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Abstract

Exposure to ambient fine particulate matter (PM, ) varies by structural determinants of
health, through mechanisms such as racism and material deprivation. These disparities
are well documented in the US across individual and community-level race and ethnicity
(RE) and socioeconomic status (SES). Since 2000, California air quality has generally
improved, and disparities have narrowed, tentatively attributed by previous studies to
air regulations. In parallel, wildfires became major contributors to ambient PM, , with
different exposure patterns from traditional emission sources. To explore wildfires’
contribution to exposure disparities, we tracked the temporal trend in total ambient PM,,
exposure disparities in California from 2008 to 2006 and disentangled the role of wildfire
smoke. We evaluated the population-weighted and rank-ordered temporal change in
total, wildfire, and non-wildfire PM, . exposure across California census tracts and by
RE and SES groups. We confirmed an absolute decrease in total PM,  over time and
fluctuations in wildfire PM, ; with peaks in 2008 and 2018. Census tracts with historically
high total PM, . exposure in 2006 were less exposed in 2018, but this rank-ordered tem-
poral change was mostly driven by increased wildfire PM, . in some tracts. Across the
study period, community disparities in total PM, , existed among RE and SES groups,
with higher exposure among socioeconomically disadvantaged and non-Hispanic Black
and Hispanic populations. Community disparities in total PM, ;. narrowed from 2006 to
2018, yet these reductions were 9.4% to 59.5% attributable to increased wildfire PM, .
exposure among socioeconomically affluent or non-Hispanic populations. In summary,
wildfire PM, . has exaggerated the progress in reducing inequities in traditional sources

of PM, , especially across racial groups and in years with severe wildfire like 2018.
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Additional targeted efforts are needed to reduce persistent inequities in PM, ; exposure
from traditional sources, which can be masked by increases in wildfire PM, . in an era of
climate change.

Introduction

Health burdens, which can impede people’s daily lives and wellbeing, are often distrib-
uted unevenly across space, ultimately leading to global and national health dispari-
ties [1] that span the socioeconomic gradient. Fine particulate matter (PM, ), a major
component of ambient air pollution, is a potential modifiable contributor to these health
disparities. Total mass PM, , is an airborne and inhalable mixture of particles less than
or equal to 2.5 pm in aerodynamic diameter. In 2021, ambient PM, ; was ranked as
the fourth highest mortality risk factor and contributed to 4.7 million premature deaths
globally [2]. PM, , contributes to health disparities through differential exposure and
differential effect (i.e., differential susceptibility) among groups, which are not mutually
exclusive [3,4]. Locations of emission sources vary notably due to historical discrimi-
natory housing and land use practices, regional climate, and the geophysical environ-
ment [5]. In the United States (US), communities of color and lower socioeconomic
status (SES) experience higher exposures and bear larger health burdens from such
exposures, compared to white or wealthy populations [6—8], which can be attributed to
a combination of sociopolitical factors such as structural discrimination [9] and histori-
cal systemic racist policies [10]. As such, evaluating potential disparities in exposure to
PM, . across sociodemographic factors could unveil potential drivers for health dispar-
ities and support targeted efforts to reduce PM, , exposure and related health burdens
among disadvantaged subpopulations [5,9].

The Clean Air Act (CAA) was promulgated in the US in 1970 and led to major
reductions in ambient PM, , concentrations nationally following its enactment [11].
However, reductions did not accrue equally across groups, which prompted the
passage of regulatory actions such as Executive Order 12898, as signed by Pres-
ident William Clinton in 1994, to address inequities in exposure to environmental
hazards [12]. Disparities in ambient PM, . exposure between white and Black popu-
lations declined from 2000 to 2015, which was attributed to the CAA’s larger impact
on the historically most polluted areas, where more Black populations reside [13].
Despite decreases in total ambient PM, ; concentrations and exposure disparities
over time, the rank order of exposed areas has remained static, with the historically
most exposed remaining the most exposed [5]. Moreover, compared to white and
more affluent populations, certain vulnerable subpopulations, such as Hispanic and
American Indian and less affluent populations, benefited less from relative emission
reductions among traditionally dominant sources of PM, , (e.g., from industry and
energy sectors) following the enactment of the CAA from 1970 to 2010 [14]. Overall,
higher ambient PM, ; exposure persisted among racial and ethnic (RE) minoritized
groups and lower SES communities through 2016, despite absolute exposure reduc-
tions [5,8,15].
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The study of exposure disparities has become increasingly complex due to changes in sources contributing to ambient
PM, ., driven by emissions regulations and climate change. In particular, wildfire smoke—a major contributor to ambi-
ent PM, .—has increased in frequency, intensity, and geographic range due to climate change [16—-18], changes in land
management [19,20], and development in the wildland-urban interface [21], especially in the Western US and California.
Since 2016, the increase in wildfire smoke PM, . has eroded about 25% of the policy-driven reductions in PM, . concen-
trations nationally and reversed nearly 50% of PM, , improvements in the Western US [22]. Wildfire smoke PM, , also
demonstrates different spatial patterns than other sources of PM, .. Unlike traditional sources of PM, . [23], wildfire PM,
disproportionately exposes white, Hispanic, American Indian, and more affluent populations in the US [24,25], as these
populations tend to reside in areas where wildfires occur more frequently [26]. However, wildfire smoke poses a greater
risk to disadvantaged groups, due to increased psychological stress [27] and limited resources to evacuate and prevent
exposure (e.g., from residing in a well-built house that can effectively keep smoke out or from having the financial means
to purchase air filters), and ultimately contributes to a widened climate gap [28]. Importantly, actions aimed at reducing
wildfire smoke PM, . will significantly differ from those targeting traditional sources of PM, ., primarily given that wildfire
smoke cannot be as easily regulated through state and federal policies as traditional sources of PM, .. Additionally, wild-
fires have multiple drivers, including climate change, wildland management practices, and development in the wildland-
urban interface, complicating efforts to reduce exposure to wildfire smoke PM, .. Considering how wildfire smoke affects
the trends in PM, , exposure disparities can inform regulatory efforts to better prepare for a future with increasing wildfire
smoke while promoting health equity.

California constitutes an ideal setting for studying time trends of disparities in PM, ; exposure and the contribution from
wildfire smoke PM, .. California is a diverse state with relatively high ambient PM, , concentrations, of which wildfire PM,
emissions accounted for 66% of total PM, . emissions in 2015 [29] and are projected to increase in the future [30,31].
Ambient PM, . exposure disparities by SES and RE composition were previously observed in California [32].

