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Abstract

Species Distribution Models (SDMs) are tools for understanding climate-induced habitat

changes, yet their outcomes depend heavily on climate model selection. This study com-

pares biomass projections for three key species on the Grand Banks of Newfoundland that

are known to be sensitive to warming—snow crab, yellowtail flounder, and Atlantic cod. We

use Earth system models (GFDL-ESM4, IPSL-CM6A-LR) and a regional ocean model sys-

tem (Atlantic Climate Model (ACM)) under varying climate change emissions scenarios to

assess long-term biomass trends and distributional shifts driven by future ocean warming

on the Grand Banks. Projections indicate declining biomass for snow crab and yellowtail

flounder with rising temperatures, whereas Atlantic cod is anticipated to exhibit biomass

gains, particularly in the southern Grand Banks. Variations in biomass projections among

climate models were noticeable, with IPSL forecasting the most drastic decline. ACM and

GFDL biomass projections were more similar to each other than GFDL and IPSL projec-

tions, likely because ACM was downscaled from GFDL. Differences between GFDL and

ACM likely arise from the coarse spatial resolution of ESMs, leading to insufficient resolution

of the bathymetry and incorrect current patterns, in turn affecting the bottom temperature

field. These findings underscore the important role of climate model selection in SDM-

derived biomass projections. We partitioned uncertainty by source and found that the rela-

tive contribution of variability by component changes by species. As temperatures continue

to rise, the urgency of implementing adaptive management strategies to minimize impacts

on Newfoundland and Labrador fisheries becomes increasingly evident. SDM outputs can

aid in strategic decision making, providing valuable insights for medium and long-term plan-

ning in fisheries management.
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Introduction

Species distribution models (SDMs) have become increasingly important as the marine envi-

ronment changes rapidly. Distributions of species in space and/or time are modelled as a func-

tion of a range of physical, environmental, and ecological variables. SDMs have been

implemented with a diverse range of statistical tools, including classic regression models (e.g.,

generalized linear models- GLMs, generalized additive models- GAMs, and generalized linear

mixed models GLMM) [1], machine learning algorithms (e.g., random forest and artificial net-

work analysis) [2], climatic envelope methods (e.g., dynamic bioclimatic envelope models)

[3, 4] and decision tree methods (e.g., boosted regression trees) [5]. To forecast climate change

impacts on species distributions, environmental outputs from Earth system models (ESMs)

and regional ocean modelling systems (ROMS) are commonly used as SDM inputs [4, 6].

ESMs simulate the Earth’s entire climate system, focusing on global-scale interactions between

the atmosphere, oceans, land surfaces, and ice. They provide insights into long-term climate

trends and variability [7, 8]. Variation in ESM projections can arise due to differences in forc-

ing, process configuration, feedbacks, and horizontal and vertical resolutions [9, 10]. In con-

trast, ROMS concentrate on specific regions or domains of the ocean, offering higher spatial

resolution to study fine-scale processes such as coastal dynamics, boundary currents, and

mesoscale eddies [11, 12]. The low spatial resolution of ESMs can make it challenging to ade-

quately represent regional processes, as they are primarily designed to emphasize global-scale

dynamics [7]. ESMs also do not appropriately represent depths less than 50 m [7]. However, in

many cases these models are the only available information to project species distribution

under climate change scenarios [9].

Newfoundland and Labrador, located on the east coast of Canada, is a dynamic region that

undergoes significant climatic variations, oscillating between warm and cold periods on decadal

scales [13]. Within it, three major geographical subunits characterized by distinct productivity

and a reasonably well defined major marine community (ecosystem production units), have

been identified: Newfoundland Shelf (North Atlantic Fisheries Organization (NAFO) divisions

2J3K), Grand Banks (3LNO) and Flemish Cap (3M) [14, 15]. A key feature of the Newfound-

land system is the cold intermediate layer (CIL), consisting of a water layer below 0˚C. It forms

during winter as a cold surface layer and remains as an intermediate layer separate from the sur-

face (roughly 0–50 m) when waters warm in spring [13]. The presence of the CIL heavily

impacts the Grand Banks because of the shallow depth of the oceanic plateau. This creates dis-

tinct temperature patterns within the Banks. Moreover, recent observations suggest a trend of

warming ocean temperatures on the Grand Banks [16]. This warming may be influenced not

only by warmer air temperatures that increase the heat transfer to the upper layers of the oceans,

but also by a slowing down of the shelfbreak jet, which reduces the supply of the fresh, cold and

nutrient-rich waters of the Labrador Current to the Grand Banks slopes [17–19].

