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Abstract

Climate change exhibits substantial variability across both space and time, requir-

ing mitigation and adaptation strategies that effectively address challenges at global

and local scales. Accurately capturing this variability is essential for assessing cli-

mate impacts, attributing underlying causes, and formulating effective policies. This

study introduces simple yet robust quantitative methods to detect local warming,

distinguish among different types of warming, and compare warming trends across

contiguous U.S. states using the concept of warming dominance. In contrast to tra-

ditional approaches that focus solely on average temperatures, our analysis rigor-

ously and systematically examines the entire distribution of daily temperatures for

the contiguous United States from 1950 to 2021. The results reveal that, while 44%

of states show no statistically significant warming based on average temperature

trends, a much larger proportion—84%—exhibit warming when assessing various

quantiles of the distribution. Statistical significance is evaluated using HAC-robust

t-tests at the 5% significance level (95% confidence), ensuring that detected warming

reflects genuine shifts rather than random variability. These findings underscore the

substantial heterogeneity in warming patterns: some states, such as those located in

the so-called “Warming Hole,” display no evidence of warming at any quantile; others

experience more pronounced warming in either the lower or upper tails of the temper-

ature distribution; and a few states show consistent warming across all quantiles. The

study concludes by identifying which states exhibit warming dominance over others

and which appear comparatively less affected. These insights are particularly impor-

tant in the United States, where climate policy is formulated and implemented at both

federal and state levels.

1 Introduction

Climate change is a complex and multifaceted phenomenon with impacts that vary
widely across different regions. Although the climate system functions on a global
scale, its effects are experienced locally, resulting in significant regional variability.
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These localized impacts affect numerous sectors such as real estate, agriculture,
tourism, public health, income distribution, and the frequency of extreme weather
events and natural disasters. Moreover, public perceptions and psychological
responses to climate change are deeply influenced by these region-specific experi-
ences. Despite the extensive body of climate change research, focused and system-
atic examination of its regional differences remains relatively recent, with a limited
number of studies explicitly addressing this important heterogeneity.

This study introduces a quantitative methodology designed to describe and com-
pare the warming processes experienced by different regions and states across
the contiguous United States. For the purposes of this analysis, we use the terms
Climate Change (CC) and Warming (W) interchangeably, defining warming as a pos-
itive trend in temperature data [1]. Focusing specifically on temperature trends—a
key climate variable central to decision-making and a primary indicator of climate
change—we produce robust results that remain valid even in the presence of com-
mon statistical misspecifications such as heteroskedasticity and serial correlation,
provided these issues are less pronounced than the underlying trend.

From a physical-climate perspective, spatial differences in warming arise from
well-documented mechanisms such as atmospheric circulation patterns, land–ocean
thermal contrasts, and feedback processes involving snow and ice cover, precipita-
tion and hydrological-cycle dynamics, and soil moisture e.g., [2–8]. Regional ampli-
fication effects, particularly in high-latitude regions and continental interiors, are
closely linked to changes in atmospheric circulation regimes and surface-albedo
feedbacks [9,10]. In the contiguous United States, these processes contribute to
distinct regional responses, with the so-called “Warming Hole” in the Southeast
often attributed to aerosol forcing, cloud feedbacks, and ocean–atmosphere inter-
actions [11,12]. Integrating such physical insights with statistical methods enables
a more comprehensive characterization of regional climate dynamics and pro-
vides a bridge between empirical detection and physical interpretation of observed
trends.

Our novel methodology not only reproduces well-established findings, thereby
confirming its validity, but also reveals previously hidden patterns by examining the
full distribution of temperature data. This dual capability underscores both its reliabil-
ity and added analytical value. Additionally, the method is easy to apply, robust under
various data conditions, and yields interpretable outputs, making it a valuable tool
for both researchers and policymakers. A critical aspect of our approach challenges
the traditional focus of many climate change studies, which predominantly empha-
size shifts in average temperature while overlooking important insights found within
the entire warming process. By analyzing the full temperature distribution—including
both lower (left-tail) and upper (right-tail) quantiles—we provide a broader and more
comprehensive understanding of warming patterns. This distributional perspective
aligns with methodologies commonly used in other fields, such as income distribution
research, where analyzing the full distribution is standard practice.

This approach complements recent contributions that extend climate analysis
beyond mean temperature and toward changes in the full distribution. For instance,
[13] test for shifts in the entire probability density of temperature, while [14] apply
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quantile trend regression to identify heterogeneous slopes across the quantiles of the mean temperature process. The
former requires relatively long temporal windows (e.g., 30 years) to estimate densities, which can be problematic when
temperature records exhibit non-stationarity, whereas the latter focuses on the conditional mean process rather than the
unconditional distribution assessed in our study. [15] conceptualize climate as a continuously evolving distribution and
provide graphical assessments of relative changes across quantiles and geographical locations, but without formal statisti-
cal testing. Meanwhile, [16] use multidimensional ensemble empirical mode decomposition (MEEMD) to isolate oscillatory
components from long-term warming trends in gridded temperature fields, enhancing regional comparisons of warming
and its acceleration; however, MEEMD does not readily allow statistical comparison of full distributions or identification of
distinct warming patterns within regions.

In line with this broader framework, we introduce the concept of Warming Dominance (WD), a tool for assessing and
comparing the intensity and characteristics of warming across geographic areas. WD provides a complementary diagnos-
tic structure that is informative for climate adaptation, mitigation, and compensation strategies, offering a refined basis for
policy-relevant assessments. Related tools—such as the Synthetic Warming Dominance Index and the Pareto-dominance
framework—further enhance interpretability and cross-regional comparability when there are many regions.

Our recommendation is to combine the numerical WD method with existing visual tools, such as the IPCC WGI Interac-
tive Atlas [17], the Copernicus Climate Atlas (C3S) [18], and NOAA’s Climate at a Glance platform [19]. These platforms
offer spatially resolved visualizations of climate indicators, and integrating them with the WD approach strengthens both
the interpretability and practical relevance of our findings.

The remainder of the paper is structured as follows: Sect 2 details the data and methodology, Sect 3 presents the
empirical results for U.S. states, and Sect 4 discusses the methodological and policy implications. Sect 5 summarizes the
main findings and outlines directions for future research. References and an appendix (S1 Appendix in complementary
material) conclude the paper.

