly. We will denote hard con-
straints also as “fixed” (and label them as F). Otherwise, constraints can be “soft,” i.e., such that
the constrained quantities in each matrix of the ensemble do not necessarily match the values
observed in the original network, but their averages over the ensemble of matrices do. For rea-
sons that will be clearer later, we may denote soft constraints also as “proportional” (and label
them as P). In statistical physics, ensembles with hard constraints are called “microcanonical,”
while ensembles with soft constraints are called “canonical” [23,25]. Importantly, canonical
and microcanonical ensembles enforcing a given constraint in a hard and soft way, respec-
tively, can asymptotically be either equivalent or inequivalent to each other, depending on the
nature of the constraint itself [73-76]. This has implications for the choice of the method, as
we discuss later on in section “Choosing a null model”. In general, all null models considered
in this review have hard constraints on the network’s dimensions, i.e., they require that each
random bipartite network in the ensemble has the same dimensions (i.e., the same numbers of
nodes of each type) as the original network. For example, if the original network’s matrix
representation has 5 rows and 10 columns, then all random networks generated under a null
model will also have 5 rows and 10 columns. On the other hand, all other constrained proper-
ties can be either hard or soft; e.g., depending on the models (see below), the network’s fill is
replicated either exactly, as a hard constraint, or on average, as a soft constraint.

Second, null models can vary in the constraints they impose on the network’s row and col-
umn marginals (i.e., the degrees of the row and column nodes). Marginals can be uncon-
strained (such that the marginals in the randomly generated networks do not necessarily
match those in the original network) or constrained, and, in the latter case, they can be
enforced either softly or hardly. Note that constraining exactly the marginal totals results in
constraining exactly also the matrix fill; analogously, constraining on average the marginal
totals results in constraining on average also the matrix fill. In section “Choosing a null
model”, we discuss how to decide which margins to preserve, given the scientific question at
hand.

Fig 4 illustrates how the combination of the two ingredients discussed above generates dif-
ferent null models, which we will denote with specific names. For example, the highly con-
strained null model described by lower-left cell in the right panel of Fig 4 (which we can
denote as “Fixed-Fixed,” or FF) requires that every random network in the ensemble has both
row and column marginals that exactly match those in the original. This null model is some-
times called the Fixed Degree Sequence Model [22] or the microcanonical version of the Bipar-
tite Configuration Model [3,30,75]. The somewhat less constrained null model in the central
matrix of the right panel of Fig 4 (which we can denote as “Proportional-Proportional,” or PP)
requires that the row and column marginals of the random networks match those in the origi-
nal only on average. This null model is sometimes called the Stochastic Degree Sequence
Model [21] or the canonical Bipartite Configuration Model [3,30,75] and relies on an ensemble
that is canonical. While many other null models are possible, these two have become the most
widely used. Other combinations, discussed in more detail below, are obtained depending on
how the column and row margins are treated: as hard constraints (“fixed,” or “microcanoni-
cal”), soft constraints (“proportional,” or “canonical”), or as unconstrained (“equiprobable”).

How are random bipartite networks generated? Two broad approaches exist for generat-
ing random bipartite networks: fill methods and swap methods. Fill methods begin with an
empty matrix with a fixed number of rows and columns (fixed number of nodes for two modes)
and incrementally add Os and 1s as entries (edges between nodes). For example, one microcano-
nical implementation of the configuration model [77] begins with an empty matrix and has the
condition to fill a certain fixed number of 1s in each row and column. This version of the config-
uration model aims at providing a way to generate a network that satisfies the constraints of FF
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Fig 4. A classification scheme of bipartite randomization algorithms, based on whether the matrix row and columns sums are preserved exactly
(Fixed, F), preserved on average (Proportional, P), or unconstrained (Equiprobable, E). Black cells in each matrix indicate presence of links (i.e., 1s)
between the items in rows and the items in columns, while white cells indicate the absence of links (i.e., 0s).
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uniformly at random. We will describe various implementations of the FF model, along with
their complications in the next section. In contrast, the matrices that satisfy the constraints
described by the PP model, where the column and row sums are fixed on average, can be gener-
ated by assigning each entry M an appropriate Bernoulli probability p;;. A Bernoulli trial for
each entry gives then the decision if the entry is 1 (with probability p;;) or 0 (with probability 1 -
Pij)- We will describe various implementations of the PP model in the next section.

Swap methods begin with a network (often an observed bipartite network) and swap the
nodes (of one mode) from two randomly chosen edges, but only when the new possible edges
do not already exist. In this case, a swap is not possible. In the matrix perspective, the algo-
rithm starts with the existing matrix and swaps so-called “checkerboards” (e.g., swapping

10 0 1
0 1 with Lo ). This approach was invented by Ryser in 1957 [78]. More advanced algo-

rithms, known as Curveball algorithms, perform multiple swaps from two nodes (two rows)
simultaneously [79,80]. They were proven to be at least as efficient as the Ryser version [81]. In
practice, they perform often much more efficiently than the classical version of Ryser [82].

In the next section, we will show in detail how binary matrices can be randomized main-
taining the constraints summarized in Fig 4. That section is intended for readers interested in
getting a better understanding of the technical aspects behind matrix randomization and
could serve as a “cookbook” for a coding implementation of the various algorithms (or as a
roadmap to help navigating the many implementations that are already available in several
programming languages). Noninterested readers can comfortably skip to section 4.
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Randomization algorithms and procedures

Basic definitions and notation. We denote a binary (r, ¢)-matrix as M, where r is the
number of rows and ¢ the number of columns. The size, or dimension, S of M is defined as § =
r x ¢. In two-mode networks, rows and columns correspond to distinct sets of real-world enti-
ties: for example, each row can be thought as representing an insect species, while each column
can be thought as representing a plant species.

The entry (or cell) Mj; of matrix M can have either value 0 or 1: M;; = 1 indicates that the entity
in the i-th row r; has some kind of association with the entity in the j-th column ¢; (for example,
the i-th insect pollinates the j-th plant); M;; = 0 indicates that no association exists (or has been
observed) between the entities in the i-th row and j-th column. We will often refer to the 1s as
“presences,” “occurrences,” or “filled cells” (with identical meaning) and to the Os as “absences”
or “empty cells.” The total number of occurrences (i.e., the number of 1s) in the i-th row and in
the j-th column are denoted as , = >3 | M and ¢, = 3., M,
instances where ; = 0 as “empty rows” and instances where ¢; = 0 as “empty columns.” Similarly,
we will denote a matrix where all M;; entries are equal to 0 an “empty matrix.” We refer to the
two sets of row and column totals as, respectively, R={r;, ..., .} and C={cy, .. ., c.}. We denote

the total number of occurrences in the matrixas N = 37 r, = >~ ¢; and matrix fill as f= N/S.

respectively. We will denote

A binary matrix M defined as above is equivalent to a bipartite network. In a bipartite net-
work, we can identify two distinct sets of nodes, which correspond to the two sets of real-
world entities (e.g., plants and pollinators) identified by M’s rows and columns. Thus, the
number of elements in the first set of nodes (e.g., plants) is equal to » and the number of ele-
ments in the latter set of nodes (e.g., pollinators) is equal to c. The marginal totals of M corre-
spond to the so-called degrees of the nodes in the bipartite network; e.g., r; indicates the degree
of the i-th node in the first set of nodes (e.g., the number of pollinators associated to the i-th
plant), while ¢; corresponds to the degree of the j-th node in the second set of nodes (e.g., the
number of plants associated to the j-th pollinator). Each entry for which M;; = 1 corresponds
to an edge (or “link”) in the bipartite network connecting the i-th node in the first set of nodes
(e.g., a plant species) to the j-th node in the latter set (i.e., a pollinator species). Thus, N will
also correspond to the total number of edges in the bipartite network. In some scientific fields,
the matrix M is called the biadjacency matrix of the network.

We will refer to a single, randomized version of M (i.e., a new matrix obtained as the output
of a given sampling algorithm) as M* (note that, in the statistical physics literature [23-26,48],
the notation is usually the opposite, since the asterisk is used to denote the single empirical
matrix, while the randomized matrices are left without an asterisk). Each null model produces a
set {M*} of possible randomized versions of M, each of which is one possible outcome of the
method. A given null model will then define a probability distribution P(M*) (which may be
computable or not) over the set {M*}. In practice, one will use the model either to explicitly sam-
ple a sufficiently large subset of all the possible randomized matrices (and then compute
expected matrix properties as sample averages over this subset) or to compute expectation values
analytically over the entire ensemble, if P(M*) is known and sufficiently simple to work with.

The randomization algorithms we consider can preserve, in different ways, the row and/or
column sums of the original matrix M. In the procedure that we denote as F, the row and/or
column sums of the real observed matrix are preserved exactly under the randomization. In
the procedure that we denote as P, the row and/or column sums in the randomized matrices
match only on average (i.e., as an average over the generated set of randomized matrices)
those of the original matrix. Finally, in the procedure that we denote as E, the row and/or col-
umn sums of the randomized matrices are unconstrained and, hence, to a large extent inde-
pendent of those of the focal matrix.
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To add more to the zoology of possible randomization algorithms, we note that some of
them apply to the row and column sums different choices of the procedures F, P, and E. For
this reason, we will describe the nature of the constraints of a given algorithm using the nota-
tion XY, where X (respectively, Y) indicates the procedure applied to the row (respectively, col-
umn) sums of the original matrix. Both X and Y can take any of the three values F, P, and E,
hence producing the 9 possible cases illustrated in Fig 4. These algorithms have been imple-
mented in multiple packages across different programming languages. To help readers navi-
gate the options, we have compiled a nonexhaustive table (that we plan to update dynamically)
listing R and Python packages and scripts implementing specific randomization procedures.
The table can be accessed at https://github.com/giovannistrona/bipartite_randomization_
review.

Unconstrained rows, Unconstrained columns (EE). Method EE is the most trivial
method out of our 9 possible ones, which requires to leave both margins of the matrix uncon-
strained. If this were the only prescription, technically the resulting ensemble would be entirely
uniform, i.e., each of the 2° Boolean matrices of dimension S would be assigned the same prob-
ability 27%, irrespective of any property of the empirical matrix. A more informative, yet still
quite unstructured, alternative is that of leaving the two margins unconstrained (so we can still
denote the model as EE), while specifying only the overall fill fas a constraint. As for all other
properties, the total fill can be in principle enforced either as a hard constraint or as a soft one.

If the fill fis treated as a hard constraint, the resulting ensemble contains all possible (ls\])

matrices with fixed size S and fixed fill f = N/S each taken with the same probability. This is
sometimes called the microcanonical Bipartite Random Graph Model [3,75]. Sampling uni-
formly from this ensemble can be achieved by a variety of different approaches. In the class of
swap methods, an efficient recipe is of that of exchanging entries Os and 1s in the initial matrix
in the following way. All entries M;; of matrix M get a different number, starting from 1to S
(the matrix size). These numbers can be permuted uniformly by a classical random permuta-
tion algorithm to get a new ordering of the numbers, and, hence, their corresponding entries
M;;. Let, for example, be a (2,2)-matrix with entries M;; =0, My, =1, My, = 1, My, = 1. My,
My, Myy, My, get the numbers 1, 2, 3, 4 in this order. We randomly permute the numbers and
get the new order 2, 4, 3, 1. Then, the new matrix M* has the following entries:

M, =1, M;,=1, M, =1, M;, = 0. Classical random permutation algorithms come from
mixing card decks and are known as random shuffles [83]. They all have efficient running

times. Note, that the number of all possible Boolean matrices of this class is (?\] ) . EE sampling

can be also performed using filling approaches. There, we consider an empty (r, ¢)-matrix M,
with Mj; = 0 for all i and j. Our goal is to fill that matrix with N 1s and (S-N) 0s. These values

are taken from the initial matrix M. We give all entries M a different number from 1 to S. N

times we use one after another a classical random number generator to first choose a number
uniformly at random and then delete it from the set of numbers. The corresponding entries
M;; of all chosen numbers are set to 1. The remaining entries to 0. Classical random number

generators are efficient and can be found, for example, in [84].