This study examines the temporal changes in population-weighted and rank-ordered PM, ; exposure at the census
tract-level in California from 2006 to 2018 and whether community exposure disparities across multiple indicators of RE
and SES change over time. We also explore the influence of wildfire smoke on the temporal changes and community dis-
parities in PM, . exposure. Understanding how disparities in PM, ; exposure and its wildfire-related component vary over
time could provide insight into potential drivers of social inequities in health, highlight where action is needed to address
such inequities, and support evidence-based policy development.

Materials and methods
Data sources

We utilized a previously developed time-series dataset [33], which provided daily total and wildfire PM, ; concentrations,
to calculate annual average total and wildfire PM, , concentrations at the census tract-level within California from 2006 to
2018. This dataset estimated daily total PM, ; concentrations at the census tract-level with an ensemble model of multi-
ple machine learning algorithms, measurement data from the US Environmental Protection Agency’s Air Quality System
monitors, and a large set of predictor variables. Aguilera et al. identified wildfire smoke days through satellite smoke
plume data and estimated census tract-level non-wildfire PM, . concentrations on those days through imputation with
chained random forest algorithm and total PM, ; during non-wildfire days. Wildfire PM, , equals total PM, ; minus estimated
non-wildfire PM, .

To explore indicators for potential community disparities, we obtained yearly census tract-level age-specific population sizes
and proportions of sociodemographic characteristics from the American Community Survey 5-year estimates for the study period,
including indicators of RE (proportions of Non-Hispanic white, Black, Asian, American Indian/Alaska Native, Hawaiian Native and
other Pacific Islander, and Hispanic, in accordance with the Office of Management and Budget Standards) [34], education (propor-
tion of 25 years and older with a Bachelor’s degree or higher and proportion of 15—17 years enrolled in high school), employment
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(proportion of unemployment among 20-64 years), poverty (proportion of population with an income greater than 200% of the fed-
eral poverty level), and income (median annual household income) [35]. We assigned the 5-year estimates of 2006—2010 to years
2006-2010, the 5-year estimates of 2011-2015 to years 2011-2015, and the 5-year estimates of 2015-2019 to years 2016—-2018.
We used the 5-year estimates of 2015-2019 instead of the estimates of 2016—2020 to avoid influence from substantial changes in
census tract boundaries in 2020. To facilitate calculations of population-weighted average exposure, we dichotomized the income
variable into high (1) and low (0), where the boundary between the two is based on the year-specific median value of all census
tracts in California. We coded SES indicators so that the disadvantaged groups are populations with unemployment, below poverty
(below the federal poverty level), lower income, no college educational attainment, and no high school enroliment.

Statistical analyses

Rank-rank comparisons were used to provide information on how PM, ; exposure in each census tract changes over time
relative to other census tracts in California. To provide an intuitive estimate of exposure that incorporates population dis-
tribution, we also calculated annual- and study period-average population-weighted PM, . concentrations across census
tracts in California. We conducted analyses for total, wildfire, and non-wildfire PM, . concentrations separately.

First, we evaluated temporal changes in rank-ordered exposure to annual average PM, , concentrations across census
tracts from 2006 to 2018 with rank-rank comparisons, focusing on a comparison of the starting and ending years of our
study period. The rank-rank comparison orders census tracts from 2006 and 2018 in increasing PM, . rank and compares
the percentile rank of the former period to the mean percentile rank of the latter period. The rank-rank comparison demon-
strates whether census tracts historically exposed to the highest levels of pollution remained the most exposed in later
years. We calculated Spearman’s correlation coefficient to assess the strength and direction of the correlation between
the two periods, which indicates how PM, , exposure in each census tract has changed over time. As a sensitivity anal-
ysis, we also assessed the rank-rank comparisons for annual average PM, ; concentrations between 2006 and all years
from 2007 to 2018, providing the full picture of relative change across the study period.

Next, we used annual population-weighted average PM, . concentrations for total and sociodemographic populations to
evaluate temporal changes and heterogeneity in PM, ; exposure across subgroups, as well as potential temporal changes
in such heterogeneity [36]. We used the total or subgroup-specific yearly population size as the weight for each census
tract. We also calculated the absolute differences in population-weighted average PM, . concentrations across subgroups
for each sociodemographic indicator. For RE indicators, differences were calculated as the RE group average minus the
non-RE group average. For socioeconomic indicators, differences were calculated as the disadvantaged group average
minus the advantaged group average. To provide insights into the community characteristics, we summarized the average
sociodemographic indicators among the census tracts exposed to the lowest and highest 10% of three types of PM, , con-
centrations in 2006-2008 and 2016-2018. We chose the average PM, , concentrations of three years so that we identified
the lowest and highest 10% exposed communities using the same length of period used by the US Environmental Protec-
tion Agency in air pollution policy compliance evaluations. The analysis was done with R version 4.1.0 [37].

Ethics statement

Ethical approval was not required as this study did not involve animals and human subjects. We accessed the American
Community Survey 5-year estimates on March 7, 2024, and we have no access to information that could identify individ-
ual participants.

Results

This study spanned 2006-2018 and focused on 7,594 (94.2%) California census tracts with complete data for PM,
exposure and sociodemographic indicators. We removed 1 (<0.1%) census tract due to missing PM, , exposure data, 239
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(3.0%) census tracts due to population sizes less than 1,500, and 224 (2.8%) census tracts due to lack of sociodemo-
graphic indicator data. The 2006-2018 population-weighted average total, wildfire, and non-wildfire PM, , concentrations
across all included California census tracts were 10.70 ug/m?, 0.26 pg/m?®, and 10.44 ug/m3, respectively.

Temporal change in total PM,

Across all included California census tracts, the median annual average total PM, ; concentration decreased with some
fluctuations over time (S1A Fig) and heterogeneity across space (Fig 1A). In taking the temporal trend of population
composition into consideration, the state-level population-weighted average total PM, ; concentration demonstrated similar
fluctuations as the median annual average across California census tracts, which decreased from 11.85 pug/m? in 2006 to
10.92 pg/m? in 2018, a 7.9% reduction (S1 Table). Census tracts with larger decreases in annual average total PM, , con-
centrations from 2006 to 2018 clustered in the Los Angeles metropolitan area and San Joaquin Valley, while census tracts
with larger increases in total PM, , were in the Mountain Counties and Sacramento Valley (S2A Fig). Areas with larger
decreases overlapped with areas with higher total PM, ; concentrations in 2006 (S3A Fig).

