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To keep global warming < 2˚C, Almaraz et al. [1] highlight the need to drastically reduce

greenhouse gas emissions from food production and remove atmospheric carbon dioxide by

2050. They provided an expert analysis of the potential of terrestrial based biological methods

of carbon dioxide removal (CDR), including technologies that “demonstrated high impact

potential supported by peer-reviewed literature”. However, scientific rigour was not applied to

their brief consideration of marine CDR strategies, specifically ocean afforestation which is the

deliberate expansion of seaweed (macroalgal) aquaculture into the open ocean where they do

not naturally grow, and the cultivated biomass sunk to the deep ocean for CDR. Ocean affores-

tation (OAf) is subject of intense debate [2–5] and peer-reviewed literature questioning its

application for CDR were available before Almaraz et al. submission. Here we highlight some

key points missed by Almaraz et al. to be considered prior to investments in large scale OAf.

1. All CDR methods will be required to undergo Monitoring, Reporting and Verification

(MRV) to ensure that CO2 removed from the atmosphere is securely stored and does not

return to the atmosphere in the near future [6]. For marine systems, MRV is particularly

difficult because of the complexity of measuring air-sea CO2 equilibration [7–9]. Any sea-

weeds reaching the deep ocean may form a carbon storage pool but this is not directly

linked to CDR. This is because in the open ocean, it takes on average 1 year for CO2 to

enter seawater and replace the CO2 removed via seaweed photosynthesis; e.g. for open

ocean Sargassum spp. populations, when air-sea CO2 equilibration is accounted for, CDR is

just 6–33% of the maximal potential [10]. This is explained by the water body from which

Sargassum removed CO2 being subducted under another water body before full equilib-

rium is reached [9, 10].

2. Estimates of the oceanic regions where seaweeds could be cultivated are based on inorganic

nitrogen (nitrate) inventories [2, 3, 11]. Productivity of 30% of the global ocean is iron lim-

ited preventing healthy seaweed growth [12].

3. There are potential side effects that may result from an ‘ecological invasion’ of the open

ocean by large scale seaweed farms in which highly diverse native phytoplanktonic commu-

nities are replaced by mono-cultured seaweeds [3, 13]: among them, nutrient re-allocation

from phytoplankton to seaweeds; allelopathy, which will likely alter oceanic food webs; and

release of climate reactive volatile organic compounds which may affect cloud dynamics

and solar radiation [13].
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4. The fate of seaweed biomass accumulating on the deep-ocean floor is uncertain. It risks

impacting negatively deep sea ecosystems [14] and seaweed biomass not making it to the

ocean floor will undergo elemental recycling and transformation to CO2. Time scales for

carbon decomposition and remineralization, as well as movement of seaweed biomass, are

unknown, risking only transient carbon “sequestration” and not CDR on a climate-relevant

time scale [15]. Fig 1 illustrates key uncertainties associated with large scale seaweed farm-

ing and deep-ocean seaweed sinking.

Studies like Almaraz et al. [1] are important for navigating the portfolio of CDR solutions;

however, any inclusion needs to be supported by rigorous evaluation of net storage capacity

(i.e. MRV) as well as feasibility (costs, infrastructure, environmental impacts, societal issues,

etc.) to assess the true CDR potential. The risk may otherwise be development of misguided

policies.

Examples of uncertainties with large scale 
seaweed farming and deep-ocean seaweed 
dumping

• Impact pelagic ecosystem – alteration of nutrient food 
web dynamics

• Limited/lag time of atmospheric CO2 removal
• Nutrient limitation large scale off-shore farming (eg. iron)
• Release of ozone reactive gas from large scale 

seaweed farming

• Sinking technologies – energy/costs
• Impact benthic ecosvstems
• Long-term fate of seaweed biomass – transient carbon storage
• Uncertainties related to legal frameworks

2

1

Deep-ocean 
seaweed dumping

Seaweed 
aquaculture

ATMOSPHERE

2

1
VOCs

Air-sea CO2
equilibration

CO2
Fe

DECOMPOSITION

RE
MI

NE
RA

LI
ZA

TI
ON

UPWELLINGS

Fig 1. Examples of uncertainties with 1) large scale seaweed farming and 2) deep-ocean seaweed dumping (from references used in the text).

https://doi.org/10.1371/journal.pclm.0000377.g001
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