In the Newfoundland and Labrador region, a shift from a warm to cold phase in the 1990s,

coupled with intensive fishing, triggered alterations in ecosystem productivity, leading to a

substantial decline in most groundfish stocks and a surge in invertebrate biomass on the New-

foundland Shelf [20] and the Grand Banks [21]. Responding to the groundfish collapse, several

fishing moratoria were imposed in 1992 and 1994 on the Newfoundland Shelf and the Grand

Banks respectively, to facilitate the recovery of groundfish stocks (e.g., Atlantic cod, yellowtail

flounder, haddock, among others). The impact of the collapse was profound, affecting both

harvesters and plant workers in the province, with over 35,000 individuals losing their source

of livelihood [22]. In the present study, we focused on three key fisheries species of the Grand

Banks that exhibited distinct responses to the collapse: yellowtail flounder (Limanda ferrugi-
nea), Atlantic cod (Gadus morhua) and snow crab (Chionoecetes opilio).
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The yellowtail flounder fishery in the 3LNO division was closed from 1994 to 1997 and

rebounded, currently operating as a Marine Stewardship Council (MSC) certified fishery

[23, 24]. Yellowtail flounder inhabits the east coast of North America, from Newfoundland to

the Chesapeake Bay [23], with biomass peaking on the Grand Banks at approximately 3˚C, tol-

erating a temperature wide range [25]. In contrast, Atlantic cod stocks (3NO and 2J3KL)

remain at low levels compared to historical baselines, with only a modest increase in biomass

observed in the 2J3KL stock, primarily driven by the 2J3K divisions [26]. This situation

resulted in the persistent closure of the directed commercial fishery for both stocks over 30

years, although a stewardship fishery has been allowed in the 2J3KL division [26, 27]. In 2024,

the 2J3KL Atlantic cod commercial fishery opened again. Atlantic cod is found across the

North Atlantic Ocean, avoids temperatures exceeding 12˚C [28], and shows higher biomass at

5–6˚C on the Grand Banks [15].

Following the collapse, Newfoundland and Labrador’s fishing industry diversified its target

species, focusing on invertebrate like snow crab. Snow crab has become the province’s most

valuable species, with a value of $761 million CAD in 2022, representing 58% of the total

landed value of all fisheries resources in NL [22, 29]. A recent study found that the species is

moving from subArctic to Arctic environments [30]. This suggests that with future warming,

the species may experience biomass losses on the Grand Banks, where most of the Newfound-

land and Labrador quota (59%) is currently allocated (https://www.dfo-mpo.gc.ca/fisheries-

peches/decisions/fm-2023-gp/atl-14-eng.html).

The climatological changes mentioned above may present a pressing issue for Newfound-

land and Labrador’s fishing sector, which in 2022 contributed $1.4 billion CAD to the local

economy and currently employs over 17,000 people across 400 communities [29]. Thus, the

objectives of this study were: i) to produce and compare biomass projections for three con-

trasting species on the Grand Banks of Newfoundland under two climate change emissions

scenarios; and ii) to evaluate the importance of climate model choice in these types of projec-

tions. In particular, we compared species biomass projections using the Coupled Model Inter-

comparison Project (CMIP) 6 earth system models IPSL-CM6A-LR [31] and the GFDL-ESM4

[32] under low (SSP1-2.6) and high (SSP3-7.0) emissions scenarios, and the ROMS Atlantic

Canada model (from now on referred as ACM) [19, 33] as climate forcings. While these pro-

jections should be interpreted with caution, they provide valuable guidance for fisheries man-

agement strategies by detecting changes in habitat suitability and anticipating future biomass

trends. In assessing variation in biomass projections, we specifically analyzed the influence of

climate model and emissions scenario choice, including variations in bottom temperature

under low (SSP1-2.6) and high (SSP3-7.0 and SSP4-6.0) emissions pathways.

Materials and methods

General approach

We used SDMs to characterize current species distributions, with temperature and depth as

key drivers. These models aim to capture the general changes associated with climate-driven

shifts in temperature. To achieve this, we defined temperature fields for the Grand Banks

using various emissions scenarios (low—SSP1-2.6 and high–SSP3-7.0 and SSP4-6.0-) gener-

ated by multiple climate models (IPSL, GFDL and ACM), thereby capturing uncertainty sur-

rounding these projections. Subsequently, we utilized the SDMs and the projected

temperature fields to forecast the expected distributions of the focal species between the pres-

ent and 2100 under different climate change scenarios. Finally, we assessed variability in pro-

jections as a function of climate models and emissions scenarios.
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Oceanographic and biological survey data

Fisheries and Oceans Canada (DFO) has been conducting annual random stratified multispe-

cies trawl surveys in Newfoundland and Labrador since 1971, with these surveys experiencing

important modifications in survey design, coverage, species recorded, and gear over time [34].