The rank order of total PM, ; exposure across most census tracts remained stable from 2006 compared pairwise to
all subsequent years (Fig 2A, S4A Fig — S14A Fig in S1 File), suggesting that census tracts historically most and least
exposed continued to remain most and least exposed, respectively. However, census tracts historically less exposed in
2006 (around 25" percentile) became slightly more exposed in 2018 (Fig 2A), and those historically more exposed in 2006
(around 90" percentile) became less exposed in 2010-2018 (Fig 2A, S7TA Fig — S14A Fig in S1 File). The Spearman’s
correlation coefficients were high 90% across all comparisons except for the 2006—2018 comparison, which was 74.5%.

Temporal change in non-wildfire PM,,

Similar to total PM, ,, the median annual average non-wildfire PM, . concentration decreased from 2006 to 2018 (S1B Fig).
In taking the temporal trend of population composition into consideration, the state-level population-weighted average
non-wildfire PM, . concentration decreased from 11.75 ug/m?® in 2006 to 9.78 ug/m?® in 2018, a 16.8% reduction (S1 Table).
Most census tracts demonstrated decreasing annual average non-wildfire PM, . concentrations from 2006 to 2018, with
larger absolute decreases clustered in the San Joaquin Valley and Los Angeles metropolitan area (S2B Fig), similar to
areas with higher reduction in total PM, ; concentrations.

From 2006 to 2018, we observed no temporal changes in the rank-ordered non-wildfire PM, . concentrations except for slight
decreases in ranks among those most exposed, with a Spearman’s correlation coefficient of 95.9% (Fig 2B). The slight decreases
in ranks among those most exposed were present in comparisons of 2006 to years after 2009 (S7B Fig — S14B Fig in S1 File).

Temporal change in wildfire PM,

Compared to total PM, . and non-wildfire PM, ., the median census tract wildfire PM, . concentration fluctuated more over
time, with a slight increasing trend in recent years and substantially higher concentrations in 2008 and 2018 compared to
2006 (S1C Fig). The state-level population-weighted average wildfire PM, . concentration demonstrated similar fluctuation
as the median annual average across California census tracts, with the lowest value in 2011 at 0.03 pg/m?®, and the high-
est value in 2018 at 1.14 pug/m?® (S1 Table). When comparing the year of 2018 with an exceptionally high
population-weighted average wildfire PM, , to the year of 2006 with relatively low wildfire PM, , at 0.12 pug/m?, we
observed increases in annual average wildfire PM, ; concentration in most census tracts, with particularly large increases
in census tracts in the Mountain Counties and Sacramento Valley (S2C Fig). These areas overlapped with areas with
larger increases in total PM, , (S2A Fig) and areas less exposed to non-wildfire PM, . (S3C Fig, S3D Fig).

Over time, census tracts most exposed to wildfire PM, . in 2006 became less exposed in 2018, while census tracts least
exposed became more exposed, indicated by a Spearman’s correlation coefficient of 26.5% (Fig 2C). Similar observations
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Fig 1. Spatial distribution of census tract-specific annual average concentration. The panels are census tract-specific annual average concentra-
tions between 2006-2018: A) total mass PM, ,; B) non-wildfire (NWF) PM, ; and C) wildfire (WF) PM,, .. Gray areas were census tracts excluded due to
missing data and population sizes smaller than 1,500. This figure was created using publicly available 2010 US Census TIGER/Line Shapefiles, provided
by the US Census Bureau at: https://www.census.gov/geographies/mapping-files/time-series/geol/tiger-line-file.2010.htmli#list-tab-790442341.

https://doi.org/10.1371/journal.pclm.0000796.9001
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PM, .. The red line is the 45° line.

https://doi.org/10.1371/journal.pclm.0000796.9002

were found in comparisons of 2006 to other years as well (S4C Fig — S14C Fig in S1 File). However, this temporal change
in rank-ordered wildfire PM, ; exposure only visibly influenced the temporal change in rank-ordered total PM, ; during
2018, potentially due to the high concentrations of wildfire PM, , in 2018 (1.14 ug/m® compared to < 0.70 ug/m? in other
years). If the temporal change in rank-ordered wildfire PM, . exposure in 2018 were to be ignored or removed, the ampli-
tude of the temporal change in rank-ordered total PM, , would be diminished.

Disparity across socioeconomic indicators and changes over time

In both the 2006—-2008 and 2016-2018 periods, census tracts most exposed to total PM, , (290" percentile for total PM
had higher proportions of populations who were impoverished or had no college educational attainment, compared to
those least exposed (<10" percentile in total PM, ) (S2 Table). Similarly, census tracts most exposed to non-wildfire PM,,
had higher proportions of populations who were impoverished or had no college educational attainment, compared to
those least exposed (S2 Table). Census tracts most versus least exposed to wildfire PM, . had higher proportions of pop-
ulations who were impoverished, unemployed, and had no college educational attainment, but to a lesser extent than for
total and non-wildfire PM, , (S2 Table).

To assess disparities across socioeconomic indicators and their changes over time, we calculated annual population-
weighted average PM, , concentrations among different SES groups. Absolute differences in total PM, ; were positive for

2.5)
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all disadvantaged groups in each year of the study period, indicating that disadvantaged groups (i.e., unemployed, impov-
erished, low income, no college educational attainment, and no high school enrollment groups) consistently experienced
higher exposure, compared to their counterparts (Fig 3A). Absolute differences between disadvantaged and advantaged
groups were larger for indicators of poverty, low income, and no college educational attainment, compared to indicators
of unemployment and no high school enroliment (Fig 3A). Absolute differences shrank during 2007—-2010 and 2014—-2018
and increased during 2010-2014 for all groups, which were especially prominent for indicators of poverty, low income,
low college educational attainment and low high school enroliment. The overall trend of narrowed, but persistent, absolute
differences imply reductions in community exposure disparities over time.

The trends of absolute differences in non-wildfire PM, . over time mirrored those of total PM, , (Fig 3B), with posi-
tive differences suggesting higher exposure for disadvantaged groups within every year. Similar to total PM, ., absolute
differences in non-wildfire PM, , shrank during 2007-2010 and 2014-2018 and increased during 2010-2014 (Fig 3B). In
contrast, the trends of absolute differences in wildfire PM, ; over time largely differed from the trends in total PM, ; and
non-wildfire PM, ., with near-zero but generally positive differences across SES groups in each year, aside from 2008 and
2018 (Fig 3C, S1 Table). In 2008, we observed positive differences, indicating exaggerated community exposure dispar-
ities (Fig 3C). Wildfire PM, , contributed to 51.8%, 2.7%, 9.7%, 2.0%, and 9.1% of the community exposure disparities
in total PM, , in 2008 for unemployment, poverty, college educational attainment, high school enroliment, and income,
respectively (calculated as the difference in average wildfire PM, . between subgroups divided by the difference in aver-
age total PM, . between subgroups). In 2018, differences in wildfire PM, , steeply decreased to negative values for all
indicators except for unemployment (Fig 3C), implying that all advantaged groups, except for employed groups, experi-
enced higher exposure. Thus, in 2018, wildfire PM, . contributed to decreases of 14.0%, 12.9%, 59.5%, and 9.4% from the
community exposure disparities in non-wildfire PM, . for poverty, college educational attainment, high school enroliment,
and income, respectively (calculated as the average wildfire PM, . between subgroups divided by the difference in aver-
age non-wildfire PM, . between subgroups).