If the fill is enforced as a soft constraint, the resulting ensemble contains again all the possi-
ble 2° Boolean matrices of dimension S, however, with the requirement that the expected fill
equals the desired (empirical) value f= N/S. This is sometimes called the canonical Bipartite
Random Graph Model [3,75]. The probability distribution over matrices in the ensemble is
obtained by maximizing the Shannon-Gibbs entropy [25] under the average constraint on the
overall fill, and the result is a model where all the entries of the matrix are i.i.d. and take value
M;; = 1 with probability p = fand value M}; = 0 with probability I — p.
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One important aspect to take into account is that all the above procedures might generate
empty rows and/or columns. This might or might not be desirable/acceptable. If not, there are
ad hoc potential solutions. In the filling approach that starts from an empty matrix, assuming
N> (r + c) one might first assign a 1 to each entry M Vi € [1, r], with x being a random inte-
gerin [1...c], and then to each entry M, Vj € [1, ], with y being a random integer in [1.....
r]. In sparse matrices where N < (v + ¢), then a different approach would be needed. Assuming
that, for example, r > cand N > r, one might first convert to 1 all the M entries where i = j and
then attribute one presence in the each entry M; Vi € [c, r] and x being a random integer in
[1...c]. We note, however, that these approaches are superseded by the following models,
which, by placing soft (resp. hard) constraints on the row and/or column sums, largely (resp.
completely) reduce the probability of having zero margins in the randomized matrices, given
that the empirical margins are typically nonzero (unless there are isolated nodes in the data).

Unconstrained rows and Fixed columns, or vice versa (EF or FE). In these models,
either the r row sums R = {ry, . . ., r,} (for FE) or the ¢ column sums C = {cy, . . ., ¢} (for EF) are
treated as hard constraints, while the other margin is left unconstrained. For EF, this means
that each randomized matrix M* generated by the null model is such that } |, M; = ¢; (for
j =1, c), where c; denotes the empirical value of the column sum measured in the data. For FE,
each randomized matrix M* is such that ) ;| M =r, (for i = 1, r), where r; denotes the
empirical row sum. In the jargon of physics, when the rectangular matrix represents the adja-
cency matrix of a bipartite network, both models are examples of the microcanonical Bipartite
Partial Configuration Model (BiPCM) [48,75], because the constraint is the degree of each
node (“configuration model”) but it is enforced “partially,” i.e., on only one of the two layers.

As for the EE case, the FE (and the analogous EF) can be easily and efficiently implemented

using different approaches. Conceptually, FE requires sampling uniformly all the (1_[::1 1)
matrices with given R (similarly, EF requires sampling uniformly all the (H;lcj’) matrices
with given C). Practically, this can be achieved by randomizing the positions of the 0s and 1s in
each individual row (column) of M. If only the position of presences and absences within a
row (column) is randomized but not their respective numbers, it is intuitive that R in the ran-
domized matrix M* will remain the same as in M. A simple algorithmic implementation of FE
might consist of generating r random lists each including 7; 1s and c-r; 0s and then combining
those lists into a matrix M*. Similarly, for EF, one might generate ¢ random lists each including
¢j Is and r-¢; Os and then combine those lists into a matrix M*.

As in the case of EE, such approaches might result in generating empty columns or rows. If
this is not desirable, one can implement additional steps/constraints in the randomization algo-
rithms. For example, for FE, one might preassign a presence to the j-th position to a randomly
selected row V j €[1, c]. Then, the algorithm will be implemented as above, but presences and
absences will be randomly placed in each row conditionally to the preassignments (with the prob-
ability distribution of edge weights in MM’ being given by the hypergeometric distribution [85]).

Constrained rows and columns (FF). This null model constrains both margins R and C
in a hard fashion (usually taking their values from the empirical matrix): each randomized
matrix M* is such that 35, M; = ¢; (forj=1,¢)and } .| M; = r, (for i = 1, 1), where ¢; and
r; denote the empirical values of the jth column sum and ith row sum observed in the data,
respectively. Let us denote any such matrix by M* (R, C). Ideally, this model assigns the same
probability to all such matrices, for fixed R and C. In the jargon of physics, this model is
known under the name of microcanonical Bipartite Configuration Model (BiCM) [48,75] as it
samples uniformly all bipartite networks with the same hard degree sequences R and C. This is
one of the null models that has received most of the attention from different fields, as it is
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relevant not only for a variety of practical applications but also for important theoretical ques-
tions in mathematics. Indeed, in this case, even enumerating how many matrices with given
margins R and C is an open problem, and only asymptotic expressions are known in certain
regimes [75,86,87]. For this reason, it has been the object of a large number of studies that have
produced a large corpus of methods that is constantly growing. As anticipated, such methods
can be roughly classified into those that obtain a random matrix from scratch, i.e., by filling up
at random an empty matrix, and those that randomize an existing matrix. We will first cover
filling strategies and then move to randomization algorithms.

In principle, in the filling approach, any extant matrix M* (R, C) of size S = r x ¢ with row
and column totals equal, respectively, to R and C can be obtained by starting with an empty r x
¢ matrix where each entry is initially M; = 0 and then converting progressively entries to 1
until the marginal totals matches exactly the expected R and C. We emphasized the term
“extant” as it is not for granted that an r x ¢ matrix with margins matching arbitrary integer
numbers R={r,,...,r,}and C={cy, ..., ¢} exists. In other words, in general, a matrix M* (R,
C) does not exist for all values of R and C. In the language of graph theory, the bipartite degree
sequences R and C must be graphic, i.e., realizable by at least one bipartite graph. Intuitively,
an obvious necessary condition for the existence of the matrix is that  ;_, ¢, = > 1y (the
total number N of 1s in the matrix is the same if computed by first summing over columns, and
then over rows, or the other way around). However, such necessary condition does not ensure
the existence of M* (R, C), i.e., it is not sufficient. Indeed, a necessary and sufficient condition
for the existence of M* (R, C) is provided by the classic Gale-Ryser theorem [78,88]. If we fol-
low the simple example provided by Gale [88], we can imagine that our matrix maps the place-
ment of r families going to a picnic across c buses. There, 7; is the total number of members in
the j-th family, and ¢; is the total number of places available in the i-th bus. The theorem
answers the question, “When is it possible to seat all passengers in such a way that no two mem-
bers of the same family are in the same bus?” Such a question is equivalent to asking whether it
is theoretically possible to generate at least one M™ (R, C) matrix. The theorem provides the fol-
lowing necessary and sufficient condition for the existence of a solution to the problem:

k k

erg 5
1

j=1 j=

for all integers k, where s; = {¢/{c; > j}, ¢;= 0 for i > ¢, and r; = 0 for i > r and with ¢; and r; being
listed in decreasing order [78,88].

The existence of the M* (R, C) matrix does not imply that generating it is an easy task; e.g.,
if we start from an empty matrix M* and then progressively modify randomly selected entries
to 1 while checking at each step that the observed marginal totals do not exceed the desired R
and C, we will most likely end up in a situation where any further addition of a 1 to M will

lead to exceed either r; or c;. However, the sufficient condition provided by the Gale-Ryser
problem offers also an efficient way to generate a matrix M* (R, C). In the example of the fami-
lies and buses, if a solution exists, it will be always possible to succeed in placing all members
of the different families in different buses (i.e., avoiding that two members of the same family
are in the same bus) by allocating first all the members of the largest family to the buses having
the largest number of available seats, then all the members of the second largest family to the
buses having most free seats after the allocation of the first family, then all the members of the
third family to the buses having most free seats after the allocation of the first and second fam-
ily, and so on. This procedure will always end with all persons seated, all members of each fam-
ily seated in a different bus, and no empty seats left in any bus. It is clear, however, that
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although this procedure permits to generate one M* (R, C) matrix, it will always generate the
same matrix, while it is clear that we need to succeed in generating different matrices (without
getting stuck in the allocation of 1s to the matrix entries before reaching the target R and C)
and, crucially, to sample them with uniform probability from the universe of all possible M*
(R, C) matrices (whose number, as we mentioned, is not even known in full generality).

Various approaches have been proposed for this purpose, but most of them either have
problems in terms of computational efficiency or sample M* (R, C) matrices with biased (i.e.,
nonuniform) probability (or both) [89-91]. The “knight tour” algorithm proposed by Sander-
son [92] and its variations [93] try to fill progressively the matrix choosing cells randomly one
at a time and “backtracking,” i.e., returning to a previous state, when the procedure gets stuck,
that is when it is no longer possible to fill a cell without exceeding R or C. Besides being prone
to biases [93], these methods are impractical for even moderately sized matrices as the algo-
rithm might spend a considerable (and hardly predictable) amount of time for backtracking
[93].

More recently, Chen and colleagues [94] have proposed an approach based on “sequential
importance sampling,” which generates the matrix by sampling columns progressively. As
noted by the authors, if the position of the ¢; 1s of the jth column is determined uniformly at
random, it becomes extremely difficult to sample a valid column, which makes the process
exceedingly computationally intensive. To overcome this issue, they proposed to generate the
columns using the conditional-Poisson sampling method [95,96], which, in a simplification,
increases the chances to allocate a 1 in the ith position of the target jth column if r; is large.
This choice dramatically improves the computational efficiency of the method but prevents it
from sampling matrices exactly from the uniform distribution, with the extent of the bias
depending on both the actual setup of the conditional-Poisson sampling (i.e., the degree to
which r; affects the probability of the ith element in the jth column to be a 1) and the distribu-
tion of values in R and C.

The alternative approach is that of using Markov Chain procedures where small incremen-
tal changes are applied to the target matrix. Those changes progressively bring the matrix far
from its initial status. Ideally, if enough small changes are applied to the starting matrix, the
probability of sampling any of all M* (R, C) matrices will converge to a uniform distribution.
Clearly, the changes will need to ensure that the marginal totals of the initial matrix, R and C,
remain unaltered. The easiest—and most classical—way to achieve this goal consists in pro-
gressively selecting “checkerboards” and swapping their diagonal elements [93,97]. A checker-
board is a specific pattern in the matrix, involving two row nodes (say, i and z) and two
column nodes (say, j and k), where M;=0,M; =1, M; =1, and M}, = 0. It is intuitive that
if we modify the matrix by “swapping” the diagonal elements of the checkerboard, i.e., by set-
ting Mj; = 1, M = 0, M; =0, and M}, = 1, then the row (r; and r,) and column (c¢; and cx)
totals will not change, leaving R and C unaltered. Note that the rows and columns forming the
checkerboard do not need to be contiguous in the matrix. The move that is iteratively applied
to the initial configuration in order to generate a family of randomized variants has been popu-
larized with the name of local rewiring algorithm (LRA) in the literature concerning unipartite
networks [98-101].

One obvious drawback of this procedure is that each swap will produce a small modifica-
tion in the matrix so that a very large number of swaps will be required to generate “sufficiently
random” matrices (i.e., matrices sampled uniformly from all possible ones). How many swaps
ensure that each randomized matrix is sampled uniformly from the universe of possible M*
(R, C) matrices is not clear. In practical implementations in the ecological literature, the num-
ber of swaps used has been one or more orders of magnitude larger than the number of cells in
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the matrix; e.g., a common choice has been that of using 30 to 50k swaps for matrices having
size smaller than 100 x 100 cells [102-104]. However, performing many swaps does not ensure
unbiasedness of the algorithm; e.g., a rule of thumb for the LRA on unipartite networks
(hence, in a setting different from the one considered here) recommends the number of swaps
to be larger than 4N, i.e., four times the total number of 1s in the network [99,100]. Yet, when
the margins of the matrix (i.e., the node degrees) are very heterogeneous (i.e., when the second
moment of the empirical degree distribution is larger than a certain threshold), it has been
shown rigorously that, irrespective of the number of swaps being executed, the LRA remains
biased as it fails to sample the desired matrices uniformly [89-91], and no computationally fea-
sible corrections to this bias have been proposed. In particular, uniformity holds (at least
approximately) only when the degrees are such that k, - k2 /(k)* is much smaller than the
total number of nodes—with k,,,,. being the largest degree in the network, kbeing the average
degree, and k?being the second moment [90]. In order to restore uniformity, at each iteration,
the attempted “rewiring move” must be accepted with a probability that depends on some
complicated property of the current network configuration. Since this property must be recal-
culated at each step, the resulting algorithm is extremely time consuming. Unfortunately, on
real-world networks, the matrix margins (node degrees) are typically very heterogeneously dis-
tributed, and their second moment exceeds the aforementioned threshold, which implies that
the LRA is prone to bias in most practical situations [26,90].