One major change in these surveys was the transition from the use of the Engels trawl to the

Campelen trawl gear (i.e., 1800 shrimp trawl) in 1995–1996 [34]. This change improved

catches of small-sized fishes and marked the start of the time series for commercial shellfish

species being recorded. Georeferenced data on presence/absence and biomass for the focal

species of this study as well as water temperature and depth comes from DFO spring surveys

on the Grand Banks between 1996 and 2019. To predict biomass, we created grids with a 5 x 5

km spatial resolution which included gridded bathymetry information with a 15 arc second

spatial resolution from the general bathymetric chart of the oceans project (GEBCO) (https://

www.gebco.net). Spring bottom temperature data were interpolated over the Grand Banks

with a spatial resolution of 0.1˚ x 0.1˚ [16] (Fig 1). Bathymetry data represented depths from

35 to 750 m since those were the depths sampled in the RV trawl survey.

Climate models and emissions scenarios

We considered both low and high emissions scenarios to assess their impacts on snow crab,

yellowtail flounder, and Atlantic cod distributions on the Grand Banks. We used three models

to characterize these scenarios. The ACM uses ROMS version 3.5, a terrain-following, free-sur-

face, primitive equation ocean model [33, 35]. It was configured with 30 vertical levels (layers

are thinner in shallower water and thicker in deeper water), with a minimum water depth of

10 m, and an approximate horizontal resolution of 10 km (240×120 horizontal grid cells). The

model encompasses the Gulf of Maine, Scotian Shelf, East Newfoundland Shelf, Grand Banks,

and the Gulf of St. Lawrence, and has been demonstrated to accurately capture regional circu-

lation patterns [36], and represent biogeochemical properties well [33]. The ACM was cali-

brated to observed values [33] and forced by anomalies from the GFDL high-resolution

coupled model, CM2.6, with a rapid increase in CO2 that resembles the SSP4-6.0 scenario [18].

In comparison, IPSL-CM6A-LR [31] and GFDL-ESM4 [32] are ESMs with a coarser spatial

resolution of approximately 100 km. These models produce a much poorer agreement with

observed temperatures, salinity, nitrate, and chlorophyll observation in the Grand Banks than

the ACM [33]. ESMs also do not appropriately represent depths less than 50 m [7].

For biomass projections, we used annual average sea bottom temperature (potential tem-

perature on bottom–thetao_bot) sourced from the Coupled Model Intercomparison Project

(CMIP) 6 ESMs IPSL-CM6A-LR [31], GFDL-ESM4 [32] and the ROMS ACM [19, 33]. We

used the shared socioeconomic pathway (SSP) and representative concentration pathway

(RCP) scenarios SSP3-7.0 for IPSL and GFDL, and SSP4-6.0 for ACM as the high emissions

scenarios due to availability, and the low emissions scenario SSP1-2.6 [37]. Unfortunately, the

low emissions scenario was not available for ACM (Fig 2A and 2B). Note that while the specif-

ics of the high emissions scenarios do not align perfectly among models (SSP3-7.0 and SSP4-

6.0), they are similar enough in their warming trends, allowing for general comparisons. Addi-

tionally, the ACM outputs have been smoothed [18], whereas the ESMs have not, explaining

the differences in the variability of the temperature field. Finally, we bias-corrected annual bot-

tom temperature projections of the climate models to the local spring observations since they

were consistently higher. To align our projections with observed baseline conditions, we calcu-

lated the mean temperature from the climate model and the mean observed temperature val-

ues from 2015 to 2019 (we selected these years because the projections and observations

overlapped). The bias was then determined as the difference between these means and used to
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Fig 1. Map of the average spring bottom temperature during the historical period (1996–2019) interpolated over

the Grand Banks. Isobaths indicated in light grey; Northwest Atlantic Fisheries Organization NAFO divisions

boundaries are indicated with grey rectangles. Black arrows show the main currents of the region. Base map layer from

Natural Earth (https://www.naturalearthdata.com/about/).

https://doi.org/10.1371/journal.pclm.0000520.g001
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adjust the model output (Figs I and J in S1 Text). This adjustment aligns the model tempera-

tures with observed conditions.

Modelling approach

Species distribution models. To build species distribution models, we used the R package

sdmTMB [38]. sdmTMB fits models with maximum marginal likelihood through template

model builder (TMB) [39] and incorporates the stochastic partial differential equation

approach (SPDE) [40] for approximating spatial Gaussian random fields [41, 42].