In summary, community exposure disparities in California for total and non-wildfire PM, . rapidly narrowed during 2007—
2010. Community exposure disparities for wildfire PM, . varied over time, where disadvantaged groups experienced higher
exposure during 2006—2017, with particularly notable increased disparities in 2008, while advantaged groups experienced
higher exposure in 2018.

Disparity across race/ethnicity and changes over time

In both the 2006-2008 and 2016-2018 periods, census tracts most exposed to total PM, , (290" percentile in total PM, ,)
had higher proportions of Black, Asian, and Hispanic populations, compared to those least exposed (<10" percentile in
total PM, ;) (S2 Table). Similarly, the census tracts most exposed to non-wildfire PM, , had higher proportions of Black,
Asian, and Hispanic populations, compared to those least exposed (S2 Table). Contrary to total and non-wildfire PM,
census tracts with a larger proportion of white populations were more exposed to wildfire PM, ...

To assess disparities across RE indicators and their changes over time, we calculated annual population-weighted
average PM, ; concentrations among RE groups of non-Hispanic white, Black, Asian, American Indian or Alaska Native,
Hawaiian Native and other Pacific Islander, and Hispanic populations (hereon referred to as white, Black, Asian, Native
American, Pacific Islander, and Hispanic populations, respectively). Absolute differences in total PM, . were mostly posi-
tive for Black and Hispanic populations and mostly negative for white, Native American, and Pacific Islander populations
(Fig 4A). For Asian populations, the differences fluctuated around zero (Fig 4A). The observed positive differences sug-
gest that Black and Hispanic populations were exposed to higher PM, . than non-Black and non-Hispanic populations,
while the observed negative differences suggest that white, Native American, and Pacific Islander populations were
exposed to lower PM, . than non-white, non-Native American, and non-Pacific Islander populations. Absolute differences
shrank from 2006 to 2018 for all groups, with a notably large shrinkage in 2018 for all groups aside from Asian and Pacific
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Fig 3. Differences in the population-weighted average PM, , concentrations between socioeconomic groups. Differences in the population-
weighted average PM, , concentrations between socioeconomic groups calculated as the disadvantaged group average minus advantaged group aver-
age across the study period for: A) total PM, .; B) non-wildfire PM, ; and C) wildfire PM, .. The disadvantaged groups are: populations with an income
that is lower than 200% of the federal poverty level, populations with median annual household income lower than the state median, 20-64 years unem-
ployed populations, 25 years and older without a Bachelor’s degree, and 15—17 years not enrolled in high school.

https://doi.org/10.1371/journal.pclm.0000796.9003
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ethnicity group average (e.g., the population-weighted average among Asian population minus the population-weighted average among non-Asian popu-
lation) across the study period for: A) total PM, .; B) non-wildfire PM, .; and C) wildfire PM, .

https://doi.org/10.1371/journal.pclm.0000796.9004
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Islander populations, who experienced higher exposure to PM, . than non-Asian and non-Pacific Islander populations.
These results suggest that over the study period, community exposure disparities for total PM, , have reduced for white,
Black, Native American, and Hispanic populations, compared to their counterparts.

The trends of absolute differences in non-wildfire PM, , over time were similar to the trends in total PM, ., with mostly
positive differences for Hispanic and Black populations, mostly negative differences for white, Native American, and
Pacific Islander populations, and near-zero differences for Asian populations (Fig 4B). Similar to total PM, ., absolute dif-
ferences in non-wildfire PM, . shrank towards zero from 2006 to 2018, but the shrinkage progressed more slowly begin-
ning in 2010 for all groups aside from Black and Asian populations (Fig 4B). However, absolute differences in non-wildfire
PM, , remained fairly constant for all groups in 2018, compared to absolute differences in total PM, ., which notably shrank
for Hispanic, Native American, and white populations and widened for Asian and Pacific Islander populations in 2018 (Fig
4B).

Conversely, the trends of absolute differences in wildfire PM, ; over time were strikingly distinct from the trends in total
PM, . and non-wildfire PM, ., with mostly positive differences for Native American and white populations and fluctuating
near-zero differences for all other groups (Fig 4C). Larger absolute differences in wildfire PM, , were apparent in 2008 and
2018, compared to other years (Fig 4C). In 2018, the pattern of differences suggested increased exposure to wildfire PM,
for Asian, Native American, white, and Pacific Islander populations and decreased exposure for Hispanic populations, with
changes in wildfire PM, , representing 44.3% of the decreases in disparity of total PM, , for Hispanic and non-Hispanic
populations. Since Native American and white populations started with lower total PM, . than their counterparts, increases
in their wildfire exposure PM, , contributed to reductions in disparity.

In summary, community exposure disparities for non-wildfire PM, . narrowed over time from 2006 to 2018. During years
with high wildfire activity, such as in 2008 and 2018, wildfire PM, . was higher among white, Native American, and Pacific
Islander populations, and lower among Hispanic populations, showing disparities favoring Hispanic populations.

Discussion

Previous studies in the US have documented a reduction in absolute exposure disparities to total PM, , (as a marker of over-
all atmospheric pollution) among RE and SES groups since 2000 [5,6,8,13]. However, wildfire smoke has become a main
contributor to PM, . concentrations in a changing climate [30]. Compared to traditional sources of PM, . like traffic or industry,
wildfires tend to occur in less predictable locations, resulting in a more random spatial distribution of wildfire PM, , exposure,
which does not necessarily coincide with the spatial distribution of exposure from traditional pollution sources. These spa-
tial variations underscore the stark contrast in exposure patterns between the two pollution sources, reinforcing the need to
account for and address disparities in wildfire smoke exposure. In this California-based study spanning 2006—-2018, we find
reduced, but persistent, community exposure disparities for total PM, .. However, these reduced disparities across SES and
RE indicators, particularly the decrease in 2018, a year with high wildfire PM, . exposure, were 9.4% to 59.5% attributable to
increased wildfire PM, , exposure among those historically less impacted by traditional sources of PM, .. Our finding indicates
that substantial efforts are still needed to address inequities in air pollution exposure related to traditional sources of PM, ..