Even in the “weakly heterogeneous” regime for which uniformity can be in principle
ensured, the computational costs involved in the execution of many swaps and checks to pro-
duce a single “sufficiently randomized” matrix should be multiplied by the (large) number of
random matrices that are needed to perform robust tests when comparing the empirical net-
work with the randomized ones. To partially reduce these costs, two modified approaches
have proposed, i.e., the so-called “sequential” and “independent” swap algorithms
[93,105,106]. In the former class of algorithms, a predefined randomly chosen number of
swaps (e.g., 30k) is applied to the original matrix to generate a single random matrix. In the lat-
ter class, an initial, large number of swaps is applied to the starting matrix to generate the first
random matrix, while each subsequent random matrix is generated by applying a smaller
number of swaps to the last generated matrix in the sequence. Clearly, the second approach is
less computationally intensive when there is a need for generating a large set of random matri-
ces. Still, biases in hypothesis testing might emerge from the potential non-independence of
the random matrices in the sequence.

Recently, the computational challenges associated with classical swap algorithms have been
partially overcome by more efficient approaches where the swaps are replaced by trades of ele-
ments between adjacency lists representing the set of neighbors of a focal node in the network
representation of M* [51,79,107]. As in the original example [79], we can consider a matrix
M* where the r rows correspond to a set of kids, and the ¢ columns correspond to a set of dif-
ferent baseball cards. Each cell Mj; in the matrix indicates whether (1) or not (0) the i-th kid
owns the j-th card. Then, we can imagine that the kids meet during class break to trade cards
and that trades happen according to the following two rules: (i) cards have identical value,
meaning that one card is traded with exactly one card; and (ii) kids are not interested in own-
ing duplicated cards, thus a trade cannot take place if leading to such a situation. Now, a situa-
tion where, in compliance with the above rules, a kid trades a Babe Ruth with a Willie Mays
will correspond to a typical swap in the matrix. The number of cards owned by the two kids
will remain the same, as well as the number of owners for the two cards. However, nothing
prevents the two kids from trading more than one card. If we call {a} and {b} the sets of cards
owned, respectively, by the first (k,) and the second kid (k;), we can identify the set of cards
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that k, can potentially trade with k;, as a, = {b}-{a}, and the set of cards that k;, can potentially
trade with k, as b, = {a}-{b}. The two kids will be in a position to make a trade where k, gives
n cards sampled from gy, to k;, while receiving from k;, and identical number of cards sampled
from b,, with n being an integer varying between 0 and the minimum of a, and b,, sizes. Intui-
tively, as in the case of the single card trade, this exchange will result in no changes to the total
number of cards, respectively, owned by k, and k;, nor in the number of kids owning any of
the traded cards.

The algorithmic implementation of such multiple card trades consist in first converting the
matrix in a set of adjacency lists mapping the position of 1s in each column for each row (or
the position of 1s in each row for each column). In the example above, such lists will include
the set of cards owned by each kid (or the set of kids owning a certain card). Then, at each
step, two lists will be drawn at random, and a trade of size # (with n being an integer randomly
sampled with uniform probability between 0 and the maximum number of tradable cards) will
be performed. There are two distinct cases where a step will result in no changes in the under-
lying M*, namely, when the maximum number of tradable cards is 0 (i.e., when a; or b, or
both are empty) or when 7 is randomly assigned a value of 0. A formal proof that the Curveball
algorithm is unbiased, i.e., it samples uniformly from the universe of all possible M* (R, C)
matrices, has been provided [81]. However, it has also been shown that, while the algorithm
remains unbiased even if “no-trade shuffles” are excluded from the Markov Chain (i.e., if n is
sampled between 1 and the maximum number of tradable cards when the latter is > 1), the
sampling is no longer guaranteed to be uniform if “no-trade row pairs,” i.e., all the list compar-
isons where there are no tradable cards, are excluded.

By modifying larger portions of M* at each step, the Curveball and other similar algorithms
[51,107] speeds up dramatically the Markov Chain convergence with respect to older swap
algorithms, i.e., they reach a virtually uniform sampling of M* (R, C) matrices in a much
smaller number of steps [79-82]. However, both for the “classical” and the more recent
approaches, how fast (i.e., in how many steps) the selected algorithm converges toward the
uniform sampling of random matrices for a given M* (R, C) is an open question.

Unconstrained rows and Proportionally constrained columns, or vice versa (EP, PE).
We now come to models where one margin of the matrix is left unconstrained (E), while the
other margin is fixed in a soft/proportional way (P). In statistical physics, these models are
known as canonical Bipartite Partial Configuration Models (BiPCMs) [48,75]. These models
are naturally sampled in the filling approach, starting from an empty matrix and sampling
each of its S entries as independent Bernoulli trials, each entry M being given value M; = 1

with an appropriate success probability p;; and value M = 0 with the complementary proba-

bility 1 —p;;. This means that the distribution P(M*) over randomized matrices factorizes in
this case as independent trials over different pair of nodes. If the angular brackets (-) denote
expected values over this distribution, then clearly (M) = p;.

In the EP case, the probability p;; should be chosen in such a way that the expected column
sums (C) = {{c1), (c2)- - ,{c.)} equal the corresponding empirical values C = {cy, c3, . . ., ¢}
This means ¢, = ), (M) = >, p; forallj= 1, c. It is straightforward to show that a solu-

tion for p;, which realizes the requirement, is p;; = ¢; /r; this solution coincides with the one
producing the maximum-entropy probability P(M™), given the observed margin C
[3,45,48,75].

Similarly, in the PE case, the probability p;; is chosen in such a way that the expected row
sums (R) = {(r), (r2),. . .(r,)} equal the corresponding empirical values R = {r, 7, . . ., 1,}. This
means 7, = Z;Zl (M;) = Z}; p; foralli =1, r. The solution, which again coincides with the
maximume-entropy one given the observed margin R, is p;; = ri/c [3,45,48,75].
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So, both the EP and the PE models can be easily sampled in the filling approach via inde-
pendent Bernoulli trials, with success probabilities immediately calculated from the empirical
margins (C or R, respectively). In each case, the success probability is proportional to the value
of the margin in the corresponding row or column (hence the term “proportional”).

Proportionally constrained rows and columns (PP). This model samples in principle
each possible binary matrix M* with the same dimensions (r and c) as the empirical matrix but
assigns different probabilities to different matrices in such a way that the mean values of both
row and column sums over the ensemble match the empirical ones. In other words, the proba-
bilities given by different matrices are such that (c;) = Y-, (M}) = ¢; (forj=1,¢) and (r;) =
Z};l (M;) = r, (for i = 1, r), where ¢; and r; denote the empirical values of the jth column sum

and ith row sum observed in the data, respectively, while the angular brackets denote average
values of the ensemble probability P(M™), as above. In the jargon of physics, this model is
known under the name of canonical Bipartite Configuration Model [3,75].

As for the EP or PE models, in the PP case, most randomization methods generate an
instance M* via a filling approach, by looking for an appropriate probability p;; for the event
M;; = 1 (so that M with probability 1 -p;; note also that the probability distribution of edge
weights in the projected one-mode matrix MM’ is given by the Poisson-binomial distribution,
where the parameters are derived from p;; [85]). This means that the probability P(M™) is again
assumed to be factorizable into independent Bernoulli trials, each with appropriate success
probability p;;, over distinct pairs of nodes. This assumption is correct, as we discuss below;
however, in the PP model, finding the explicit expression for p;; given the observed values of R
and Cis not as easy as in the simpler EP and PE cases. Indeed, different methods differ in how
they define p;;. Note that valid values of p;; are subject to at least three constraints. First,
because they must be well-defined probabilities, they need to take values in 0 < p;; <1 for all ,
j. Second, since the expected value of M; is (M}) = p,;, enforcing the average row constraints
requires that Z;Zl p; = .- Third, enforcing the average column constraints similarly requires
> i1 P; = ¢ In principle, within these minimum constraints, many different choices for p;;
are still possible. Three prototypical choices are discussed below.

First, defining p;; = ric;/N directly matches the last two constraints (whence, again, the term
“proportional”) but does not necessarily ensure the first one. Indeed, it is possible to show
that, for empirical values of r; and ¢; that are too broadly distributed over rows and/or columns,
respectively, one gets p;; > 1. This creates a situation akin to the one we discussed in section
“Randomization algorithms and procedures-Constrained rows and columns (FF)” in the FF
case: If the second moment of the degree distribution of row and column nodes is too large,
then it becomes much harder to impose double constraints on the margins of the matrix.
Unfortunately, real-world bipartite networks are typically so heterogeneous that this problem
cannot be avoided. If out-of-bound values of p;; are truncated, so that the values are forced to
remain between 0 and 1 [1], then the first constraint is respected, but one loses the last two
constraints and the average margins no longer match the empirical values.

Second, fitted linear models can be used to define p;; as the value of M; predicted as a func-

tion of r; and ¢; [21]. We note that these Bernoulli trial approaches generate random matrices
that do not retain the original marginal total distribution. This is because these trials follow a
Poisson distribution that is nearly symmetrical at larger marginal values while being positively
skewed at small values, by this causing higher simulated node numbers for comparatively low
row or column total values.

Third, entropy maximization can be carried out explicitly to find the exact values of p;; real-
izing the joint row and column constraints [48,75]. The result is given in implicit form,
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through the parametric expression p;; = x;,/(1 + x;;), where the r + ¢ parameters (xy, . . ., x,)
and (yy, . . ., ¥.) are the (provably unique [87,108]) nonnegative solution to the following set of
r + ¢ coupled nonlinear equations:

XY .
fi= , i=1r (1)
;1 +x;

1}/] .
= j=1c
Zl_;’_x € (2)

Efficient algorithms to solve the above equations exist [108]. It is possible to show that, for
sufficiently narrow distributions of r; and ¢; over rows and columns, respectively, the solution
to the above equation becomes approximately p;; = x;y; = r,cj/N, consistently with the expres-
sion discussed above. Unfortunately, as we mentioned, typical real-world distributions of the
matrix margins are instead too broad for this approximation to hold. Therefore, the correct
procedure to implement the PP model remains the one of solving Eqs 1 and 2 and using the
resulting, exact values of p;;. A recent review [85] found that the Bipartite Configuration Model
is the fastest and most accurate method for computing p;;.

Recently, [109] proposed another PP randomization model that does not rely on probabil-
ity-based cell filling. Rather than randomizing whether a cell is filled or not, this approach first
randomly sets the target values for r; and ¢; in M* and then fills the cells of M* to achieve these
target values.

Constrained rows and proportionally constrained columns, or vice versa (FP and PF).
Algorithms where the proportional constraints are applied only to rows (or columns) while
the marginal totals of columns (or rows) are kept fixed to C (or R), i.e., the PF (or FP) case, are
a theoretical possibility but have not received much attention and have been rarely used in
real-world analyses. Some straightforward implementations have, however, been proposed [1].
For the FP model, one might start with an empty matrix and then add presences to rows one
row at a time. For each i-th row, the algorithm reiterates the procedure of sampling a random j
with probability ¢;/N and setting M;; to 1 until the total number of presences in the target row

matches the desired value (r;). For PF, for each j-th column, the algorithm reiterates the proce-
dure of sampling a random i with probability r;/N and setting M to 1 until the total number of

presences in the target column matches the desired value (c;). The procedure can sometimes
end up in matrices with either empty rows or columns [1]. Adjustments similar to those dis-
cussed for the EF and FE cases can be used to tackle this potential issue.