2 Data and methods
2.1 Data

We use a panel dataset of county-level daily mean temperatures for the 48 contiguous U.S. states over the period
1950–2021. (Alaska and Hawaii are excluded. Although the District of Columbia is included in the original dataset, it is
excluded from the main analysis due to limited data availability. State-level data are constructed by aggregating county-
level observations using land and water area weights. For 1950–2019, we rely on PRISM-based gridded temperature
data compiled by Wolfram Schlenker (http://www.columbia.edu/~ws2162/links.html). For 2020–2021, we extend the
series using recent PRISM data and land cover information from the NLCD 2019 dataset, constructing cropland-weighted
county-level averages. We thank Seunghyun Lee and Aaron Smith (ARE Department, UC Davis) for assistance with
data preparation.) After harmonizing data sources and aggregating to the state level, we obtain a balanced panel with
26,298 daily observations per state. Each state-level series is denoted by Tempijd, where i indexes the state, j the year,
and d the day. This structure allows us to compute time series of temperature distribution characteristics at the annual
level for each state. (The dataset is publicly available and can be downloaded from https://www.aaronsmithagecon.com/
download-us-weather-data (see [20]).)

The PRISM-based dataset ensures high spatial representativeness by combining dense station coverage in populated
areas with robust interpolation algorithms in sparsely monitored regions. This design minimizes the potential bias aris-
ing from uneven spatial sampling, allowing for consistent state-level aggregation across the entire U.S. mainland. The
resulting distributions capture genuine climatic heterogeneity rather than artifacts of data density or measurement cover-
age. This approach follows the principles established in [1], where an analogous methodology was applied to the Central
England using a high-frequency station network to quantify changes in temperature distributions.
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In addition, the quantile-based design of the analysis inherently enhances robustness by reducing sensitivity to data
coverage and to changes in the number or spatial distribution of weather stations over time.

2.2 Statistical methods

In [1] (GG2020), we define Global Warming (GW) as the presence of an increasing trend in temperature data, expand-
ing the analysis beyond the mean, as commonly done in the literature, to include the entire temperature distribution. The
core of this methodology involves treating observed quantiles as representative of the temperature distribution for a given
region or the globe. From cross-sectional data, we calculate annual unconditional quantiles and other distributional char-
acteristics, which are then automatically transformed into time-series objects suitable for statistical analysis. We define
Ct = (C1t,C2t, ...,Cpt) as a vector of p distributional characteristics (mean (m), interquartile range (iqr), and the following
quantiles: q05, q10, q20, q30, q40, q50, q60, q70, q80, q90, and q95 estimated from D days (typically 365) for each state
and year. Based on this framework, we test for the presence of a trend in any distributional characteristic of the tempera-
ture distribution.

Definition 1. (Practical definition): A characteristic Ct of a functional stochastic process Xt contains a trend if in the least
square regression,

Ct = 𝛼 + 𝛽t + ut, t = 1, ...,T, (1)

𝛽 = 0 is rejected.

Several remarks are relevant with respect to this definition: (i) regression (1) has to be understood as the linear LS
approximation of an unknown trend function h(t) (see [21]); (ii) the parameter 𝛽 is the plim of 𝛽ols; (iii) if the regression (1)
is the true data-generating process, with ut ∼ I(0), then the OLS 𝛽 estimator is asymptotically equivalent to the GLS esti-
mator (see [22]) and the t− test(𝛽 = 0) is N(0,1); (iv) in practice, in order to test 𝛽 = 0, it is recommended to use a robust
HAC version of t𝛽=0 (see [23]); and (v) this test only detects the existence of a trend but not the type of trend.

For all these reasons, in the empirical applications we implement definition 1 by estimating regression (1) using OLS
and constructing a HAC version of t𝛽=0 ([24])).

It is important to emphasize that this test assesses only the presence or absence of a trend, without identifying its spe-
cific form. The procedure described in GG2020 is capable of detecting a wide range of trend types commonly discussed
in the literature, including polynomial, logarithmic, and stochastic trends. To determine the precise nature of the trend,
as outlined in [25], we recommend conducting an out-of-sample forecast competition among various trend specifications
and selecting the model that demonstrates the best predictive performance. In this study, we adopt equation (1) as a
linear approximation of the underlying, potentially unknown trend. This approach enables both comparisons of warm-
ing processes across states and a detailed analysis of the warming trajectory within individual states. (An alternative and
noteworthy definition of trend is presented in [26]. This approach is primarily intended for detrending the data, rather than
for comparing different warming processes.)

This approach has enormous strength and is the starting point for the development of powerful tools that allow us to
approach a better understanding of key climate change issues such as causes, consequences and prediction in the long
run. For instance, we can easily analyze the trend behavior of the different distributional characteristics and not only of the
mean to detect and define different types of warming processes, establishing a typology:

Definition 2. (Warming Typology): Applying least square regression 1 to each of the characteristics, define four types of
warming processes:

• W0: There is no trend in any of the quantiles (No warming).
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• W1: All the location distributional characteristics have the same positive trend (dispersion does not contain a trend)
• W2: The Lower quantiles have a larger positive trend than the Upper quantiles (dispersion has a negative trend)
• W3: The Upper quantiles have a larger positive trend than the Lower quantiles (dispersion has a positive trend).

It should be noted that this classification has a dynamic nature: it is based on the evolution of the trend of the temper-
ature quantiles, lower and upper [27]. It is a complement, therefore, to other classical classifications such as that of [28]
and [29] or the proposal of [30] for the US.

In the previous definitions, we classify the warming process of different regions which is crucial in the design of local
mitigation and adaptation policies. But we, also, need to compare the different climate change processes of two regions
in order to characterize climate heterogeneity independently of the type of warming they are experimenting. For this pur-
pose, we propose the following definitions that share the spirit of the stochastic dominance concept used in the economic-
finance literature.

Definition 3. (Warming Dominance in the mean (WDm):We say that the temperature distributions of Region A warming
dominates (WD) the temperature distributions of Region B if in the following least square regression

mt(A) −mt(B) = 𝛼 + 𝛽t + u (2)

𝛽 > 0.

Warming dominance in mean is the standard approach to compare the warming processes of two regions. In many
occasions this dominance does not offer a full comparison of both warming processes. It has the limitation that the aver-
age of a distribution has. Two regions could suffer an equivalent warming process in mean but one dominates the other in
some of the quantiles. For this reason, we propose the following definition of warming dominance in distribution.

Definition 4. (Warming Dominance (WD):We say that the temperature distributions of Region A warming dominates
(WD) the temperature distributions of Region B if in the following regression

q𝜏t(A) − q𝜏t(B) = 𝛼𝜏 + 𝛽𝜏t + u𝜏t, (3)

𝛽𝜏 ≥ 0 for all 0 < 𝜏 < 100 and there is at least one value 𝜏∗ for which a strict inequality holds.