Specifically, we found that, between 2006 and 2018 in California, total PM, . concentrations decreased as wildfire PM,
concentrations fluctuated with peaks in 2008 and 2018. We observed a reordering of rank-ordered exposure to total PM,
from 2006 to 2018, but the amplitude of these changes diminished when excluding the wildfire PM, . contribution and
focusing on non-wildfire PM, . alone. We also observed a reduction in community exposure disparities in total PM, , across
RE and SES indicators, with the large decrease in 2018 driven mostly by increased wildfire PM, . exposure among less
disadvantaged groups. Thus, in the absence of wildfire PM, . contributions to the trends in total PM, . exposure changes
and disparities, improvements towards exposure equity were less pronounced than they appeared in 2018.

The observed decreases in absolute total and non-wildfire PM, . concentrations over time, alongside persistent SES
and RE disparities align with the current literature [5,8,15]. The promulgation of air pollution control policies that target
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anthropogenic sources of PM, ., such as the National Ambient Air Quality Standards for PM, ., supported some reductions
in exposure disparities across subpopulations. However, our results show that despite these policies, disparities persist,
as demonstrated by the observed positive absolute differences in total PM, ; across SES and RE groups. The observed
community exposure disparities reflect continued institutional and systemic racism, as in the case with health disparities
[38]. For instance, redlining, a historical practice that facilitated housing segregation and discriminated against minoritized
and low-income populations, has persistent effects including racial segregation, wealth accumulation, and industrial expo-
sures that continue to influence air pollution exposure today [10]. To better achieve disparity elimination, a previous study
has suggested policies that specifically focus on reducing exposure disparities [39].

Importantly, wildfire PM, . partially explained the observed temporal change in rank-ordered exposure to total PM, , in
California since 2006, particularly in 2018, a year with high wildfire frequency and intensity. Communities most exposed
to non-wildfire PM, , in the past continue to face the highest exposures years later—an observation obscured by wildfire
PM, , when evaluating rank-order exposure to total PM, ; between 2006 and 2018. In other words, wildfire PM, , has exag-
gerated the progress in reducing inequities in traditional sources of PM, .. This has implications for groups who are forced
to continue to bear the health burdens resulting from inequitable total PM, , exposure. More targeted efforts in reducing
traditional sources of PM, , are needed to protect these groups.

Our results also suggest that a portion of the reduction in community exposure disparities for total PM, , in California
were attributable to higher wildfire PM, ; exposure among those historically less impacted by traditional sources of PM,
in 2018 (e.g., accounting for 44.3% of the decreases in total PM, ; disparities between Hispanic and non-Hispanic pop-
ulations and 59.5% of the decreases in total PM, , disparities between populations with and without high school enroll-
ment), rather than regulatory efforts to reduce traditional sources of PM, .. However, reductions in total PM, , disparities
that originate from increased exposure to wildfire PM, , among historically less impacted groups still contribute to the total
health burden. Our results support development of air pollution control policies that explicitly target eliminating disparities
across subpopulations historically exposed to high concentrations of PM, ., especially non-wildfire PM, .. Such strategies
include location-specific interventions based on observed disparities in exposure and susceptibility [40]. Although racially
and socioeconomically marginalized communities are generally exposed to less wildfire PM, ; than their counterparts in
years like 2018, these communities face higher health impacts from these hazards, due to limited resources to mitigate
exposure, psychological stress, and higher prevalence of pre-existing conditions, partly driven by persistent structural
racism [26,27,41]. Therefore, wildfire smoke exposure reduction methods, such as improved forest management, wildfire
smoke warnings, establishment of clean air center, and viable self-protection methods, should be promoted across all
populations.

We found the contribution of wildfire PM, . to the reduction of total PM, . disparities was consistent across RE groups for
the entire study period, but this varied temporally by SES group (i.e., exaggerated disparities in 2008 vs. reduced dispar-
ities in 2018). Most wildfires occur in rural areas, where communities tend to be comprised of larger proportions of white
populations, as supported by the mean RE indicators among the least and most exposed census tracts (S2 Table). The
high wildfire PM, . exposures in these areas diminished typical disparities in PM, , exposure across RE groups [26]. On the
other hand, the SES indicators among the least and most wildfire-exposed census tracts were smaller, suggesting a more
homogeneous distribution of wildfires across SES indicators, which can explain the observed fluctuations in the influence
of wildfires on disparity across SES groups over time. This pattern also reveals the unpredictable and random nature of
wildfire smoke and highlights the importance of developing targeted efforts in reducing traditional sources of PM, ..

This study has several limitations. First, we demonstrated the exposure disparities across sociodemographic indica-
tors using population-weighted averages, but we were not able to simultaneously evaluate the disparity across multiple
indicators or their interactions (e.g., communities both racially and socioeconomically marginalized might experience
higher exposure disparities than communities experiencing just one aspect of marginalization). Second, we used census
tract-level average ambient PM, , to represent the average population exposure for the census tract; however, individuals
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of marginalized groups might experience higher exposure than others within the same census tract, due to siting of point
sources of pollution and locations of roads resulting in traffic-related air pollution, which may not be captured in our anal-
ysis. Third, we only focused on wildfire smoke as a specific source of ambient PM, .. Some studies have integrated other
sources of ambient PM,  to provide more insights into exposure disparity trends in the US [14], but future studies should
evaluate these trends at a finer spatial resolution and in California specifically.

Future research could consider additional indicators that this study did not analyze, such as adaptive capacity
variables and variables measuring structural racism (e.g., residential segregation and index of disproportionality),
when exploring disparities in PM, , exposure [42,43]. It could also be informative to investigate intersectionality
among these sociodemographic indicators and identify communities with a combination of these indicators that
have experienced the highest disparities and improvements over time [4]. Lastly, future studies could explore
whether disparities in exposure to wildfire-related air pollutants outside of PM, . exist, such as ozone or polycyclic
aromatic hydrocarbons.

In sum, our findings suggest that though total PM, ; concentrations have decreased from 2006 to 2018 in California,
wildfire PM, . concentrations fluctuated with large increases in certain years. Furthermore, we showed that exposure dis-
parity to total PM, ; decreased but persisted across space and indicators of RE and SES. Communities historically ranked
as highly exposed to total PM, . became less exposed in recent years and the gap in exposure to total PM, ; narrowed
across RE and SES groups. However, such reductions were partially attributed to wildfires and their disproportionate
impacts on advantaged communities, rather than from policies aimed at improving air quality in disadvantaged communi-
ties. These findings indicate that targeted efforts are still needed to address the existing PM, . disparities contributing to
environmental injustice in California.