Choosing a null model

In the previous sections, we have listed the most common constraints/rules that can be taken
into account to randomize a bipartite matrix, and we have described how such rules can be
implemented into dedicated algorithms. However, we have not discussed a fundamental ques-
tion that, even if not in itself central to the technical details of the randomization procedures,
constitutes the main reason for which these are developed. Why—or under which circum-
stances—one should choose one specific set of constraints over another? This is an important
question because, as Fig 5 illustrates, the choice of randomization constraints can impact the
patterns that are detected.

Each choice could be equally valid and useful to answer specific questions. In fact, identify-
ing such questions within a specific research context is an essential and dire challenge in itself,
which should be regarded by researchers as a first—possibly the most important—step to be

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010  October 3, 2024 20/34


https://doi.org/10.1371/journal.pcsy.0000010

PLOS COMPLEX SYSTEMS

Pattern detection in bipartite networks

Q

row totals

-

NN ON®®O

T 1
108 87 6 5

doie oo oo
0.5 4 mean = 87+0.9 (SD)
04| Z=1(p=0186)
£
2 0.3 1
NODF = 87 & 02
observed (87
0.1
0.0 -
T T T T T T T T
30 40 50 60 70 80 90 100
NODF (FF) C
Jopr = 61 Noor = 57
0.08 7 mean = 54+5.3 (SD)
bi6 -] Z=6(p=0)
E
I —— 2004 - observed (87)
£o.
5321 a
column totals 0.02 7
Cwoorer woor 52 0.00 -
T T T T T T T T
30 40 50 60 70 80 90 100
d NODF (EE)

Fig 5. Effect of different randomization constraints on pattern detection. Example of how applying different constraints to matrix randomization
can lead to contrasting resulst in pattern detection. In this example, we apply the same pattern detection workflow as described in Fig 3. Black/gray cells
in each matrix indicate presence of links (i.e., 1s) between the items in rows and the items in columns, while white cells indicate the absence of links
(i.e., 0s). First, the structural measure of interest (in this case, a nestedness metric, NODF [71]) is computed on the target matrix (a). Then, two sets of
1,000 randomized versions of the starting matrix are generated using, alternatively, an algorithm that generates random matrices with the same exact
row and column totals of the starting matrix (FF), and an algorithm that generates random matrices having the same size, shape, and fraction of
occupied cells of the starting matrix, but with varying (equiprobable) row and column totals (EE). The target metric is computed for each random
matrix in the two sets (b, d). Then, the starting NODF value is compared against the two distribution of “null” values in the two sets of randomized
matrices. In this example, the starting NODF does not depart significantly from the null expectation from the set of matrices generated with the FF
algorithm (Z = 1; p = 0.186). Conversely, the pattern is identified as particularly strong when compared with the metrics measured in the random
matrices generated with the EE algorithm (Z = 6; p = 0).

https://doi.org/10.1371/journal.pcsy.0000010.9005

completed before even starting to think about the actual implementation of randomization
routines. Unfortunately, this is not often the case, and sometimes researchers make a fairly
blind use of null models, without a clear reasoning behind the choice of the enforced con-
straints. Overseeing the importance of linking solid questions about processes to null model
pattern analysis might lead to a difficult or biased interpretation of the results. In the worst
possible situation, one could even take advantage of the fact that different, sometimes contrast-
ing, results can arise when processing the same data using different randomization strategies
(Fig 5) and adjust procedural choices to steer the results in the desired direction.

In this section, we discuss different methodological considerations, both theoretical and
practical in nature, that are relevant to choosing how to generate the random networks and
which characteristics to preserve.

Analytical versus numerical simplicity. We start with some practical considerations
about the choice of null models based on their simplicity. Before delving into this, we should,
however, make a general warning: Choosing a null model based solely on simplicity, e.g.,
computational efficiency or mathematical convenience, is of course not recommended and
not scientifically acceptable in general. This is because the choice of the null model should rely
primarily on the soundness of the underlying null hypothesis, leading to the identification of
the margins to be preserved and of whether they are enforced as soft or hard constraints.

Generally, one expects that the statistical power of matrix randomization techniques
increases as more matrix features are controlled [85]. This implies that the most constrained
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models (FF or PP), which are also the most complex ones, may represent the most statistically
robust choice (provided there is no concurrent risk of overfitting). In practice, implementing
these models is feasible when a sufficient number of bipartite networks can be generated in a
practical amount of time. When the FF/PP models are computationally impractical, the next
less complicated choices are the FE/PE or the EF/EP models, because these at least fully control
for one dimension of the network and can be computed one row (or one column) at a time.
The choice between the FE/PE and EF/EP models depends on a substantive and context-
dependent judgment concerning whether it is more important to control the effects of the
rows or columns. An alternative approach would be that of exploring simultaneously a wide
range of possible combinations of constraints and then placing and discussing the results
within the multidimensional null modeling space identified by such constraints [20]. On the
one hand, this might provide a more comprehensive information on network structure, but at
the cost of a more challenging interpretation and increased computational demand.

As another dimension along which simplicity considerations apply, generating and/or
handling a null model entails different levels of numerical and mathematical complexity,
depending on whether constraints are enforced in a hard or soft manner. Basically, hard con-
straints are easier to work with via numerical sampling of randomized matrices (using one of
the various algorithms discussed in the previous sections), while they are very difficult to be
implemented in an analytically tractable way. This is because the hardness of the constraints
makes the entries of the randomized matrices dependent on each other, since such entries
must always sum up to the same value. For this reason, filling algorithms generally do not
lead to unbiased (uniform) sampling, and the reliable schemes are indeed based on iterative
randomizations of the original matrix. As an extreme example of the unfeasibility of analyti-
cal approaches under hard constraints, we recall that in the doubly constrained (FF) case, the
(uniform) probability distribution over configurations cannot even be calculated in the gen-
eral case, because it requires the solution of an unsolved combinatorial enumeration
problem.

By contrast, soft constraints lead to independent entries in the randomized matrices, even
in the doubly constrained (PP) case [75]. This makes the probability distribution for the entire
matrix factorize as independent (but not identically distributed) Bernoulli trials over distinct
matrix entries, so that filling algorithms becomes exact, once the correct success probability p;;
is determined for each entry i, j. Moreover, these probabilities coincide with the expected val-
ues (M) of each matrix entry. Therefore, using these (exact) expectation values, the averages

of many quantities of interest across randomized versions of the orginal network can be calcu-
lated analytically, without even having to sample matrices from the distribution [24,26]. This is
a considerable speed-up compared with the generation of several random matrices and averag-
ing of the quantities of interest across the sample. However, the soft and hard enforcements of
the same constraint(s) lead to nonequivalent null models as soon as (at least) one of the two
margins is constrained [75,87], which implies that one cannot use the two implementations
interchangeably.

As a final consideration, we note that, once the above choices (which constraints and
whether hard or soft) are made, it is of course reasonable to implement the selected null model
in the simplest and/or more efficient way. Indeed, for a given randomization goal, there might
be tradeoffs between the computational demand of a given algorithm, its reliability (e.g., in
terms of sampling uniformly from the universe of possible matrix configurations), and its easi-
ness of implementation and integration in different analytical workflows; e.g., the recently
introduced fastball algorithm [107] has a theoretical time complexity O(n) time, while the ear-
lier curveball algorithm [79] has a theoretical time complexity of O(n log n), but the practical
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running times of both algorithms depend on the programming language used to implement
them. Since both algorithms permit sampling random matrices without biases, the choice of
using one or another method depends on practical considerations related, among the others,
to the actual amount of data to be processed and the coding integration with other analyses. If
one has to randomize a few, small matrices, then using a simpler but less efficient code imple-
mentation might be a reasonable choice, while for larger analyses, the performance advantage
might outweigh the potential additional effort in coding integration.

Constrained versus unconstrained margins. Conceptually, the most important choice is
realizing which constraints to apply to the randomized matrices, or, in other words, which
margins to constrain. This consideration revolves around the nature of the features the
researcher wishes to control, and how those features translate into specific matrix properties.
A typical example is provided by the analysis of rectangular matrices representing the presence
or absence of a set of plant or animal species across a set of localities (often islands or, in any
case, isolated habitat patches). In that context, the marginal totals could be linked to different
kind of ecological information. Specifically, for a matrix where rows correspond to species and
columns correspond to islands, the column totals, representing species richness across locali-
ties, might be linked to various features affecting local species diversity. Some of these might
be obvious and/or known, such as island size, while others, such as habitat heterogeneity or
resource availability, or particular biogeographical features, might be less intuitive or not
known. Still, one might assume that the effect of all of these features combined is actually
reflected in column totals. Similarly, one could consider row totals, i.e., the prevalence of spe-
cies across the islands, as a proxy for various features of the species, such as their ability to dis-
perse and colonize islands and the generalism or specialization in their needs for resources.

Based on these considerations, one should then decide whether or not to preserve the mar-
ginal totals in the randomized matrices. To understand the choice, we need to make a clear dis-
tinction between “patterns,” i.e., the different forms of organization of the various entities,
which are represented in the matrix and that are captured by ad hoc metrics (such as nested-
ness [38,110]), and the “processes” that led to the emergence of such patterns. Research ques-
tions usually target both patterns and processes, i.e., one could be interested in measuring
whether and to what extent species are distributed across islands in a certain, nonrandom pat-
tern, and what are the causes (i.e., processes) that led to such a pattern. However, these two
objectives are not independent of one another. On the contrary, they are two sides of the same
coin.

To assess the relevance of a given process, one should ideally identify some way to isolate
the effect of that process on the observed pattern from all the other processes that might be
also involved in the emergence of the pattern. The null model approach, which is central to
this review, offers one straightforward way to achieve this objective. In principle, one could
explore the importance of a given process by comparing the target pattern in the original
matrix with the same pattern in a large set of randomized matrices obtained by preserving all
the features that might affect the emergence of the the observed pattern, with the exclusion of
those features potentially emerging from the process of interest. But this also means that the
assessed magnitude of the pattern could vary depending on the identity of the target process.
Thus, a matrix might show a strong structural pattern when examined with a focus on a given
process, but no structure in a different context [20].

Patterns in a matrix can be often described and measured by single values; e.g., one could
measure the “temperature” (the original metric used to describe nestedness [38]) of a given
matrix and then use that only information to assess whether or not the matrix is structured, by
placing the observed temperature within the theoretical range of possible values (0 to 100).
However, as already emphasized multiple times within this review, such an approach might
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not be particularly enlightening. Specifically, most metrics of matrix structural patterns are not
independent from matrix structural properties such as matrix size, shape, fill, and marginal
totals. Therefore, the metrics’ raw values are a simultaneous result of the processes that deter-
mined the matrix properties and of other processes. Such other processes are usually central to
interesting and meaningful questions, and standardizing the target metrics by controlling for
matrix structural patterns is an obvious way to try isolating them. For example, by comparing
the structure of a target species—island matrix with that of randomized versions having the
same marginal totals, one might be able to assess the structuring importance of some ecologi-
cal processes other than those which determine local species richness and species prevalence
across islands. Similarly, one could constrain selected structural properties to explore specific
hypotheses or to answer specific questions; e.g., one could test the importance of local species
richness in determining nestedness by comparing the target matrix with randomized versions
obtained by constraining row marginal totals only (i.e., species prevalence across sites in our
species—island matrix).

To make a different example, we might consider a matrix mapping the authorship of scien-
tific publications (with authors in rows and publications in columns). We can imagine a situa-
tion where one would be interested in quantifying the overall tendency for collaboration
between authors. It is obvious that the frequency of coauthorship would naturally increase
with the overall productivity of the scientific community represented by the matrix. However,
it might be also reasonable to assume that the overall productivity is both a driver and a result
of collaborations. Thus, it might be meaningful to assess the degree of coauthorship both tak-
ing or not taking into account the overall community productivity. One could also advance
hypotheses on how the individual productivity of the different authors might affect the overall
intensity of coauthorships (quantified by row totals in the matrix); i.e., we might expect that a
situation where all the authors have similar productivity would lead to different coauthorship
patterns/levels compared to a situation where a few authors are highly productive while most
authors are associated with few publications. A similar reasoning applies to the number of
authors per publication (quantified by column totals in the matrix). Intuitively, we might
expect different coauthorship patterns in a situation where most publications tend to have a
similar number of coauthors compared to a situation where we have a few articles signed by
many authors and most papers authored by few scientists. Again, depending on their actual
goals, the investigators might decide to either constrain or not row and/or column totals when
generating the randomized matrices to be used as a frame of reference to assess the target com-
munity’s tendency for scientific collaboration.