Several remarks are relevant with respect to the two previous definitions: (i) In regression (3), under the null hypothe-
sis of no dominance at quantile 𝜏, the test statistic t-stat = 𝛽𝜏/𝜎HAC(𝛽𝜏) is asymptotically distributed as𝒩(0,1), where 𝜎HAC
denotes the heteroskedasticity- and autocorrelation-consistent (HAC) standard error of 𝛽𝜏; (ii) The test is robust to any
trend detectable under regression (1), for instance, the quantiles could contain a non-liner trend component; (iii)Warming
Dominance (WD) can be classified as strong or weak depending on whether 𝛽𝜏 > 0 for all 𝜏, or only for some quantiles;
(iv)WD can also be partial—for instance, present only in the lower or upper quantiles.

3 Quantitative results

As an initial exploration of climate characteristics by state, Fig 1 presents the U.S. climate regions as defined by the
National Centers for Environmental Information (NCEI, Karl and Koss, 1984). This classification delineates up to nine dis-
tinct climate regions, which will later be compared to the typology derived from our methodology. Based on climatological
analyses of the period 1895–1983, this classification considers the temporal and spatial distributions of temperature and
precipitation across groups of contiguous states using principal component analysis techniques. Additionally, it provides
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Fig 1. Climate areas in the U.S. (NCEI, Karl and Koss, 1984). Base layer: U.S. Census Bureau, Cartographic Boundary Files — States (public
domain). Source: https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html.

https://doi.org/10.1371/journal.pclm.0000808.g001

descriptive temporal data on maximum, minimum, mean, and standard deviation values, as well as the 5th and 95th quan-
tiles and seasonal variations for each area. This classification is valuable for placing current climate anomalies in histori-
cal context and shares certain features with our approach, though the primary distinction lies in the dynamic components
incorporated into the latter.

More recently, the National Commission for US National Climate Assessment has been considering and adjusting the
regional boundaries in 4-year increments for at least a decade. Its most recent report identifies eight climate regions, as
illustrated in Fig 2. This institution, through the US Global Change Research Program, assesses the science of climate
change and its impacts across the United States, both in the present and throughout the century. It systematically doc-
uments the effects of climate change and the corresponding responses across various sectors and regions, aiming to
enhance public and private decision-making at all levels. Our work contributes to this discussion by providing quantitative
testable tools for analysis, offering a data-driven perspective to support informed policy development.

Next, we present the average temperature trends for each state over the period considered (Fig 3). This figure shows
that some states exhibit a clear upward trend in temperature, such as California, while others, like Oklahoma, show little to
no discernible trend.

Building on the preliminary descriptive analysis, we now implement the methodology outlined above. We test for the
presence of statistically significant trends as evidence of climate change. These results then form the basis for construct-
ing a typology of climate change across states and for evaluating the presence of Warming Dominance.

3.1 Warming existence

In this section, we apply the trend test defined in (1) to both the mean and selected quantiles to assess the pres-
ence of warming. (As a preliminary analysis, we test all quantiles for the presence of a unit root using the Augmented
Dickey-Fuller test, [31], with a constant and trend, selecting lag length via the Schwartz Information Criterion (SBIC).
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Fig 2. Climate areas in the U.S. (National Climate Assessment, 2023, Fifth Report). Source: Adapted from the Fifth U.S. National Climate
Assessment (2023). Public-domain material (U.S. Government Work). No permission required. URL: https://nca2023.globalchange.gov/regions.

https://doi.org/10.1371/journal.pclm.0000808.g002

Results—available upon request—consistently reject the null hypothesis of a unit root across all quantiles and states.)
The results provide the empirical basis for the typology developed in the following section. Detailed estimates are reported
in Table AI-1 in S1 Appendix, while Figs 4 and 5 display the estimated coefficients and corresponding t-ratios for four
key distributional characteristics: the mean, interquartile range (iqr), and quantiles (q05) and (q95). In addition, maps (in
Figs 6, 7 and 8) classify states according to the significance of warming trends for the three characteristics mentioned
above.

The first conclusion is the significant heterogeneity in temperature distribution. For the most commonly studied
characteristic—the average—we find positive, and widely significant, slopes ranging from 0.022 to 0.0007, and even
a negative slope of –0.0006, although not significant, in the case of Oklahoma. The highest and significant slopes are
observed in Rhode Island, Arizona, Connecticut, and California, while the lowest are in Wisconsin and Michigan. The het-
erogeneity is even more pronounced when we examine the iqr, which measures the dispersion of the temperature distri-
bution although in most of the states it does no contain a significant trend. Here, we find both positive values (indicating a
widening distribution) and negative values (indicating a shrinking distribution). For example, states like Nevada, Oregon,
and California exhibit widening distributions, while shrinking distributions are not significant.

For q05, which measures trends in lower temperatures, values are always positive but exhibit a wide range of variation
although is only significant in 10 of the 48 states analyzed. For instance, and focusing only on significant trends, values
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Fig 3. Evolution of the mean temperature across contiguous U.S. states (1950–2021). Source: Own elaboration from PRISM state-level temper-
ature series (see Sect 2 for data description). Figure generated with MATLAB (R2024b). Each panel shows the annual mean temperature (°C) for one
U.S. state, illustrating both the long-term upward trend and the regional heterogeneity of warming.

https://doi.org/10.1371/journal.pclm.0000808.g003

hover around 0.03 in North Dakota, Montana, Minnesota, and South Dakota, but are much lower in Nevada, Oregon and
New Mexico. Regardless of the range, a consistent pattern emerges: lower temperatures exhibit a clear upward trend to
varying degrees.

This pattern, however, does not hold for q95, which tracks trends in higher temperatures where significant trends are
found in half of the states studied. In states like Rhode Island, Oregon, Washington, and Massachusetts, higher temper-
atures have increased by more than 0.02, while in other states, such as North and South Dakota, the trend is downward.