Supporting information

$1 Fig. Boxplot of annual average total, wildfire, and non-wildfire PM, . concentration across the study period
in California (ug/m?): A) annual average total PM_,; B) annual average non-wildfire PM_; and C) annual average
wildfire PM, .

(TIF)

2.5 2.5

S2 Fig. Spatial distribution of census tract-specific annual average concentrations differences of the year 2018
minus the year 2006 for: A) total mass PM, ;; B) non-wildfire (NWF) PM, ,; and C) wildfire (WF) PM, .. Gray areas
were census tracts excluded due to missing data and population sizes smaller than 1,500. This figure was created using
publicly available 2010 US Census TIGER/Line Shapefiles, provided by the US Census Bureau at: https://www.census.
gov/geographies/mapping-files/time-series/geo/tiger-line-file.2010.html#list-tab-790442341.

(TIF)

S3 Fig. Spatial distribution of average wildfire and non-wildfire PM, . concentration in California (ug/m®): A) annual
average total PM,  in 2006; B) annual average total PM, , in 2018; C) annual average non-wildfire PM, , in 2006; D)
annual average non-wildfire PM, , in 2018; E) annual average wildfire PM, . in 2006; and F) annual average wild-
fire PM, . in 2018. Gray areas were excluded census tracts due to missing data. This figure was created using publicly
available 2010 US Census TIGER/Line Shapefiles, provided by the US Census Bureau at: https://www.census.gov/geog-
raphies/mapping-files/time-series/geo/tiger-line-file.2010.html#list-tab-790442341.

(TIF)

$1 File. S4 Fig - $14 Fig. Rank-rank comparisons of PM, . concentrations between 2006 and all years between
2007 and 2017: A) total PM, ; B) non-wildfire PM, ;; and C) wildfire PM, . The red line is the 45° line.
(ZIP)

2.5
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$1 Table. Differences in the population-weighted average PM, , concentrations between race and ethnicity groups
and socioeconomic groups. Numerical results for Figure 3 and 4.
(PDF)

S2 Table. Average sociodemographic indicators among census tracts least (<10" percentile) and most exposed
(290" percentile) to total, non-wildfire (NWF) and wildfire (WF) PM, , in averages of years 2006—2008 and averages
of years 2016-2018.

(PDF)

Acknowledgments

We thank Dr. R. Aguilera for their support and expertise in the wildfire smoke—related fine particulate matter dataset, which
is crucial to this research project.

Author contributions

Conceptualization: Jenny T. Nguyen, Tarik Benmarhnia, Chen Chen.

Investigation: Jenny T. Nguyen, Chen Chen.

Methodology: Jenny T. Nguyen, Joan A. Casey, Tarik Benmarhnia, Chen Chen.
Supervision: Joan A. Casey, Tarik Benmarhnia.

Visualization: Jenny T. Nguyen, Chen Chen.

Writing — original draft: Jenny T. Nguyen, Chen Chen.

Writing — review & editing: Jenny T. Nguyen, Joan A. Casey, Tarik Benmarhnia, Chen Chen.

References

1. World Health Organization. Monitoring health inequality: an essential step for achieving health equity. World Health Organization. 2015. https://cdn.
who.int/media/docs/default-source/gho-documents/14107-who-inequalities-flyer-april-2015-for-web.pdf?sfvrsn=568af2b0_2

2. Institute for Health Metrics and Evaluation (IHME). GBD 2021 Cause and Risk Summary: Ambient Particulate Matter Pollution—Level 4 Risk.
https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-ambient-particulate-matter-pollution

3. Casey JA, Daouda M, Babadi RS, Do V, Flores NM, Berzansky |, et al. Methods in Public Health Environmental Justice Research: a Scoping
Review from 2018 to 2021. Curr Environ Health Rep. 2023;10(3):312—36. https://doi.org/10.1007/s40572-023-00406-7 PMID: 37581863

4. Jackson JW, VanderWeele TJ. Intersectional decomposition analysis with differential exposure, effects, and construct. Soc Sci Med.
2019;226:254-9. https://doi.org/10.1016/j.socscimed.2019.01.033 PMID: 30770131

5. Colmer J, Hardman |, Shimshack J, Voorheis J. Disparities in PM2.5 air pollution in the United States. Science. 2020;369(6503):575-8. https://doi.
org/10.1126/science.aaz9353 PMID: 32732425

6. Jbaily A, Zhou X, Liu J, Lee T-H, Kamareddine L, Verguet S, et al. Air pollution exposure disparities across US population and income groups.
Nature. 2022;601(7892):228-33. https://doi.org/10.1038/s41586-021-04190-y PMID: 35022594

7. Knobel P, Hwang I, Castro E, Sheffield P, Holaday L, Shi L, et al. Socioeconomic and racial disparities in source-apportioned PM2.5 levels
across urban areas in the contiguous US, 2010. Atmos Environ (1994). 2023;303:119753. https://doi.org/10.1016/j.atmosenv.2023.119753 PMID:
37215166

8. LiuJ, Clark LP, Bechle MJ, Hajat A, Kim S-Y, Robinson AL, et al. Disparities in Air Pollution Exposure in the United States by Race/Ethnicity and
Income, 1990-2010. Environ Health Perspect. 2021;129(12):127005. https://doi.org/10.1289/EHP8584 PMID: 34908495

9. Mohai P, Pellow D, Roberts JT. Environmental Justice. Annu Rev Environ Resour. 2009;34(1):405-30. https://doi.org/10.1146/
annurev-environ-082508-094348

10. Lane HM, Morello-Frosch R, Marshall JD, Apte JS. Historical Redlining Is Associated with Present-Day Air Pollution Disparities in U.S. Cities. Envi-
ron Sci Technol Lett. 2022;9(4):345-50. https://doi.org/10.1021/acs.estlett.1c01012 PMID: 35434171

11. US EPA. Progress cleaning the air and improving people’s health. 2015. https://www.epa.gov/clean-air-act-overview/
progress-cleaning-air-and-improving-peoples-health