Another example could be that of exploring the determinants of modularity in a network
mapping listeners” musical preferences. There, one could be interested in exploring how gener-
alism in listeners’ tastes affects network modularity. In that context, the observed degree of
modularity should be compared to that in randomized versions of the initial network having
identical number of listeners per musical genre, but unconstrained number of genres per
listener.

In general, enforcing one margin of the matrix implements the idea that, in order to charac-
terize the null behavior of the system’s properties, it is essential to control for the empirically
observed heterogeneity of the nodes of the corresponding layer of the bipartite network. So, in
short, choosing which margins to constrain boils down to choosing whether it is appropriate
to control for the heterogeneity of nodes in one layer, in the other layer, or in both layers.

Soft versus hard constraints. Once the formal choice of the constraints is made, the next
important choice is whether these constraints should be enforced in a hard (F) or soft (P) way.
In the literature, there is a tendency of regarding the two alternatives as two basically equiva-
lent routes to the implementation of the same null model. This is true “asymptotically” (i.e.,
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when the size of the matrix becomes larger and larger), but only for certain constraints: e.g.,
for a single constraint that is global in nature (e.g., the total number of 1s in the matrix, or
equivalently the matrix fill fas in the EE case), the probability distribution of matrices in the
soft (canonical) ensemble concentrates around the smaller set of matrices that realize the con-
straints in the hard (microcanonical) ensemble [75]. In information theory, this property is
known as asymptotic equipartition property (AEP) [111], while in statistical physics, it is
known as asymtptotic equivalence between canonical and microcanonical ensembles, or, more
compactly, ensemble equivalence [25,75].

While attractive and convenient, the property of ensemble equivalence breaks down as
soon as the enforced constraints are local, i.e., node-specific in nature [25,73-75]. This deep
and somewhat surprising result means that, for the cases of interest here, the FF and PP null
models are not asymptotically equivalent to each other, and the same goes for FE versus PE
and for EF versus EP. To some researchers, the breakdown of ensemble equivalence might
seem primarily a theoretical curiosity with abstract significance and no operational implica-
tions. However, this is not the case: It is possible to prove rigorously that if the probability of
configurations with soft constraints does not concentrate around those with hard constraints
(a notion known as “measure nonequivalence”), then there must necessarily exist properties of
the system that have different expected values under the two ensembles (which is known as
“macrostate nonequivalence”) [112]. This means that the two null models will produce differ-
ent reference values for certain properties and may, therefore, single out different patterns
when such reference values are compared with the empirical ones observed in the data. As a
notable example for bipartite plant-pollinator networks in ecology, it has been found that (i)
certain definitions of the nestedness property mentioned above indeed display different
expected values in the FF and PP null models and (ii) even more surprisingly, alternative defi-
nitions of nestedness turn out to be mutually positively correlated in the canonical ensemble
and negatively correlated in the microcanonical one [113]. This means that the empirical net-
work might appear as “positively nested” under one null model and “negatively nested” under
the other null model. This seemingly puzzling conclusion is actually a direct consequence of
the fact that, since the nestedness is strongly influenced by the values of the margins of the
matrix (as we have already noted above), it can obey very different statistical distributions
when the margins are fixed exactly and when they are allowed to fluctuate.

An important consequence of ensemble nonequivalence for models with constrained mar-
gins is that the choice between PP and FF null models (as similarly between PE and FE, or
between EP and EF) should come from a guiding principle, i.e., an assumption about what
specification is theoretically more appropriate, and cannot be left to mathematical or numeri-
cal convenience [25,26,74]. Clearly, such guiding principle should focus primarily on the fol-
lowing question: In its “null behavior,” i.e., in absence of the higher-order patterns we are
looking for in the data, do we expect the system to be equally represented by alternative config-
urations where the margins chosen as constraints are kept fixed exactly, or only on average? In
other words, do we expect the constraints to fluctuate around their mean under the null
hypothesis? As we exemplify below, there are arguments in favor of choosing hard constraints,
and other arguments in favor of choosing soft constraints. Finally, it is possible to resort to
model selection to make a choice in absence of a prior guiding principle.

A theoretical guiding principle in favor of enforcing constraints in a hard manner is the
2-fold confidence that (i) the experimentally measured values of the constraints themselves are
error-free (so that the empirical values coincide with the true values), and (ii) the same system,
under the null hypothesis of absence of higher-order structural patterns, would retain exactly
the same values for the constraints. Indeed, if one is confident that both hypotheses are true
for the specific system at hand, it would make no sense to let the values of the constraints
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themselves fluctuate, because in that way, the null model would explore matrix configurations
that neither the real network nor its randomized variants are expected to exhibit [74,75]. Since
the statistical power of matrix randomization techniques generally increases as the constraints
are enforced in a stricter way [85], one might argue that, under the two hypotheses above, it is
important to enforce the constraints in a hard way.

In the other side of the same coin, one finds a principled argument in favor of enforcing
constraints in a soft manner. Indeed, if one has reasons to assume that, as in virtually all exper-
imental sciences, the observed network data are affected by error or noise, one has to conclude
that the empirical values of the constraints are different from (albeit hopefully close to) the cor-
responding true values that one would observe in absence of noise; e.g., if some associations
between plants and pollinators in an ecological networks are not observed because of poor
sampling, or if spurious associations are incorrectly interpreted as observed, the number of 1s
along the rows or columns of the empirical rectangular matrix might be smaller or larger than
the true value. In such a situation, enforcing constraints in a hard manner would paradoxically
give, in the null model, zero probability to the “true” configuration and to all configurations
with the same margins. By contrast, enforcing constraints in a soft way would instead let the
null model capture the true configuration and give it only a slightly smaller probability (if the
errors in the data are small) with respect to the configurations sampled under hard constraints
[26,74,75]. The same would happen for all other configurations where the values of the con-
straints are close to, even if not necessarily equal to, the empirically observed values. In the eco-
logical context, this observation has led to the consideration that, due to their intrinsic
variability, real-world bipartite networks might be inherently understood as realizations of a
process described by soft constraints [41].

Finally, if there is no theoretical prior expectation available about the presence or absence
of noise in the empirical values of the constraints, one might argue that the decision between
hard and soft constraints should be based on posterior evidence, i.e., on which of the two null
models achieves the best fit to the data. The state of the art in statistical model selection, which
is based on (variations of) the minimum description length principle [114], identifies the best
model as the one that achieves the best combination of accuracy and parsimony: Among mod-
els with the same complexity, it should be the model with maximum likelihood; however, for
models with different complexity (e.g., different numbers of parameters, or different uses of
the same number of parameters), it should be the model with maximum difference between
likelihood and complexity. Model complexity is, therefore, a penalizing term to be subtracted
from the likelihood, to reduce the risk of overfitting, i.e., greedily achieving higher likelihood
via the introduction of too many parameters that, however, may end up fitting a particular,
contingent realization of the randomness, rather than the structural information behind it
[114]. Recent results have indicated that, given the same constraints, “hard” (microcanonical)
null models have always higher likelihood, but also higher complexity, than the corresponding
“soft” (canonical) null models [76]. The net result, i.e., the best-scoring model in terms of real-
ized difference between likelihood and complexity, is surprisingly found to depend crucially
on the numerical values of the constraints: In particular, for bipartite matrices with given row
and/or column margins, this means that whether the best fitting model is the “fixed” (FE, EF,
or FF) or the corresponding “proportional” (PE, EP, or PP, respectively) variant of the null
model depends on the specific observed values of the marginals defining the model themselves
[76]. In this perspective, one should therefore simply input the empirical margins into a for-
mula that calculates the model score (likelihood minus complexity) and identify the best-scor-
ing null model accordingly.
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Concluding remarks

In this review, we have provided readers from different fields (such as, but not limited to,
mathematics, physics, social sciences, and ecology) with the conceptual tools needed to prop-
erly embark in matrix randomization exercises. Our hope is that it could also help unifying
future theoretical and applied research and avoid the accumulation of further confusion due to
duplicated efforts from different disciplines. However, there are various, additional outstand-
ing issues and open questions that we could not discuss here but which we deem essential
mentioning.

In most practical situations, and especially when referring to the natural world, detecting
the existence of a link between two nodes (e.g., by observing a pollinator’s visit to a flower or
by detecting the presence of a parasite on a host) is much easier than quantifying the strength
of the underlying association (e.g., the actual importance of the pollinator for the target plant,
or the prevalence of the parasite species in the target host’s population). Furthermore, different
quantities could often be attributed to the same 0/1 link, depending on the specific process
that the target interaction represents; e.g., binary links connecting pollinators to plants might
be associated to quantitative measures of pollinator preference but also of pollination efficiency
[115]. As a consequence, there is a disproportion of studies—and tools—on binary matrices
compared to quantitative ones.

Nevertheless, although presence-absence matrices can be used to represent many, different
entities, Os and 1s cannot capture all the nuances and complexity, which permeate the real
world. Now, despite the challenges mentioned above, also thanks to novel tools and technolo-
gies, quantitative matrices are becoming increasingly available in many fields, and there is a
growing recognition of the fact that weighting interactions might reveal different structural
patterns from those identified after translating the same data into 0/1 links [116]. The analysis
of structural patterns in quantitative matrices might also require the use of randomization
techniques. However, identifying a well-defined set of criteria and constraints to be applied to
the randomization procedures for quantitative matrices is not straightforward and present
many more possible cases than those identified for binary matrices (as in the classification
scheme proposed in Fig 4). Since quantitative matrices underlie a binary structure (since each
cell can be identified as either occupied or not), one could ideally perform randomizations by
applying the same principles and techniques developed for 0/1 matrices. However, in doing
that, one should also decide whether to apply random changes to the individual values within
each cell or to preserve the original values while randomizing their position within the matrix,
or to combine the two approaches. This opens up an extremely wide spectrum of possibilities,
which becomes even wider when one starts thinking at possible alternative criteria and rules to
modify (or not) the cell values [117]. Remarkably, some of the approaches described here have
already been straightforwardly extended to weighted bipartite networks, both in abstract mod-
els [75] and in applications to, e.g., financial [61,62], economic [118,119], rating [45], and eco-
logical [41] systems.