Beyond evaluating the coefficient values that indicate trend magnitudes, it is essential to assess their statistical signif-
icance as defined by the model equation. The table presents detailed results, including p-values for these tests. Notably,
the most significant trends appear in q95, even in those cases where no warming is detected in the mean, indicating that
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Fig 4. Trend slopes of representative distributional characteristics across U.S. states (1950–2021). Sources: Own elaboration from PRISM state-
level temperature series (see Sect 2). Figure generated with MATLAB (R2024b). The panels show the estimated linear trend coefficients for the mean,
the interquartile range (IQR), the lower tail (q05), and the upper tail (q95) of the temperature distribution across U.S. states.

https://doi.org/10.1371/journal.pclm.0000808.g004

the most intense warming occurs in the right tail of the distribution, corresponding to the highest temperatures. Addition-
ally, the accompanying figures and maps visually summarize key characteristics, such as the mean, q05, and q95.

The importance of going beyond the average is clearly illustrated by the following figures which summarize the above
information. The trend in the mean is significant in only 27 of the 49 states (55%). However, 41 of them (84%) show posi-
tive and significant trends in AT LEAST one of the quantiles of the distribution.

3.2 Typology of warming processes

Based on the previous results, we aim to establish a typology of climate change for different states. To achieve this, and
following the definitions outlined in Sect 2.2, we developed an algorithm comprising the following steps:
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Fig 5. T-statistics for trend tests of representative distributional characteristics. Sources: Own elaboration from PRISM state-level temperature
series (see Sect 2). Figure generated with MATLAB (R2024b). Red horizontal lines mark the 5% two-sided critical values (±1.96).

https://doi.org/10.1371/journal.pclm.0000808.g005

1. Test for the existence of warming: We employ a Wald test to evaluate the null hypothesis that no statistically signifi-
cant trend exists in a panel consisting of quantiles from q05 to q95. If this hypothesis cannot be rejected, the state is
classified as typeW0 and the algorithm stops.

2. If the previous hypothesis is rejected, indicating warming at some quantile, we analyze the sign and significance of
the difference between the lower and upper quantiles, along with the interquartile range (iqr):
• We carry out the following tests for each state i:

q05t,i − q95t,i = 𝛼1 + 𝛽1,it + u1,i,t
q10t,i − q90t,i = 𝛼2 + 𝛽2,it + u2,i,t
and check if 𝛽1,i or 𝛽2,i are significant and, in this case, positive or negative.
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Fig 6. State rankings by HAC-based t-statistics of mean temperature warming across U.S. states (1950–2021). Sources: Own elaboration from
PRISM state-level temperature series (see Sect 2). Map generated with MATLAB (R2024b, Mapping Toolbox); no additional permissions required
beyond software citation. Colours represent the HAC-based t-statistic of the linear trend in mean temperature for each state. Cooler (bluer) shades
indicate weaker or statistically insignificant warming signals (lower t-statistics), whereas warmer (green to yellow) shades indicate stronger statistical
evidence of warming (higher t-statistics). Negative values, where present, correspond to cooling trends.

https://doi.org/10.1371/journal.pclm.0000808.g006

• We study the sign significance of the trend coefficient of iqr=q75-q25.
• To establish typology, we use a conservative level of significance of 10%.

3. Based on the possible combinations of these results (a total of 27), the following typology is established. Note that
some undefined cases can occur.

According to our analysis, climate change in mean is evident in 55% of contiguous U.S. states. However, the temper-
ature distribution across these states is highly heterogeneous. When examining the distribution as a whole, we reject the
null hypothesis of no warming (W0) in 84% of the states. This indicates that while almost half of the states do not exhibit
global warming in the mean, they do show significant trends in specific parts of the temperature distribution. These find-
ings underscore the importance of considering the entire distribution of temperatures rather than focusing solely on aver-
age values, and suggest the need for a typology that takes all aspects into account.

The results are presented in Figs 9 and 10. The first map shows the states in which no statistically significant trend
is detected across the quantiles, leading to the assumption that no warming is present. These states include Alabama,
Arkansas, Illinois, Kansas, Mississippi, Missouri, Oklahoma, and Texas. It is worth noting that most of these states are
located within the Southern climate zone, which corresponds to a large extent to the so-called “Warming Hole” (see, for
instance [32]. The warming hole over the Southern described by [33] is clear in our analysis. [34] and [35] noted that the
Southern has experienced the smallest temperature increase in recent years. In our study, we do not find any trend in
any of the quantiles of the temperature distribution of most of the states in the Southern, with the exception of Florida.
[36] identified the Southern as one of the few places in the world displaying an overall cooling trend hence describing
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Fig 7. State rankings by HAC-based t-statistics of lower-tail (q05) temperature warming across U.S. states (1950–2021). Sources: Own elabo-
ration from PRISM state-level temperature series (see Sect 2). Map generated with MATLAB (R2024b, Mapping Toolbox); no additional permissions
required beyond software citation. Colours represent the HAC-based t-statistic of the linear trend in the 5th percentile (q05) of the temperature distribu-
tion for each state. Cooler (bluer) shades indicate weaker or statistically insignificant warming in the lower tail (lower t-statistics), whereas warmer (green
to yellow) shades indicate stronger statistical evidence of lower-tail warming (higher t-statistics). Negative values, where present, correspond to cooling
trends in the lower tail.

https://doi.org/10.1371/journal.pclm.0000808.g007

the Southern as a warming hole. They attributed the warming hole to land-atmosphere interaction. But [33] attributed it to
the decadal and multidecadal variabilities linked to the Atlantic and Pacific Oceans.

The second figure presents the typology for all states and reveals some noteworthy patterns. The types are not uni-
formly distributed across the contiguous U.S., but rather concentrated in specific regions. For instance, Type W3 states
are located along the West Coast, including California, Idaho, Nevada, Oregon, Washington, and Wyoming. This type of
warming is characterized by a greater increase in higher temperatures than in lower temperatures, resulting in a positive
trend in the iqr. This pattern corresponds to the West and parts of the Northwest climate zones.

In contrast, Type W2, characterized by a larger increase in lower quantiles relative to higher quantiles and a neg-
ative trend in the iqr, is primarily found in the Central North region, roughly corresponding to the Northern Rockies
and Plains West NW Central area. This includes states such as Iowa, Minnesota, Montana, Nebraska, and North and
South Dakota.

Finally, states in the Type W1 category, located in the Upper Midwest (East North Central), parts of the Northwest, and
the Northeast, exhibit similar trends across all quantiles, with no statistically significant trend observed in the iqr.