PLOS Climate | https:/doi.org/10.1371/journal.pcim.0000796 February 4, 2026 14/16



http://journals.plos.org/climate/article/asset?unique&id=info:doi/10.1371/journal.pclm.0000796.s005
http://journals.plos.org/climate/article/asset?unique&id=info:doi/10.1371/journal.pclm.0000796.s006
https://cdn.who.int/media/docs/default-source/gho-documents/14107-who-inequalities-flyer-april-2015-for-web.pdf?sfvrsn=568af2b0_2
https://cdn.who.int/media/docs/default-source/gho-documents/14107-who-inequalities-flyer-april-2015-for-web.pdf?sfvrsn=568af2b0_2
https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-ambient-particulate-matter-pollution
https://doi.org/10.1007/s40572-023-00406-7
http://www.ncbi.nlm.nih.gov/pubmed/37581863
https://doi.org/10.1016/j.socscimed.2019.01.033
http://www.ncbi.nlm.nih.gov/pubmed/30770131
https://doi.org/10.1126/science.aaz9353
https://doi.org/10.1126/science.aaz9353
http://www.ncbi.nlm.nih.gov/pubmed/32732425
https://doi.org/10.1038/s41586-021-04190-y
http://www.ncbi.nlm.nih.gov/pubmed/35022594
https://doi.org/10.1016/j.atmosenv.2023.119753
http://www.ncbi.nlm.nih.gov/pubmed/37215166
https://doi.org/10.1289/EHP8584
http://www.ncbi.nlm.nih.gov/pubmed/34908495
https://doi.org/10.1146/annurev-environ-082508-094348
https://doi.org/10.1146/annurev-environ-082508-094348
https://doi.org/10.1021/acs.estlett.1c01012
http://www.ncbi.nlm.nih.gov/pubmed/35434171
https://www.epa.gov/clean-air-act-overview/progress-cleaning-air-and-improving-peoples-health
https://www.epa.gov/clean-air-act-overview/progress-cleaning-air-and-improving-peoples-health

PLO?%. Climate

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Executive Office of the Present. Federal Actions To Address Environmental Justice in Minority Popula-
tions and Low-Income Populations. 1994. https://www.federalregister.gov/documents/1994/02/16/94-3685/
federal-actions-to-address-environmental-justice-in-minority-populations-and-low-income-populations

Currie J, Voorheis J, Walker R. What Caused Racial Disparities in Particulate Exposure to Fall? New Evidence from the Clean Air Act and
Satellite-Based Measures of Air Quality. American Economic Review. 2023;113(1):71-97. https://doi.org/10.1257/aer.20191957

Nunez Y, Benavides J, Shearston JA, Krieger EM, Daouda M, Henneman LREF, et al. An environmental justice analysis of air pollution emissions in
the United States from 1970 to 2010. Nat Commun. 2024;15(1):268. https://doi.org/10.1038/s41467-023-43492-9 PMID: 38233427

Bravo MA, Warren JL, Leong MC, Deziel NC, Kimbro RT, Bell ML, et al. Where Is Air Quality Improving, and Who Benefits? A Study of PM2.5 and
Ozone Over 15 Years. Am J Epidemiol. 2022;191(7):1258-69. https://doi.org/10.1093/aje/kwac059 PMID: 35380633

Goss M, Swain DL, Abatzoglou JT, Sarhadi A, Kolden CA, Williams AP, et al. Climate change is increasing the likelihood of extreme autumn wildfire
conditions across California. Environ Res Lett. 2020;15(9):094016. https://doi.org/10.1088/1748-9326/ab83a7

Iglesias V, Balch JK, Travis WR. U.S. fires became larger, more frequent, and more widespread in the 2000s. Sci Adv. 2022;8(11):eabc0020.
https://doi.org/10.1126/sciadv.abc0020 PMID: 35294238

Williams AP, Abatzoglou JT, Gershunov A, Guzman-Morales J, Bishop DA, Balch JK, et al. Observed Impacts of Anthropogenic Climate Change on
Wildfire in California. Earth’s Future. 2019;7(8):892—-910. https://doi.org/10.1029/2019ef001210

Calkin DE, Thompson MP, Finney MA. Negative consequences of positive feedbacks in US wildfire management. For Ecosyst. 2015;2(1). https://
doi.org/10.1186/s40663-015-0033-8

Keane RE, Ryan KC, Veblen TT, Allen CD, Logan J, Hawkes B. Cascading Effects of Fire Exclusion in Rocky Mountain Ecosystems: A Literature
Review. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2002.

Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar-Massada A, et al. Rapid growth of the US wildland-urban interface raises
wildfire risk. Proc Natl Acad Sci U S A. 2018;115(13):3314-9. https://doi.org/10.1073/pnas.1718850115 PMID: 29531054

Burke M, Childs ML, de la Cuesta B, Qiu M, Li J, Gould CF, et al. The contribution of wildfire to PM2.5 trends in the USA. Nature.
2023;622(7984):761-6. https://doi.org/10.1038/s41586-023-06522-6 PMID: 37730996

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attribut-
able to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907—18. https://doi.
org/10.1016/S0140-6736(17)30505-6 PMID: 28408086

Childs ML, Li J, Wen J, Heft-Neal S, Driscoll A, Wang S, et al. Daily Local-Level Estimates of Ambient Wildfire Smoke PM2.5 for the Contiguous
US. Environ Sci Technol. 2022;56(19):13607—21. https://doi.org/10.1021/acs.est.2c02934 PMID: 36134580

Casey JA, Kioumourtzoglou M-A, Padula A, Gonzalez DJX, Elser H, Aguilera R, et al. Measuring long-term exposure to wildfire PM2.5 in California:
Time-varying inequities in environmental burden. Proc Natl Acad Sci U S A. 2024;121(8):€2306729121. https://doi.org/10.1073/pnas.2306729121
PMID: 38349877

Davies IP, Haugo RD, Robertson JC, Levin PS. The unequal vulnerability of communities of color to wildfire. PLoS One. 2018;13(11):e0205825.
https://doi.org/10.1371/journal.pone.0205825 PMID: 30388129

Gee GC, Payne-Sturges DC. Environmental health disparities: a framework integrating psychosocial and environmental concepts. Environ Health
Perspect. 2004;112(17):1645-53. https://doi.org/10.1289/ehp.7074 PMID: 15579407

Morello-Frosch R, Obasogie OK. The Climate Gap and the Color Line - Racial Health Inequities and Climate Change. N Engl J Med.
2023;388(10):943-9. https://doi.org/10.1056/NEJMsb2213250 PMID: 36884328

California Air Resources Board. Criteria Pollutant Emission Inventory Data. https://ww2.arb.ca.gov/criteria-pollutant-emission-inventory-data 2024
August 12.