Another obvious limitation of presence-absence or, more in general, of rectangular matri-
ces is that they can only capture a single feature of the system they are representing. That is to
say, a rectangular matrix representing species occurrences across localities cannot provide any
information on species and localities going beyond those we can directly derive from matrix
structure; e.g., the matrix can tell us whether a given location has a high species richness, or
whether a species is rare (clearly with specific reference to the set of localities included in the
matrix). But it cannot tell us anything more about other “exogenous” features of species and
localities. However, there are many possible contexts where such features not captured by the
matrix itself could be relevant in the context of pattern detection. Such features might be used
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to define additional, external constraints. In addition to “endogenous” criteria for randomiza-
tion looking at specific network/matrix properties, we might consider also “exogenous” crite-
ria based on properties of the entities represented in the matrix, which cannot be inferred by
the matrix itself, but which can be made available by additional datasets. These can be, for
example, additional data matrices with information relating to the rows or columns of the tar-
get matrix. This kind of information might be absolute, which is a simple covariate or attribute
of an individual component, or relative, which is a measure relating the component to other
components. Considering again the species per locality matrix example, one could associate
covariate vectors representing individual traits (body size, geographic range) to species, as well
as relative measures such as the phylogenetic relationship of each species to all others. For
sites, there might be physical covariates (soil nutrients, island area), but also relative measures
such as the pairwise distances between all possible pairs of locations. The problem is particu-
larly compelling in ecology, where it has led to the development of a few statistical approaches
trying to improve pattern detection in species per site matrices by pairing them to additional
information, incorporating, e.g., species functional traits and/or environmental characteristics
of the sites [120]. Although the implementation of exogenous constraints into “typical” ran-
domization strategies might appear more as a conceptual challenge that one could tackle in
practice by simply adding a few more lines to extant algorithms, the issue might be much more
delicate. In fact, the additional constraints could modify fundamental properties of robust ran-
domization techniques and lead to unexpected (and hardly detectable) biases. This calls for a
more in-depth and formally structured investigation of the problem to identify potential
extensions of extant, robust algorithms ideally capable of preserving the desired qualities of
their original counterparts while accommodating extra rules dictated by features external to
the target matrix. In this review, we focused on a set of different approaches to generate matri-
ces under different constraints, such as that of ensuring that the randomized matrices gener-
ated by the selected approach have some predefined marginal totals. Such constraints, in
principle, should permit a user’s need to replicate the potential effects of real-world or hypo-
thetical processes on matrix structure; e.g., by constraining column totals when applying a ran-
domization algorithm to a species x locality matrix, one would generate random matrices
where species richness in each locality matches that of the initial matrix. In turn, that would
ideally make it possible to compare the structure of the starting matrix with that of the ran-
domized matrices while controlling for all the processes affecting local species richness. How-
ever, depending on the research questions, the actual study setting and the nature of the data
under investigation, the choice of which structural properties of the matrix to be controlled for
in the randomization process might be not so obvious and, possibly, biased by subjectivity.
Additionally, one might be interested in exploring a gradient of assumptions and multiple sce-
narios. In such a context, a potential solution is that of comparing the target matrix not just
with a specific set of null matrices obtained using a specific algorithm but, instead, with multi-
ple sets of null matrices covering a larger—ideally continuous—portion of the null space
entailed by different, specific combinations of constraint; e.g., in the ecological context, an
algorithm has been proposed [20] to explore thoroughly the null space delimited by the 9 dif-
ferent combinations of constraints we focused on in this review (see Fig 4). Such an algorithm
can produce a “bidimensional landscape” of significance and effect size, in contrast with the
typical single significance and effect size values provided by the standard null model analysis
focusing on a specific set of constraints. The landscapes of significance/effect size offer a more
comprehensive and less subjective representation of matrix structural patterns, by showing
how the intensity and significance of such patterns vary under a continuous range of different
hypotheses. Similarly, we have mentioned various theoretical guiding principles aiding the
choice of whether constraints should be enforced in a hard or soft manner (the two choices
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leading in general to different statistical conclusions [26,30]). In absence of a clear preference
for any of these guiding principles, the choice can be left to posterior evidence by selecting the
best-scoring null model in terms of the optimal combination of accuracy and parsimony [76].

While many open questions remain regarding the randomization of matrices and the detec-
tion of patterns in bipartite networks, we hope this review lays the groundwork for future
research on these topics. Two directions for future research are particularly pressing. First, to
facilitate researchers’ use of these methods, it will be important to develop a standardized
library of efficient implementations of each of these randomization methods. Second, to
inform the selection of randomization methods, it will be important to systematically compare
the circumstances under which each method is most appropriate, and specifically when differ-
ent methods may be more or less able to detect patterns.

Acknowledgments

We thank Filippo Radicchi for his valuable suggestions on this work. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the funders.

Author Contributions

Conceptualization: Zachary P. Neal, Annabell Cadieux, Diego Garlaschelli, Nicholas J.
Gotelli, Fabio Saracco, Tiziano Squartini, Shade T. Shutters, Werner Ulrich, Guanyang
Wang, Giovanni Strona.

Data curation: Zachary P. Neal, Giovanni Strona.
Supervision: Zachary P. Neal, Diego Garlaschelli, Giovanni Strona.
Visualization: Giovanni Strona.

Writing - original draft: Zachary P. Neal, Annabell Cadieux, Diego Garlaschelli, Nicholas J.
Gotelli, Fabio Saracco, Tiziano Squartini, Shade T. Shutters, Werner Ulrich, Guanyang
Wang, Giovanni Strona.

Writing - review & editing: Zachary P. Neal, Annabell Cadieux, Diego Garlaschelli, Nicholas
J. Gotelli, Fabio Saracco, Tiziano Squartini, Shade T. Shutters, Werner Ulrich, Guanyang
Wang, Giovanni Strona.

References
1. Gotelli NJ. Null model analysis of species co-occurrence patterns. Ecology. 2000; 81(9):2606—2621.

2. KimJ, Mouw KW, Polak P, Braunstein LZ, Kamburov A, Tiao G, et al. Somatic ERCC2 mutations are
associated with a distinct genomic signature in urothelial tumors. Nat Genet. 2016; 48(6):600—606.
https://doi.org/10.1038/ng.3557 PMID: 27111033

3. Saracco F, Di Clemente R, Gabrielli A, Squartini T. Randomizing bipartite networks: the case of the
World Trade Web. Sci Rep. 2015; 5(1):1-18. hitps://doi.org/10.1038/srep10595 PMID: 26029820

4. ChenYZ,LiN, He DR. A study on some urban bus transport networks. Physica A Stat Mech Appl.
2007; 376:747—-754.

5. Lambiotte R, Ausloos M. Uncovering collective listening habits and music genres in bipartite networks.
Phys Rev E. 2005; 72(6):066107. https://doi.org/10.1103/PhysRevE.72.066107 PMID: 16486010

6. Smiljani¢ J, Mitrovi¢ DM. Associative nature of event participation dynamics: A network theory
approach. PLoS ONE. 2017; 12(2):e0171565. https://doi.org/10.1371/journal.pone.0171565 PMID:
28166305

7. Straka MJ, Caldarelli G, Squartini T, Saracco F. From ecology to finance (and back?): A review on
entropy-based null models for the analysis of bipartite networks. J Stat Phys. 2018; 173:1252—1285.

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010  October 3, 2024 29/34


https://doi.org/10.1038/ng.3557
http://www.ncbi.nlm.nih.gov/pubmed/27111033
https://doi.org/10.1038/srep10595
http://www.ncbi.nlm.nih.gov/pubmed/26029820
https://doi.org/10.1103/PhysRevE.72.066107
http://www.ncbi.nlm.nih.gov/pubmed/16486010
https://doi.org/10.1371/journal.pone.0171565
http://www.ncbi.nlm.nih.gov/pubmed/28166305
https://doi.org/10.1371/journal.pcsy.0000010

PLOS COMPLEX SYSTEMS

Pattern detection in bipartite networks

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Guillaume JL, Latapy M. Bipartite graphs as models of complex networks. Physica A Stat Mech Appl.
2006; 371(2):795-813. https://doi.org/10.1016/j.physa.2006.04.047

Budel G, Kitsak M. Complementarity in complex networks. arXiv [Preprint]. 2020;arXiv:200306665.

Talaga S, Nowak A. Structural measures of similarity and complementarity in complex networks. Sci
Rep. 2022; 12(1):16580. https://doi.org/10.1038/s41598-022-20710-w PMID: 36195736

Mattsson CE, Takes FW, Heemskerk EM, Diks C, Buiten G, Faber A, et al. Functional structure in pro-
duction networks. Front Big Data. 2021; 4:666712. https://doi.org/10.3389/fdata.2021.666712 PMID:
34095822

Budel G, Jin Y, Van Mieghem P, Kitsak M. Topological properties and organizing principles of seman-
tic networks. Sci Rep. 2023; 13(1):11728. https://doi.org/10.1038/s41598-023-37294-8 PMID:
37474614

Newman ME. Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci.
2004; 101(suppl 1):5200-5205. https://doi.org/10.1073/pnas.0307545100 PMID: 14745042

Neal ZP. A sign of the times? Weak and strong polarization in the US Congress, 1973-2016. Soc
Netw. 2020; 60:103—-112. https://doi.org/10.1016/j.socnet.2018.07.007

Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat
Appl Genet Mol Biol. 2005; 4(1). https://doi.org/10.2202/1544-6115.1128 PMID: 16646834

Freilich S, Kreimer A, Meilijson |, Gophna U, Sharan R, Ruppin E. The large-scale organization of the
bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 2010; 38(12):3857—
3868. https://doi.org/10.1093/nar/gkq118 PMID: 20194113

Vasques Filho D, O'Neale DRJ. Transitivity and degree assortativity explained: The bipartite structure
of social networks. Phys Rev E. 2020; 101:052305. https://doi.org/10.1103/PhysRevE.101.052305
PMID: 32575287

Guillaume JL, Latapy M. Bipartite structure of all complex networks. Inf Process Lett. 2004; 90(5):215—
221.

Newman ME, Park J. Why social networks are different from other types of networks. Phys Rev E.
20083; 68(3):036122. https://doi.org/10.1103/PhysRevE.68.036122 PMID: 14524847

Strona G, Ulrich W, Gotelli NJ. Bi-dimensional null model analysis of presence-absence binary matri-
ces. Ecology. 2018; 99(1):103—-115. https://doi.org/10.1002/ecy.2043 PMID: 29023670

Neal Z. The backbone of bipartite projections: Inferring relationships from co-authorship, co-sponsor-
ship, co-attendance and other co-behaviors. Soc Netw. 2014; 39:84-97.

Zweig KA, Kaufmann M. A systematic approach to the one-mode projection of bipartite graphs. Soc
Netw Anal Min. 2011; 1(3):187-218.

Cimini G, Squartini T, Saracco F, Garlaschelli D, Gabrielli A, Caldarelli G. The statistical physics of
real-world networks. Nat Rev Phys. 2019; 1(1):58-71.

Squartini T, Garlaschelli D. Analytical maximum-likelihood method to detect patterns in real networks.
New J Phys. 2011: 13. https://doi.org/10.1088/1367-2630/13/8/083001

Squartini T, Garlaschelli D. Maximum-Entropy Networks: Pattern Detection, Network Reconstruction
and Graph Combinatorics. Springer; 2017.

Squartini T, Mastrandrea R, Garlaschelli D. Unbiased sampling of network ensembles. New J Phys.
2015; 17(2):023052.

Zhang P, Wang J, Li X, Li M, Di Z, Fan Y. Clustering coefficient and community structure of bipartite
networks. Physica A Stat Mech Appl. 2008; 387(27):6869—6875. https://doi.org/10.1016/j.physa.2008.
09.006

Barber MJ. Modularity and community detection in bipartite networks. Phys Rev E. 2007; 76
(6):066102. https://doi.org/10.1103/PhysRevE.76.066102 PMID: 18233893

Strona G, Fattorini S. On the methods to assess significance in nestedness analyses. Theory Biosci.
2014; 133:179-186. https://doi.org/10.1007/s12064-014-0203-1 PMID: 24974139

Bruno M, Saracco F, Garlaschelli D, Tessone CJ, Caldarelli G. The ambiguity of nestedness under
soft and hard constraints. Sci Rep. 2020; 10:1—13. https://doi.org/10.1038/s41598-020-76300- 1
PMID: 33199720

Daminelli S, Thomas JM, Duran C, Cannistraci CV. Common neighbours and the local-community-
paradigm for topological link prediction in bipartite networks. New J Phys. 2015; 17(11):113037.
https://doi.org/10.1088/1367-2630/17/11/113037

Dominguez-Garcia V, Mufioz MA. Ranking species in mutualistic networks. Sci Rep. 2015; 5(1):8182.
https://doi.org/10.1038/srep08182 PMID: 25640575

Gotelli NJ, Ulrich W. Statistical challenges in null model analysis. Oikos. 2012; 121(2):171-180.