Two final remarks. When aggregating data from all states, weighted by surface area, the overall trend for the contigu-
ous U.S. can be classified as warming TypeW1. (For the Globe as a whole, aW2 type is obtained (see [27]).) This indi-
cates that the trends across the quantiles of the distribution are similar, with no statistically significant trend observed in
the interquartile range (iqr). Additionally, there is evidence of acceleration in these trends. For instance, an analysis of
typology over the period 1990–2021 reveals that the proportion of states experiencing warming has increased to 87%,
with a notable rise in TypeW3 states, which now represent 43% of the total. As regard to the average, it can also be seen
that the number of states where it is significant increases as we approach the end of the sample.
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Fig 8. State rankings by HAC-based t-statistics of upper-tail (q95) temperature warming across U.S. states (1950–2021). Sources: Own elabo-
ration from PRISM state-level temperature series (see Sect 2). Map generated with MATLAB (R2024b, Mapping Toolbox); no additional permissions
required beyond software citation. Colours represent the HAC-based t-statistic of the linear trend in the 95th percentile (q95) of the temperature distri-
bution for each state. Cooler (bluer) shades indicate weaker or statistically insignificant warming in the upper tail (lower t-statistics), whereas warmer
(green to yellow) shades indicate stronger statistical evidence of upper-tail warming (higher t-statistics). Negative values, where present, correspond to
cooling trends in the upper tail.

https://doi.org/10.1371/journal.pclm.0000808.g008

Fig 9. Test of warming existence across U.S. states (1950–2021). Sources: Own elaboration from PRISM state-level temperature series (see Sect 2).
Map generated with MATLAB (R2024b, Mapping Toolbox); no additional permissions required beyond software citation. States coded as 0 correspond
to cases in which the joint trend test fails to reject the null hypothesis of no warming (type W0), while states coded as 1 indicate warming detected in at
least one part of the temperature distribution (types W1–W3).

https://doi.org/10.1371/journal.pclm.0000808.g009
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Fig 10.Warming typology across U.S. states (1950–2021). Sources: Own elaboration from PRISM state-level temperature series (see Sect 2).
Map generated with MATLAB (R2024b, Mapping Toolbox); no additional permissions required beyond software citation. States are classified into four
categories (W0–W3) according to the estimated warming pattern, distinguishing mean warming, dispersion changes, and tail-specific effects.

https://doi.org/10.1371/journal.pclm.0000808.g010

In summary, while the typology derived from our methodology shares many similarities with the climate zones pro-
posed by NCEI, it provides an alternative lens for identifying and testing the nuances of warming patterns. This alter-
native perspective may offer valuable insights into specific characteristics that might not be fully captured by traditional
classifications.

3.3 Warming dominance

The application of the Warming Dominance test,WD, yields a total of 1,176 possible state-pair comparisons for each
characteristic. This large number complicates comprehensive presentation and makes individual result interpretation
overly cumbersome. To streamline analysis, we propose three approaches:

1. Constructing a Synthetic Index: This index will summarize each state’s warming dominance relative to others.
2. Identifying Pareto-Dominant States: These are states that dominate at least one other state without being dominated

by any.
3. Focusing on Specific Case Studies: This approach allows for an in-depth analysis of selected states or regions.

The Synthetic Warming Dominance Index (SWDI) for all the quantiles is defined as follows:

SIWDi =
1

q ∗ (n − 1)
q

∑
k=1

n−1
∑
j=1

WDk
ij (4)

where

• WDk
ij = 1 if region i warming-dominates region j in quantile k

• WDk
ij = −1 if region j warming-dominates region i in quantile k
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• WDk
ij = 0 if neither of the two regions significantly dominates the other.

The index ranges from [–1,1], and can be computed for individual quantiles k:

SWDIki =
1

(n − 1)
n−1
∑
j=1

WDk
ij (5)

Remarks on theWD:

• TheWD can initially be computed using only the mean before calculating it for the full distribution.
• WD may be classified as either strong or weak, depending on its significance across quantiles.
• PartialWD may also occur, for example, in only the lower or upper quantiles.
• The position of theWD in the distribution is not indifferent as it affects the perception of CC, especially if it occurs in the
higher quantiles.

• A synthetic index SWDIi ∈ [−1,1] of WD can be defined for each region i = 1...n accounting for all quantiles k = 1...q.
• The use of the SWDI is an efficient way to quantify the warming dominance of each state relative to others when n is
large. It condenses complex pairwise comparisons into a single index, facilitating easier interpretation.

The results of the SWDI calculation are displayed in Map, Fig 11 and presented by quantiles in Table 1. Additionally, for
specific characteristics (q05, mean, q95), heat maps provide matrix-form t-ratio results from theWD test (Figs 12, 13 and
14). Notable observations include:

Fig 11. Synthetic warming dominance index across U.S. states (1950–2021). Sources: Own elaboration from PRISM state-level temperature series
(see Sect 2). Map generated with MATLAB (R2024b, Mapping Toolbox); no additional permissions required beyond software citation. Colours repre-
sent the synthetic Warming Dominance Index (WDtotal), which summarizes the relative strength of warming signals across the full set of distributional
measures. Positive values indicate stronger and more pervasive warming dominance.

https://doi.org/10.1371/journal.pclm.0000808.g011
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Table 1. Results of pareto warming dominance tests (1950-2021).