Ford B, Val Martin M, Zelasky SE, Fischer EV, Anenberg SC, Heald CL, et al. Future Fire Impacts on Smoke Concentrations, Visibility, and Health
in the Contiguous United States. Geohealth. 2018;2(8):229-47. https://doi.org/10.1029/2018 GH000144 PMID: 32159016

Hurteau MD, Westerling AL, Wiedinmyer C, Bryant BP. Projected effects of climate and development on California wildfire emissions through 2100.
Environ Sci Technol. 2014;48(4):2298-304. https://doi.org/10.1021/es4050133 PMID: 24443984

Liévanos RS. Racialized Structural Vulnerability: Neighborhood Racial Composition, Concentrated Disadvantage, and Fine Particulate Matter in
California. Int J Environ Res Public Health. 2019;16(17):3196. https://doi.org/10.3390/ijerph16173196 PMID: 31480556

Aguilera R, Luo N, Basu R, Wu J, Clemesha R, Gershunov A, et al. A novel ensemble-based statistical approach to estimate daily wildfire-specific
PM2.5 in California (2006-2020). Environ Int. 2023;171:107719. https://doi.org/10.1016/j.envint.2022.107719 PMID: 36592523

NIH Office of Research on Women'’s Health. Office of Management and Budget (OMB) Standards. NIH Office of Research on Women'’s Health.
https://orwh.od.nih.gov/toolkit/other-relevant-federal-policies/ OMB-standards 2023 October 26.

US Census Bureau. American Community Survey 5-Year Data (2009-2022). https://www.census.gov/data/developers/data-sets/acs-5year.html.
2023.

Bravo MA, Anthopolos R, Bell ML, Miranda ML. Racial isolation and exposure to airborne particulate matter and ozone in understudied US pop-
ulations: Environmental justice applications of downscaled numerical model output. Environ Int. 2016;92—-93:247-55. https://doi.org/10.1016/j.
envint.2016.04.008 PMID: 27115915

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000796 ~ February 4, 2026 15/16



https://www.federalregister.gov/documents/1994/02/16/94-3685/federal-actions-to-address-environmental-justice-in-minority-populations-and-low-income-populations
https://www.federalregister.gov/documents/1994/02/16/94-3685/federal-actions-to-address-environmental-justice-in-minority-populations-and-low-income-populations
https://doi.org/10.1257/aer.20191957
https://doi.org/10.1038/s41467-023-43492-9
http://www.ncbi.nlm.nih.gov/pubmed/38233427
https://doi.org/10.1093/aje/kwac059
http://www.ncbi.nlm.nih.gov/pubmed/35380633
https://doi.org/10.1088/1748-9326/ab83a7
https://doi.org/10.1126/sciadv.abc0020
http://www.ncbi.nlm.nih.gov/pubmed/35294238
https://doi.org/10.1029/2019ef001210
https://doi.org/10.1186/s40663-015-0033-8
https://doi.org/10.1186/s40663-015-0033-8
https://doi.org/10.1073/pnas.1718850115
http://www.ncbi.nlm.nih.gov/pubmed/29531054
https://doi.org/10.1038/s41586-023-06522-6
http://www.ncbi.nlm.nih.gov/pubmed/37730996
https://doi.org/10.1016/S0140-6736(17)30505-6
https://doi.org/10.1016/S0140-6736(17)30505-6
http://www.ncbi.nlm.nih.gov/pubmed/28408086
https://doi.org/10.1021/acs.est.2c02934
http://www.ncbi.nlm.nih.gov/pubmed/36134580
https://doi.org/10.1073/pnas.2306729121
http://www.ncbi.nlm.nih.gov/pubmed/38349877
https://doi.org/10.1371/journal.pone.0205825
http://www.ncbi.nlm.nih.gov/pubmed/30388129
https://doi.org/10.1289/ehp.7074
http://www.ncbi.nlm.nih.gov/pubmed/15579407
https://doi.org/10.1056/NEJMsb2213250
http://www.ncbi.nlm.nih.gov/pubmed/36884328
https://ww2.arb.ca.gov/criteria-pollutant-emission-inventory-data
https://doi.org/10.1029/2018GH000144
http://www.ncbi.nlm.nih.gov/pubmed/32159016
https://doi.org/10.1021/es4050133
http://www.ncbi.nlm.nih.gov/pubmed/24443984
https://doi.org/10.3390/ijerph16173196
http://www.ncbi.nlm.nih.gov/pubmed/31480556
https://doi.org/10.1016/j.envint.2022.107719
http://www.ncbi.nlm.nih.gov/pubmed/36592523
https://orwh.od.nih.gov/toolkit/other-relevant-federal-policies/OMB-standards
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://doi.org/10.1016/j.envint.2016.04.008
https://doi.org/10.1016/j.envint.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/27115915

PLO?%. Climate

37.
38.
39.

40.

41.

42.

43.

R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ 2024 May 25.

Kramer MR. Why History? Explanation and Accountability. Am J Public Health. 2020;110(7):933—4. https://doi.org/10.2105/ajph.2020.305726
Wang Y, Apte JS, Hill JD, lvey CE, Johnson D, Min E, et al. Air quality policy should quantify effects on disparities. Science. 2023;381(6655):272—4.
https://doi.org/10.1126/science.adg9931 PMID: 37471550

Wang Y, Apte JS, Hill JD, Ivey CE, Patterson RF, Robinson AL, et al. Location-specific strategies for eliminating US national racial-ethnic [Formula:
see text] exposure inequality. Proc Natl Acad Sci U S A. 2022;119(44):e2205548119. https://doi.org/10.1073/pnas.2205548119 PMID: 36279443
Burke M, Heft-Neal S, Li J, Driscoll A, Baylis P, Stigler M, et al. Exposures and behavioural responses to wildfire smoke. Nat Hum Behav.
2022;6(10):1351-61. https://doi.org/10.1038/s41562-022-01396-6 PMID: 35798884

Adkins-Jackson PB, Chantarat T, Bailey ZD, Ponce NA. Measuring Structural Racism: A Guide for Epidemiologists and Other Health Researchers.
Am J Epidemiol. 2022;191(4):539—47. https://doi.org/10.1093/aje/kwab239 PMID: 34564723

Dean LT, Thorpe RJ Jr. What Structural Racism Is (or Is Not) and How to Measure It: Clarity for Public Health and Medical Researchers. American
Journal of Epidemiology. 2022;191(9):1521-6. https://doi.org/10.1093/aje/kwac112

PLOS Climate | https:/doi.org/10.1371/journal.pcim.0000796 February 4, 2026 16/16



https://www.r-project.org/
https://doi.org/10.2105/ajph.2020.305726
https://doi.org/10.1126/science.adg9931
http://www.ncbi.nlm.nih.gov/pubmed/37471550
https://doi.org/10.1073/pnas.2205548119
http://www.ncbi.nlm.nih.gov/pubmed/36279443
https://doi.org/10.1038/s41562-022-01396-6
http://www.ncbi.nlm.nih.gov/pubmed/35798884
https://doi.org/10.1093/aje/kwab239
http://www.ncbi.nlm.nih.gov/pubmed/34564723
https://doi.org/10.1093/aje/kwac112