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010  October 3, 2024 30/34


https://doi.org/10.1016/j.physa.2006.04.047
https://doi.org/10.1038/s41598-022-20710-w
http://www.ncbi.nlm.nih.gov/pubmed/36195736
https://doi.org/10.3389/fdata.2021.666712
http://www.ncbi.nlm.nih.gov/pubmed/34095822
https://doi.org/10.1038/s41598-023-37294-8
http://www.ncbi.nlm.nih.gov/pubmed/37474614
https://doi.org/10.1073/pnas.0307545100
http://www.ncbi.nlm.nih.gov/pubmed/14745042
https://doi.org/10.1016/j.socnet.2018.07.007
https://doi.org/10.2202/1544-6115.1128
http://www.ncbi.nlm.nih.gov/pubmed/16646834
https://doi.org/10.1093/nar/gkq118
http://www.ncbi.nlm.nih.gov/pubmed/20194113
https://doi.org/10.1103/PhysRevE.101.052305
http://www.ncbi.nlm.nih.gov/pubmed/32575287
https://doi.org/10.1103/PhysRevE.68.036122
http://www.ncbi.nlm.nih.gov/pubmed/14524847
https://doi.org/10.1002/ecy.2043
http://www.ncbi.nlm.nih.gov/pubmed/29023670
https://doi.org/10.1088/1367-2630/13/8/083001
https://doi.org/10.1016/j.physa.2008.09.006
https://doi.org/10.1016/j.physa.2008.09.006
https://doi.org/10.1103/PhysRevE.76.066102
http://www.ncbi.nlm.nih.gov/pubmed/18233893
https://doi.org/10.1007/s12064-014-0203-1
http://www.ncbi.nlm.nih.gov/pubmed/24974139
https://doi.org/10.1038/s41598-020-76300-1
http://www.ncbi.nlm.nih.gov/pubmed/33199720
https://doi.org/10.1088/1367-2630/17/11/113037
https://doi.org/10.1038/srep08182
http://www.ncbi.nlm.nih.gov/pubmed/25640575
https://doi.org/10.1371/journal.pcsy.0000010

PLOS COMPLEX SYSTEMS

Pattern detection in bipartite networks

34.

35.

36.

37.

38.

39.

40.

.

42,

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

58.

GotelliNJ, McCabe DJ. Species co-occurrence: a meta-analysis of JM Diamond’s assembly rules
model. Ecology. 2002; 83(8):2091-2096.

Ulrich W. Species co-occurrences and neutral models: reassessing JM Diamond’s assembly rules.
Oikos. 2004; 107(3):603-609.

Stone L, Roberts A. The checkerboard score and species distributions. Oecologia. 1990; 85(1):74-79.
https://doi.org/10.1007/BF00317345 PMID: 28310957

Gilpin ME, Diamond JM. Factors contributing to non-randomness in species co-occurrences on
islands. Oecologia. 1982; 52(1):75-84. https://doi.org/10.1007/BF00349014 PMID: 28310111

Patterson BD, Atmar W. Nested subsets and the structure of insular mammalian faunas and archipela-
gos. Biol J Linn Soc. 1986; 28(1-2):65-82.

Bascompte J, Jordano P, Melian CJ, Olesen JM. The nested assembly of plant—animal mutualistic net-
works. Proc Natl Acad Sci. 2003; 100(16):9383—-9387. https://doi.org/10.1073/pnas.1633576100
PMID: 12881488

Payrat6-Borras C, Hernandez L, Moreno Y. Breaking the Spell of Nestedness: The Entropic Origin of
Nestedness in Mutualistic Systems. Phys Rev X. 2019; 9:031024. https://doi.org/10.1103/PhysRevX.
9.031024

Caruso T, Rillig MC, Garlaschelli D. Fluctuating ecological networks: A synthesis of maximum-entropy
approaches for pattern detection and process inference. Methods Ecol Evol. 2022; 13(11):2306—2317.

Morales-Castilla I, Matias MG, Gravel D, Araujo MB. Inferring biotic interactions from proxies. Trends
Ecol Evol. 2015; 30(6):347-356. https://doi.org/10.1016/j.tree.2015.03.014 PMID: 25922148

Blanchet FG, Cazelles K, Gravel D. Co-occurrence is not evidence of ecological interactions. Ecol
Lett. 2020; 23(7):1050-1063. https://doi.org/10.1111/ele.13525 PMID: 32429003

Breiger RL. The duality of persons and groups. Soc Forces. 1974; 53(2):181-190. https://doi.org/10.
1093/sf/53.2.181

Becatti C, Caldarelli G, Saracco F. Entropy-based randomization of rating networks. Phys Rev E.
2019; 99(2):022306. https://doi.org/10.1103/PhysRevE.99.022306 PMID: 30934284

Faust K. Centrality in affiliation networks. Soc Netw. 1997; 19(2):157—191. https://doi.org/10.1016/
S0378-8733(96)00300-0

Wang P, Pattison P, Robins G. Exponential random graph model specifications for bipartite networks—
A dependence hierarchy. Soc Netw. 2013; 35(2):211-222. https://doi.org/10.1016/j.socnet.2011.12.
004

Saracco F, Straka MJ, Clemente RD, Gabrielli A, Caldarelli G, Squartini T. Inferring monopartite pro-
jections of bipartite networks: An entropy-based approach. New J Phys. 2017. https://doi.org/10.1088/
1367-2630/2a6b38

Rasch G. Studies in mathematical psychology: I. Probabilistic models for some intelligence and attain-
ment tests. Nielsen & Lydiche; 1960.

Rasch G. Probabilistic models for some intelligence and attainment tests. ERIC; 1993.

Verhelst ND. An efficient MCMC algorithm to sample binary matrices with fixed marginals. Psychome-
trika. 2008; 73(4):705-728. https://doi.org/10.1007/s11336-008-9062-3

Borsboom D, Deserno MK, Rhemtulla M, Epskamp S, Fried El, McNally RJ, et al. Network analysis of
multivariate data in psychological science. Nat Rev Methods Primers. 2021; 1(1):1-18. https://doi.org/
10.1038/s43586-021-00055-w

Neal ZP, Forbes MK, Neal JW, Brusco MJ, Krueger R, Markon K, et al. Critiques of network analysis of
multivariate data in psychological science. Nat Rev Methods Primers. 2022; 2(1):1-2. https://doi.org/
10.1038/s43586-022-00177-9

Hidalgo CA, Klinger B, Barabasi AL, Hausmann R. The product space conditions the development of
nations. Science. 2007; 317(5837):482—487. https://doi.org/10.1126/science.1144581 PMID:
17656717

Hidalgo CA, Hausmann R. The building blocks of economic complexity. Proc Natl Acad Sci U S A.
2009; 106:10570—10575. https://doi.org/10.1073/pnas.0900943106 PMID: 19549871

Hausmann R, Hidalgo CA. The network structure of economic output. J Econ Growth. 2011; 16:309—
342.

Tacchella A, Cristelli M, Caldarelli G, Gabrielli A, Pietronero L. A New Metrics for Countries’ Fitness
and Products’ Complexity. Sci Rep. 2012; 2:1—4. https://doi.org/10.1038/srep00723 PMID: 23056915

Caldarelli G, Cristelli M, Gabrielli A, Pietronero L, Scala A, Tacchella A. A Network Analysis of Coun-
tries’ Export Flows: Firm Grounds for the Building Blocks of the Economy. PLoS ONE. 2012; 7:1-17.
https://doi.org/10.1371/journal.pone.0047278 PMID: 23094044

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010  October 3, 2024 31/34


https://doi.org/10.1007/BF00317345
http://www.ncbi.nlm.nih.gov/pubmed/28310957
https://doi.org/10.1007/BF00349014
http://www.ncbi.nlm.nih.gov/pubmed/28310111
https://doi.org/10.1073/pnas.1633576100
http://www.ncbi.nlm.nih.gov/pubmed/12881488
https://doi.org/10.1103/PhysRevX.9.031024
https://doi.org/10.1103/PhysRevX.9.031024
https://doi.org/10.1016/j.tree.2015.03.014
http://www.ncbi.nlm.nih.gov/pubmed/25922148
https://doi.org/10.1111/ele.13525
http://www.ncbi.nlm.nih.gov/pubmed/32429003
https://doi.org/10.1093/sf/53.2.181
https://doi.org/10.1093/sf/53.2.181
https://doi.org/10.1103/PhysRevE.99.022306
http://www.ncbi.nlm.nih.gov/pubmed/30934284
https://doi.org/10.1016/S0378-8733%2896%2900300-0
https://doi.org/10.1016/S0378-8733%2896%2900300-0
https://doi.org/10.1016/j.socnet.2011.12.004
https://doi.org/10.1016/j.socnet.2011.12.004
https://doi.org/10.1088/1367-2630/aa6b38
https://doi.org/10.1088/1367-2630/aa6b38
https://doi.org/10.1007/s11336-008-9062-3
https://doi.org/10.1038/s43586-021-00055-w
https://doi.org/10.1038/s43586-021-00055-w
https://doi.org/10.1038/s43586-022-00177-9
https://doi.org/10.1038/s43586-022-00177-9
https://doi.org/10.1126/science.1144581
http://www.ncbi.nlm.nih.gov/pubmed/17656717
https://doi.org/10.1073/pnas.0900943106
http://www.ncbi.nlm.nih.gov/pubmed/19549871
https://doi.org/10.1038/srep00723
http://www.ncbi.nlm.nih.gov/pubmed/23056915
https://doi.org/10.1371/journal.pone.0047278
http://www.ncbi.nlm.nih.gov/pubmed/23094044
https://doi.org/10.1371/journal.pcsy.0000010

PLOS COMPLEX SYSTEMS

Pattern detection in bipartite networks

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Cristelli M, Gabrielli A, Tacchella A, Caldarelli G, Pietronero L. Measuring the Intangibles: A Metrics for
the Economic Complexity of Countries and Products. PLoS ONE. 2013; 8(8):e70726. https://doi.org/
10.1371/journal.pone.0070726 PMID: 23940633

Cristelli M, Tacchella A, Pietronero L. The heterogeneous dynamics of economic complexity. PLoS
ONE. 2015; 10(2):e0117174. https://doi.org/10.1371/journal.pone.0117174 PMID: 25671312

Di Gangi D, Lillo F, Pirino D. Assessing systemic risk due to fire sales spillover through maximum
entropy network reconstruction. J Econ Dyn Control. 2018; 94:117—-141.

Squartini T, Almog A, Caldarelli G, Van Lelyveld |, Garlaschelli D, Cimini G. Enhanced capital-asset
pricing model for the reconstruction of bipartite financial networks. Phys Rev E. 2017; 96(3):032315.
https://doi.org/10.1103/PhysReVvE.96.032315 PMID: 29347051

Alabdulkareem A, Frank MR, Sun L, AlShebli B, Hidalgo C, Rahwan |. Unpacking the polarization of
workplace skills. Sci Adv. 2018; 4(7):eaa06030. https://doi.org/10.1126/sciadv.aao6030 PMID:
30035214

Kok S, Bt W. Cities, tasks, and skills. J Reg Sci. 2014; 54(5):856—-892.

Neffke F, Henning M, Boschma R. How do regions diversify over time? Industry relatedness and the
development industry relatedness and the development. Econ Geogr. 2011; 87(3):237-265.

O’Clery N, Heroy S, Hulot F, Beguerisse-Diaz M. Unravelling the forces underlying urban industrial
agglomeration. arXiv [Preprint]. 2019;1903.09279v2.

Galetti JR, Tessarin MS, Morceiro PC. Types of occupational relatedness and branching processes
across Brazilian regions. Area Dev Policy. 2022:1-23.

Muneepeerakul R, Lobo J, Shutters ST, Goméz-Liévano A, Qubbaj MR. Urban economies and occu-
pation space: Can they get “there from “here? PLoS ONE. 2013; 8(9):e73676. https://doi.org/10.1371/
journal.pone.0073676 PMID: 24040021

Téth G, Elekes Z, Whittle A, Lee C, Kogler DF. Technology network structure conditions the economic
resilience of regions. Econ Geogr. 2022; 98(4):355-378.

O’Neale DR, Hendy SC, Vasques FD. Structure of the Region-Technology Network as a Driver for
Technological Innovation. Front Big Data. 2021; 4:689310. https://doi.org/10.3389/fdata.2021.689310
PMID: 34337398

Almeida-Neto M, Guimaraes P, Guimaraes PR Jr, Loyola RD, Ulrich W. A consistent metric for nested-
ness analysis in ecological systems: reconciling concept and measurement. Oikos. 2008; 117
(8):1227-1239.

Tuomisto H. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying
beta diversity and related phenomena. Ecography. 2010; 33(1):23—45.