states/quantiles mean q05 q10 q20 q30 q40 q050 q60 q70 q80 q90 q95
AL –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
AZ 2 0 2 2 2 2 2 2 2 1 2 2
AR –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
CA 2 2 2 2 2 2 2 2 2 1 2 1
CO 1 –1 –1 –1 –1 1 –1 –1 1 1 1 1
CT 1 2 2 2 2 1 2 1 2 2 1 1
DE 1 2 1 2 2 1 1 1 2 1 1 1
DC 0 0 0 0 0 0 0 0 0 0 0 0
FL 1 –1 –1 0 2 1 –1 1 –1 –1 –1 0
GA –1 0 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
ID 0 0 –1 –1 –1 1 1 –1 1 1 2 1
IL –1 –1 –1 2 –1 –1 –1 –1 –1 –1 –1 –1
IN –1 0 –1 2 2 2 0 0 1 –1 –1 –1
IA –1 –1 –1 –1 2 –1 –1 –1 –1 –1 –1 –1
KS –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
KY –1 –1 0 2 0 1 –1 –1 1 –1 –1 –1
LA –1 –1 –1 0 –1 –1 –1 1 –1 –1 –1 –1
ME –1 0 –1 –1 –1 –1 1 1 –1 1 1 1
MD 1 2 1 2 2 1 1 1 1 1 1 1
MA 1 2 2 2 1 1 1 1 2 2 1 1
MI –1 –1 –1 2 2 0 –1 –1 –1 1 –1 –1
MN 2 2 1 2 2 2 1 –1 –1 –1 –1 –1
MS –1 –1 –1 –1 –1 –1 –1 0 –1 –1 –1 –1
MO –1 –1 –1 –1 0 –1 –1 –1 –1 –1 –1 –1
MT 2 2 1 2 2 2 1 –1 –1 –1 2 2
NE –1 1 –1 2 –1 1 –1 –1 –1 –1 –1 –1
NV 1 –1 –1 –1 –1 1 1 1 2 2 2 2
NH 1 –1 –1 –1 –1 –1 1 1 1 1 1 1
NJ 1 1 2 0 1 1 1 1 1 1 1 1
NM 1 2 0 0 1 1 1 1 1 1 1 –1
NY 1 –1 –1 0 –1 –1 1 1 1 –1 –1 –1
NC –1 1 1 –1 –1 –1 –1 1 –1 –1 –1 1
ND 2 2 2 2 2 0 2 –1 1 1 –1 –1
OH –1 –1 –1 2 1 1 –1 –1 1 –1 –1 –1
OK –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
OR 1 0 –1 –1 –1 –1 1 –1 0 1 2 2
PA 1 –1 –1 2 2 1 1 1 1 1 –1 –1
RI 2 2 2 2 2 2 2 2 2 2 2 2
SC 0 1 –1 –1 0 –1 –1 –1 –1 –1 –1 –1
SD –1 2 1 0 –1 2 –1 –1 –1 –1 –1 –1
TN –1 –1 –1 0 1 –1 –1 –1 –1 –1 –1 –1
TX –1 –1 –1 0 –1 –1 –1 –1 –1 –1 –1 –1
UT 1 0 –1 0 2 1 1 –1 1 2 2 2
VT 1 2 2 2 –1 –1 1 1 1 1 1 1
VA –1 –1 1 –1 –1 –1 –1 1 1 –1 –1 –1
WA 1 0 –1 –1 –1 –1 2 0 –1 –1 2 2
WV –1 –1 –1 –1 –1 0 –1 –1 –1 –1 –1 –1
WI –1 2 –1 0 2 –1 –1 –1 –1 –1 –1 –1
WY 1 –1 –1 –1 2 1 –1 –1 1 0 2 1

https://doi.org/10.1371/journal.pclm.0000808.t001

• In terms of averageWD, certain states stand out: RI, AZ, CT, MA, DE, CA, NJ, and MD.
• Warming dominance is more pronounced in the upper quantiles than in the lower ones. This means that the warming
process is more concentrated in the high quantiles, a result that is consistent with the higher percentage of significant
trends in q95 (Fig 15).
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Fig 12.Warming dominance between U.S. states based on mean temperatures (1950–2021). Sources: Own elaboration from PRISM state-level
temperature series (see Sect 2). Figure heatmap generated with MATLAB (R2024b) using pairwise HAC-based trend tests. Each cell shows the t-
statistic for the dominance of the state in the row over the state in the column. Positive (negative) values indicate that the row (column) state exhibits
stronger mean-temperature warming.

https://doi.org/10.1371/journal.pclm.0000808.g012

• The synthetic index highlights the following states, in order: RI, CT, MA, AZ, DE, CA, and MD.
• Relying solely on the mean for analysis provides an incomplete perspective; a comprehensive examination of the entire
distribution is essential. Fig 16 illustrates that certain states display non-uniformWD across quantiles, highlighting dis-
crepancies that are not evident when considering only the mean.

• Map analysis reveals that warming dominance is primarily concentrated along the two coasts, specifically the southwest
and northeast (climatic zones of the West, Southwest, and Northeast).
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Fig 13.Warming dominance between U.S. states based on lower-tail (q05) temperatures (1950–2021). Sources: Own elaboration from PRISM
state-level temperature series (see Sect 2). Figure heatmap generated with MATLAB (R2024b) using pairwise HAC-based trend tests. Each cell shows
the t-statistic for the dominance of the state in the row over the state in the column. Positive (negative) values indicate that the row (column) state
exhibits stronger warming at the lower tail of the temperature distribution.

https://doi.org/10.1371/journal.pclm.0000808.g013

• By converting the states that are either dominated or dominating into binary values (1 and 0), we obtain a concordance
of 0.78 with political ideology based on historical voting patterns (where 1 represents Democratic and 0 Republican
preferences).

The Pareto Warming Dominance Index (PWDI) takes values 2,1,0,–1,–2, with interpretations as follows:

• 2 = Strong Pareto dominance, where a state dominates at least one other state and is dominated by none.
• 1 = Weak dominance, where the state dominates more states than it is dominated by.

PLOS Climate https://doi.org/10.1371/journal.pclm.0000808 February 4, 2026 18/ 27

https://doi.org/10.1371/journal.pclm.0000808.g013
https://doi.org/10.1371/journal.pclm.0000808


i
i

“pclm.0000808” — 2026/2/4 — 22:31 — page 19 — #19 i
i

i
i

i
i

Fig 14.Warming dominance between U.S. states based on upper-tail (q95) temperatures (1950–2021). Sources: Own elaboration from PRISM
state-level temperature series (see Sect 2). Figure generated with MATLAB (R2024b) using pairwise HAC-based trend tests. Each cell shows the t-
statistic for the dominance of the state in the row over the state in the column. Positive (negative) values indicate that the row (column) state exhibits
stronger warming at the upper tail of the temperature distribution.

https://doi.org/10.1371/journal.pclm.0000808.g014

• 0 = Non-Pareto dominance, where the state neither dominates nor is dominated by others.
• –1 = Weakly dominated, where the state is dominated by more states than it dominates.
• –2 = Strong Pareto dominated, where the state does not dominate any other state but is dominated by at least one.

The PWDI is calculated for each quantile, and a synthetic indicator, SPWDI, can also be computed, which takes the
value 1 if the state dominates in all quantiles except the mean, and 0 otherwise.

Regarding the ParetoWD analysis, Table 1 provides detailed information by states and quantiles, while Map, (Fig 17)
shows the SPWDI calculation and its geographical representation. Here, it is clear that only the states of AZ, CA, MD, MA,
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Fig 15.Warming dominance indicators (WDI) by U.S. states and temperature quantiles. Sources: Own elaboration from PRISM state-level tem-
perature series (see Sect 2). Figure generated with MATLAB (R2024b) from the spreadsheet WD_USA.xlsx. Each cell shows the synthetic WDI for a
given state and quantile (mean, q05–q95). Colours represent the magnitude of warming dominance, with green (red) shades indicating negative (positive)
values. States are sorted alphabetically to enhance comparability.

https://doi.org/10.1371/journal.pclm.0000808.g015
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Fig 16. Consistency of warming dominance across temperature quantiles for U.S. states (1950–2021). Sources: Own elaboration from PRISM
state-level temperature series (see Sect 2). Figure generated with MATLAB (R2024b) using pairwise HAC-based trend tests. The upper panel shows,
for states with positive mean warming dominance, the number of temperature quantiles (q05–q95) that also exhibit positive dominance. The lower panel
shows, for states with negative mean dominance, the number of quantiles that also display negative dominance. Red bars indicate dominant states, and
blue bars indicate dominated states.

https://doi.org/10.1371/journal.pclm.0000808.g016

NJ, and RI are Pareto dominant, all located in the Pacific and Atlantic regions. It is important to note that the PWDI is a
more stringent measure than the SWDI, enabling the identification of states that exert a stricter dominance by considering
their entire area of influence rather than focusing solely on peer relationships.

In summary, this section has enabled the calculation and statistical comparison of states with a dominant warming pro-
cess relative to others, as well as the classification of their typology based on temperature distribution. However, this is
not merely a quantitative exercise. The results provide valuable insights into which regions are more exposed to climatic
risks and, consequently, offer crucial information for policymakers in designing more targeted and effective policies. These
insights are particularly important in the United States, where climate policy is formulated and implemented at both federal
and state levels.

3.4 Case study (CA)

The progression of the warming process in California is presented in Table AII-1 (S1 Appendix), which shows that all esti-
mated trends are positive and statistically significant. (Detailed analyses for other states are available upon request.)
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Fig 17. Synthetic pareto warming dominance (SPWD) across U.S. states (1950–2021). Sources: Own elaboration from PRISM state-level temper-
ature series (see Sect 2). Map generated with MATLAB (R2024b, Mapping Toolbox); no additional permissions required beyond software citation. The
figure shows the classification of states according to the Synthetic Pareto Warming Dominance indicator (SPWD): states in dark blue satisfy Pareto
warming dominance, while those in light blue do not. The SPWD provides a summary measure of whether warming dominance holds jointly across all
distributional dimensions.

https://doi.org/10.1371/journal.pclm.0000808.g017

Based on the typologies introduced in Sect 3.2, California is classified as typeW3. The combination of a positive trend in
the lower quantiles with an even steeper increase in the upper quantiles constitutes an ideal trigger for widespread sum-
mer wildfires. To design effective climate mitigation and adaptation policies at both federal and state levels, it is crucial
to compare California’s warming dynamics with those observed in other states. Fig AII-1 (S1 Appendix) summarizes the
results of the Warming Dominance tests (Definitions 3 and 4) and highlights two key findings.

First, California exhibits a dominant warming pattern relative to most states—especially in the upper part of the tem-
perature distribution. Out of 576 possible comparisons (48 states × 12 characteristics), California dominates in 172 cases
(30%) and is dominated in only 4. This upward-skewed dominance suggests that the state is particularly vulnerable to
warming at higher quantiles, potentially increasing public awareness of climate change. The table also reveals cases of
strong and partial dominance.

Second, the comparison across quantiles reveals asymmetries not visible at the mean. For instance, while Califor-
nia clearly dominates Nevada, Oregon, and Washington on average, it is itself dominated by those states at the highest
quantiles (q80, q95). The value of a full-distribution approach is illustrated through specific cases: (i) California dominates
Kansas across most of the distribution (Fig AII-2, S1 Appendix); (ii) in Iowa,WD at the mean is driven by dominance in
specific quantiles (Fig AII-2, S1 Appendix); (iii) in Minnesota, noWDis observed at the mean, but dominance emerges
in the right tail (Fig AII-3, S1 Appendix). (These results must be interpreted in light of California’s unique geography and
climate: a large, climatically diverse state with coastal exposure and high susceptibility to droughts and wildfires. These
factors, combined with the state’s economic structure—particularly its reliance on agriculture, tourism, and technology—
warrant deeper analysis of how warming affects both productivity and socio-economic outcomes such as housing and
health.).

Such discrepancies between mean-based dominance and quantile-specific dominance are uncommon but noteworthy—
occurring in only 5 out of 1,176 possible pairwise comparisons across all states. This indicates that distributional
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dominance is statistically more stable than mean dominance, although identifying which part of the distribution drives
average dominance remains informative. The magnitude of dominance, particularly when assessed using synthetic
indices, is a separate but equally important dimension. Fig AII-5 (S1 Appendix) illustrates sign reversals inWD across
states, distinguishing dominant from dominated cases.

More commonly, however,WD arises only in the tails of the distribution even when absent at the mean. Fig AII-5 (S1
Appendix) maps the number of quantiles in which each state dominates or is dominated without exhibiting average-level
WD. Out of 1,176 pairwise comparisons,WD appears at the mean in 445 cases, at q05 in 107, and at q95 in 382. Among
the 731 cases with noWD at the mean, 32 showWD in q05 and 152 in q95. In California’s case, this phenomenon is
observed in states such as IN, KY, MI, MT, NH, NC, ND, OH, PA, SC, SD, UT, VI, VA, and WV—states that are not dom-
inated on average but are in specific quantiles, particularly in the right tail. These cases may heighten public perceptions
of warming impacts.

4 Discussion

The proposed methodology and its application to the contiguous U.S. states raise important questions and open new
avenues for policy-relevant debate. While it is widely recognized that climate change (CC) is a non-uniform phenomenon,
its heterogeneity is seldom quantified in a systematic or comparative way across regions. This stands in contrast to fields
such as income distribution, wage inequality, and health disparities, where comparative metrics are routinely employed
and regarded as essential for informing policy decisions.

This study introduces robust quantitative tools to describe, measure, test, and compare climate change at the regional
level, enabling more nuanced diagnostics and the design of targeted and effective mitigation and adaptation strategies. In
the absence of such comparative analyses, the formulation of efficient climate policies becomes considerably more diffi-
cult. Although climate change is a global and complex process, its impacts are most acutely experienced at the local level.
Regional variations in climate are particularly consequential for ecosystems and biodiversity, agriculture, water resources,
energy, transportation, public health, and more—reinforcing the well-known principle: “think globally, act locally.” While our
empirical application focuses on U.S. states, the proposed methodology is flexible and can be readily extended to other
regional contexts, including countries, states, or subnational areas.