Squartini T, de Mol J, den Hollander F, Garlaschelli D. Breaking of ensemble equivalence in networks.
Phys Rev Lett. 2015; 115(26):268701. https://doi.org/10.1103/PhysRevLett.115.268701 PMID:
26765034

Garlaschelli D, den Hollander F, Roccaverde A. Ensemble nonequivalence in random graphs with
modular structure. J Phys A Math Theor. 2016; 50(1):015001. https://doi.org/10.1088/1751-8113/50/1/
015001

Zhang Q, Garlaschelli D. Strong ensemble nonequivalence in systems with local constraints. New J
Phys. 2022; 24(4):043011.

Giuffrida F, Squartini T, Grinwald P, Garlaschelli D. Description length of canonical and microcanoni-
cal models. arXiv:2307.05645v2 [Preprint]. 2023.

Blanchet J, Stauffer A. Characterizing optimal sampling of binary contingency tables via the configura-
tion model. Random Struct Algorithms. 2013; 42(2):159-184. https://doi.org/10.1002/rsa.20403

Ryser HJ. Combinatorial properties of matrices of zeros and ones. Can J Math. 1957; 9:371-377.

Strona G, Nappo D, Boccacci F, Fattorini S, San-Miguel-Ayanz J. A fast and unbiased procedure to
randomize ecological binary matrices with fixed row and column totals. Nat Commun. 2014; 5(1):1-9.
https://doi.org/10.1038/ncomms5114 PMID: 24916345

Carstens CJ, Berger A, Strona G. A unifying framework for fast randomization of ecological networks
with fixed (node) degrees. MethodsX. 2018; 5:773-780. https://doi.org/10.1016/j.mex.2018.06.018
PMID: 30094204

Carstens CJ. Proof of uniform sampling of binary matrices with fixed row sums and column sums for
the fast curveball algorithm. Phys Rev E. 2015; 91(4):042812. https://doi.org/10.1103/PhysRevE.91.
042812 PMID: 25974552

Carstens CJ, Kleer P. Comparing the switch and curveball Markov chains for sampling binary matrices
with fixed marginals. arXiv:170907290 [Preprint]. 2017.

Aldous DJ, Diaconis P. Shuffling cards and stopping-times. Am Math Mon. 1986; 93:333-348.

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010  October 3, 2024 32/34


https://doi.org/10.1371/journal.pone.0070726
https://doi.org/10.1371/journal.pone.0070726
http://www.ncbi.nlm.nih.gov/pubmed/23940633
https://doi.org/10.1371/journal.pone.0117174
http://www.ncbi.nlm.nih.gov/pubmed/25671312
https://doi.org/10.1103/PhysRevE.96.032315
http://www.ncbi.nlm.nih.gov/pubmed/29347051
https://doi.org/10.1126/sciadv.aao6030
http://www.ncbi.nlm.nih.gov/pubmed/30035214
https://doi.org/10.1371/journal.pone.0073676
https://doi.org/10.1371/journal.pone.0073676
http://www.ncbi.nlm.nih.gov/pubmed/24040021
https://doi.org/10.3389/fdata.2021.689310
http://www.ncbi.nlm.nih.gov/pubmed/34337398
https://doi.org/10.1103/PhysRevLett.115.268701
http://www.ncbi.nlm.nih.gov/pubmed/26765034
https://doi.org/10.1088/1751-8113/50/1/015001
https://doi.org/10.1088/1751-8113/50/1/015001
https://doi.org/10.1002/rsa.20403
https://doi.org/10.1038/ncomms5114
http://www.ncbi.nlm.nih.gov/pubmed/24916345
https://doi.org/10.1016/j.mex.2018.06.018
http://www.ncbi.nlm.nih.gov/pubmed/30094204
https://doi.org/10.1103/PhysRevE.91.042812
https://doi.org/10.1103/PhysRevE.91.042812
http://www.ncbi.nlm.nih.gov/pubmed/25974552
https://doi.org/10.1371/journal.pcsy.0000010

PLOS COMPLEX SYSTEMS

Pattern detection in bipartite networks

84.

85.

86.

87.

88.
89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.
106.
107.

108.

109.

110.

111.

Knuth DE. The art of computer programming: Volume 3: Sorting and Searching. Addison-Wesley Pro-
fessional; 1998.

Neal ZP, Domagalski R, Sagan B. Comparing alternatives to the fixed degree sequence model for
extracting the backbone of bipartite projections. Sci Rep. 2021; 11(1):1-13.

Barvinok A. On the number of matrices and a random matrix with prescribed row and column sums
and 0—1 entries. Adv Math. 2010; 224(1):316-339.

Squartini T, Garlaschelli D. Reconnecting statistical physics and combinatorics beyond ensemble
equivalence. arXiv:171011422 [Preprint]. 2017.

Gale D. A theorem on flows in networks. Pacific J Math. 1957; 7(2):1073-1082.

Coolen AC, De Martino A, Annibale A. Constrained Markovian dynamics of random graphs. J Stat
Phys. 2009; 136:1035-1067.

Roberts E, Coolen A. Unbiased degree-preserving randomization of directed binary networks. Phys
Rev E. 2012; 85(4):046103. https://doi.org/10.1103/PhysRevE.85.046103 PMID: 22680534

Artzy-Randrup Y, Stone L. Generating uniformly distributed random networks. Phys Rev E. 2005; 72
(5):056708. https://doi.org/10.1103/PhysRevE.72.056708 PMID: 16383786

Sanderson JG, Moulton MP, Selfridge RG. Null matrices and the analysis of species co-occurrences.
Oecologia. 1998; 116(1-2):275-283. https://doi.org/10.1007/s004420050589 PMID: 28308537

Gotelli NJ, Entsminger GL. Swap and fill algorithms in null model analysis: rethinking the knight's tour.
Oecologia. 2001; 129(2):281-291. https://doi.org/10.1007/s004420100717 PMID: 28547607

Chen Y, Diaconis P, Holmes SP, Liu JS. Sequential Monte Carlo methods for statistical analysis of
tables. J Am Stat Assoc. 2005; 100(469):109-120.

Chen XH, Dempster AP, Liu JS. Weighted finite population sampling to maximize entropy. Biometrika.
1994; 81(3):457—469.

Brewer KR, Hanif M. Sampling with unequal probabilities. Springer Science & Business Media; 2013,
vol. 15.

Roberts A, Stone L. Island-sharing by archipelago species. Oecologia. 1990; 83(4):560-567. https://
doi.org/10.1007/BF00317210 PMID: 28313193

Maslov S, Sneppen K, Zaliznyak A. Detection of topological patterns in complex networks: correlation
profile of the internet. Physica A Stat Mech Appl. 2004; 333:529-540.

Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002; 296
(5569):910-913. https://doi.org/10.1126/science.1065103 PMID: 11988575

Milo R, Shen-Orr S, lizkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building
blocks of complex networks. Science. 2002; 298(5594):824—-827. https://doi.org/10.1126/science.298.
5594.824 PMID: 12399590

Stouffer DB, Camacho J, Jiang W, Nunes Amaral LA. Evidence for the existence of a robust pattern of
prey selection in food webs. Proc R Soc Lond B Biol Sci. 2007; 274(1621):1931-1940. https://doi.org/
10.1098/rspb.2007.0571 PMID: 17567558

Fayle TM, Manica A. Reducing over-reporting of deterministic co-occurrence patterns in biotic commu-
nities. Ecol Model. 2010; 221(19):2237-2242.

Gotelli NJ, Ulrich W, et al. Over-reporting bias in null model analysis: a response to Fayle and Manica
(2010). Ecol Model. 2011; 222(7):1337-1339.

Fayle TM, Manica A. Bias in null model analyses of species co-occurrence: a response to Gotelli and
Ulrich (2011). Ecol Model. 2011; 222(7):1340—1341.

Besag J, Clifford P. Generalized monte carlo significance tests. Biometrika. 1989; 76(4):633—642.
Manly BF. A note on the analysis of species co-occurrences. Ecology. 1995; 76(4):1109-1115.

Godard K, Neal ZP. fastball: A fast algorithm to sample binary matrices with fixed marginals. J Com-
plex Netw. 2022. https://doi.org/10.1093/comnet/cnac047

Vallarano N, Bruno M, Marchese E, Trapani G, Saracco F, Cimini G, et al. Fast and scalable likelihood
maximization for exponential random graph models with local constraints. Sci Rep. 2021; 11(1):1-33.

Ulrich W, Gotelli NJ. A null model algorithm for presence—absence matrices based on proportional
resampling. Ecol Model. 2012; 244:20-27.

Patterson B, Atmar W. Analyzing species composition in fragments. Bonn Zool Monogr. 2000; 46:9—
24.

Cover TM, Thomas JA. Elements of Information Theory 2nd Edition (Wiley Series in Telecommunica-
tions and Signal Processing). Wiley-Interscience; 2006.

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010  October 3, 2024 33/34


https://doi.org/10.1103/PhysRevE.85.046103
http://www.ncbi.nlm.nih.gov/pubmed/22680534
https://doi.org/10.1103/PhysRevE.72.056708
http://www.ncbi.nlm.nih.gov/pubmed/16383786
https://doi.org/10.1007/s004420050589
http://www.ncbi.nlm.nih.gov/pubmed/28308537
https://doi.org/10.1007/s004420100717
http://www.ncbi.nlm.nih.gov/pubmed/28547607
https://doi.org/10.1007/BF00317210
https://doi.org/10.1007/BF00317210
http://www.ncbi.nlm.nih.gov/pubmed/28313193
https://doi.org/10.1126/science.1065103
http://www.ncbi.nlm.nih.gov/pubmed/11988575
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
http://www.ncbi.nlm.nih.gov/pubmed/12399590
https://doi.org/10.1098/rspb.2007.0571
https://doi.org/10.1098/rspb.2007.0571
http://www.ncbi.nlm.nih.gov/pubmed/17567558
https://doi.org/10.1093/comnet/cnac047
https://doi.org/10.1371/journal.pcsy.0000010

PLOS COMPLEX SYSTEMS

Pattern detection in bipartite networks

112,

113.

114.

115.
116.

118.

119.

120.

Touchette H. Equivalence and nonequivalence of ensembles: Thermodynamic, macrostate, and mea-
sure levels. J Stat Phys. 2015; 159:987-1016.

Bruno M, Lambiotte R, Saracco F. Brexit and bots: characterizing the behaviour of automated
accounts on Twitter during the UK election. EPJ Data Sci 2022; 11:1-24. https://doi.org/10.1140/
epjds/s13688-022-00330-0 PMID: 35340571

Grinwald PD. The minimum description length principle. MIT press; 2007.
Strona G. Ecological Networks. Hidden Pathways to Extinction. Springer; 2022, pp. 41-55.

Staniczenko P, Kopp JC, Allesina S. The ghost of nestedness in ecological networks. Nat Commun.
2013; 4(1):1-6. https://doi.org/10.1038/ncomms2422 PMID: 23340431

Ulrich W, Gotelli NJ. Null model analysis of species associations using abundance data. Ecology.
2010; 91(11):3384—-3397. https://doi.org/10.1890/09-2157.1 PMID: 21141199

Krantz R, Gemmetto V, Garlaschelli D. Maximum-entropy tools for economic fitness and complexity.
Entropy. 2018; 20(10):743. https://doi.org/10.3390/e20100743 PMID: 33265832

Bruno M, Mazzilli D, Patelli A, Squartini T, Saracco F. Inferring comparative advantage via entropy
maximization. J Phys Complex. 2023; 4(4):045011.

Ulrich W, Kryszewski W, Sewerniak P, Puchatka R, Strona G, Gotelli NJ. A comprehensive framework
for the study of species co-occurrences, nestedness and turnover. Oikos. 2017; 126(11):1607—1616.

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000010  October 3, 2024 34/34


https://doi.org/10.1140/epjds/s13688-022-00330-0
https://doi.org/10.1140/epjds/s13688-022-00330-0
http://www.ncbi.nlm.nih.gov/pubmed/35340571
https://doi.org/10.1038/ncomms2422
http://www.ncbi.nlm.nih.gov/pubmed/23340431
https://doi.org/10.1890/09-2157.1
http://www.ncbi.nlm.nih.gov/pubmed/21141199
https://doi.org/10.3390/e20100743
http://www.ncbi.nlm.nih.gov/pubmed/33265832
https://doi.org/10.1371/journal.pcsy.0000010