Our approach not only replicates previously established findings—thereby confirming its empirical validity—but also
reveals new patterns that emerge only when analyzing the full distribution of temperature data. This dual capacity high-
lights the method’s reliability and its added analytical value. Furthermore, the methodology is easy to implement, robust
to a range of data conditions, and yields interpretable results, making it a valuable tool for researchers and policymakers
alike.

A central contribution of this paper is the introduction of the Warming Dominance (WD) concept, which enables quan-
titative comparisons of climate change intensity both across regions and across the entire temperature distribution. By
analyzing warming dominance at different quantiles, this study recognizes that climate change impacts vary by region and
differ throughout the distribution. Tools such as the Synthetic Warming Dominance Index (SWDI) and Pareto-dominance
frameworks assist in summarizing and interpreting these complex results. For example, the SWDI condenses multidimen-
sional comparisons into a single, interpretable metric that reflects each state’s relative warming intensity. Similarly, iden-
tifying Pareto-dominant and -dominated states (using the PWDI and SPWDI) introduces a comparative dimension that
highlights those states experiencing the most significant warming within their respective spheres of influence. Our WD
numerical tools perfectly complement existing visual comparison tools, such as such as the IPCC WGI Interactive Atlas
[17], the Copernicus Climate Atlas (C3S) [18], and NOAA’s Climate at a Glance platform [19].

Beyond its direct climatological interpretation, the Pareto Warming Dominance Index (PWDI) also offers potential value
for research on public perceptions, political ideology, and climate-related attitudes. Because the PWDI classifies each
state into five ordered categories—from strongly dominant to strongly dominated—it provides a simple and interpretable
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mapping of how regions experience warming relative to one another. These ordinal categories may serve as mean-
ingful predictors in sociological and political-economy analyses, helping to explain why citizens in some regions per-
ceive climate change as an immediate threat while others view it as distant or less consequential. For example, states
classified as strongly dominant (PWDI = 2) experience more intense and pervasive warming signals across the tem-
perature distribution, which may foster higher public concern and stronger support for mitigation and adaptation poli-
cies. Conversely, states in strongly dominated positions (PWDI = −2) exhibit comparatively weaker warming signals,
potentially contributing to lower perceived urgency, climate skepticism, or divergent policy preferences. Integrating
PWDI-based diagnostics with survey data and behavioral indicators thus opens a promising avenue for future interdisci-
plinary work connecting climatic asymmetries with sociopolitical dynamics.

The concept ofWD also prompts broader and more difficult questions. One key issue is whether climate change may
generate both risks and benefits. Several important questions emerge: Could high-latitude regions benefit from milder
temperatures, potentially reducing their perceived vulnerability to climate change and weakening their commitment to
emission reductions? Might climate change alter global patterns of wealth distribution or shift geopolitical balances? Could
it influence public attitudes and even reshape political ideologies?

A particularly salient challenge is whether climate change creates “winners” and “losers,” and whether it is feasible to
design compensatory policies that account for these asymmetries. Our findings suggest that the most intense climate
impacts are concentrated in U.S. coastal regions, which may not only reshape perceptions of climate risk but also affect
political preferences and priorities. This raises further questions about how climate change interacts with regional levels
of development and, in turn, with adaptive capacity. Historical emissions—another contentious issue—may also influence
how responsibilities and compensations are framed. The feasibility of designing redistributive climate policies will depend
heavily on the geopolitical context and may be more achievable in countries like the United States, where adaptation
policies and interregional transfers are already part of the institutional framework. These considerations are particularly
relevant in the U.S., where both federal and state governments play significant roles in shaping climate policy.

The methodology presented here offers a promising quantitative framework for assessing regional climate change
impacts, and it may help address several of the critical questions outlined above. While the present analysis does not
attempt to attribute regional warming dominance to specific anthropogenic mechanisms, the proposed framework may
support future attribution studies linking observed asymmetries with emissions patterns, socioeconomic factors, and
regional policy responses. Future research will expand this approach to incorporate other dimensions of climate change—
such as precipitation variability and sea level rise—thus offering a more comprehensive assessment of warming domi-
nance beyond temperature distributions. Moreover, the tools developed here are being applied in future work to explore
issues of causality-attribution, and the economic and public health consequences of climate change. Future extensions
of this research will also seek to connect the quantitative diagnostics of warming dominance with the physical mecha-
nisms that generate regional variability, including changes in land use, atmospheric circulation, and urbanization. The
proposed framework is also easily transferable to other climate dimensions, such as precipitation variability or sea-level
rise, as long as sufficiently granular data are available. Extending theWD approach to these variables would allow a
more comprehensive assessment of climate change heterogeneity across multiple environmental indicators. Taken
together, these extensions highlight the versatility of the proposed approach and its potential to inform applied climate
analysis.

Beyond its methodological contributions, theWD framework also provides actionable insights for policy design.
Because warming intensity and typology vary substantially across regions, state-level diagnostics can guide differentiated
adaptation and mitigation strategies. For instance, coastal and southern states exhibiting dominance in upper quantiles
may prioritize resilience to extreme heat and energy infrastructure, whereas northern regions showing lower-tail domi-
nance may focus on winter adaptation measures, agricultural planning, and ecosystem management. However, the inter-
pretation of “warming dominance” should also consider differences in vulnerability, population density, and economic
exposure, as these factors determine the real-world implications of regional warming asymmetries. Recognizing such
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spatial diversity ensures that climate policies are not only efficient but also equitable across the U.S. territory, reinforcing
the need for regionally informed climate governance.

Ultimately, the findings of this study offer a quantitative foundation that can inform both federal and state-level cli-
mate strategies. By revealing where and how warming is most intense within the United States, theWD framework can
help policymakers prioritize adaptation investments, anticipate regional vulnerabilities, and design mitigation efforts that
reflect local climatic realities. Embedding such diagnostic tools into planning processes could improve the allocation
of resources, enhance policy coordination across jurisdictions, and contribute to more effective and equitable climate
governance.

5 Conclusions

This paper introduces the concept and methodology ofWarming Dominance, providing a consistent statistical frame-
work to measure and compare regional warming patterns across the United States. The results demonstrate that moving
beyond mean-based analyses reveals substantial heterogeneity in climate change intensity. The proposed tools, including
the SWDI and Pareto-dominance indicators, open the way for systematic regional assessments and policy-relevant appli-
cations. Future research will build upon this foundation to integrate physical mechanisms and socioeconomic dimensions,
thereby advancing a more comprehensive understanding of regional climate change.
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