Two population variables were used as response variables to characterize the species distri-

bution. Firstly, a presence/absence variable was considered to measure probability of species

occurrence. Secondly, species biomass was used as an indicator of the conditional-to-pres-

ence-biomass, which are observations with positive biomass values (i.e., biomass > 0). Abiotic

explanatory variables were bathymetry (here called depth) and bottom temperature. After pre-

liminary analysis, covariates were added to the model as curvilinear effects to account for their

non-linear relationships. Finally, we included swept-area by the survey gear (log-transformed)

as an offset in the model to account for sampling effort [38].

Fig 2. Maps and time series of average annual bottom temperature projection on the Grand Banks. a, Time series of average annual bottom temperature

for the model domain. The historical period is represented by a black line, while the IPSL-CM6A-LR, GFDL-ESM4, and ACM models are indicated by yellow,

purple and green lines, respectively. Dashed lines represent the low emissions scenario (SSP1-2.6), and solid lines depict the high emissions scenario (SSP4-6.0

for ACM, and SSP3-7.0 for GFDL and IPSL). b, Maps of mean annual bottom temperature projections by climate model (GFDL, IPSL and ACM) and RCP

scenarios at the end of the century (period 2071–2100). Base map layer from Natural Earth (https://www.naturalearthdata.com/about/).

https://doi.org/10.1371/journal.pclm.0000520.g002
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The general form of the SDM is a delta (hurdle) generalized linear mixed effects model

(GLMM). We test two different families, delta_gamma and delta_lognormal. We considered Z
(s, t) to be the occurrence and Y(s, t) the conditional-to-presence biomass at location s and

time t. The model formulation can be written as (Formula 1):

Zðs; tÞ � Bernoulliðpðs; tÞÞ ð1Þ

Yðs; tÞ � Gammaðmðs; tÞ; �Þ or Yðs; tÞ � Lognormalðmðs; tÞ; s2Þ

logitðpðs; tÞÞ ¼ bz þ
XI

i¼1

fiðXiðs; tÞÞ þ Vzðs; tÞ

logðmðs; tÞÞ ¼ bY þ
XI

i¼1

fiðXiðs; tÞÞ þ VYðs; tÞ

Where π (s, t) represents the probability of occurrence at location s and time t; μ (s, t) is the

mean; and ϕ and σ are the variance of the conditional-to-presence biomass for the gamma and

lognormal distribution, respectively. The linear predictors, which represent the intercept of

each variable associated to the parameter π (s, t) and μ (s, t), are represented by βz and βY,

respectively. f() represents any function applied to the covariate (Xi), which in the present

study was a second-degree polynomial function. Vz(s,t) and Vy(s,t) refer to the spatial structure

of the occurrence and conditional-to-biomass model, respectively.

Our model aims to identify the optimal average spatial relationships that describe the distri-

bution patterns, treating individual years as replicates. We created a mesh with a cutoff of 15

km, which resulted in 761 nodes. We refrained from incorporating spatiotemporal variations

(i.e., autoregressive model of order one (AR1) and random walk (RW)) as well as fixed tempo-

ral covariates (i.e. year as fixed effect) into the model because of challenges in projecting these

effects over an extended period into the future [43].

Model selection. We compared four different model configurations (Tables A-C in S1

Text). To select the best fitting model, we used the Akaike information criteria (AIC), an esti-

mator of model prediction error commonly used in model selection [44]. We also quantified

the percent deviance explained when comparing model configurations to an intercept-only

null model, using relative log-likelihood between models [43]. Finally, we visually inspected

the quantile residual plots (see Figs A, C and E in S1 Text).

Additionally, we assessed model predictability during the historical period by comparing

mean biomass values observed to those predicted and calculated the area under the curve

(AUC) and the Pearson correlation (R). We also assessed future predictability by implement-

ing the leave future out strategy in which we trained our model with data from 1996 to 2016

and tested it against the last 3 years of the time series (2017–2019).

Biomass projections to 2100. We analyzed time series projections of biomass as percent

change between the historical period (1996–2019) and each future year. Then, we compared

projections among climate models and low (SSP1-2.6) and high (SSP4-6.0 for ACM, and

SSP3-7.0 for IPSL and GFDL) emissions scenarios. We ran simulations to the end of the cen-

tury because temperature projections from the SSP-RCP scenarios increasingly diverge after

2050 [45, 46]. Changes in spatial patterns of species biomass were assessed by calculating the
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difference between projections and historical period as follow:

BCMk
ði; jÞ � BHistði; jÞ ð2Þ

Where BCM represents the biomass at the grid cell (i, j) for the end of century period (2077–

2100) under the high emissions scenario for climate model K; BHist(i,j) is the biomass at the

same grid cell for the historical period (1996–2019).

We called this difference in biomass: ΔBiomass. To enhance visual clarity, distributions in

the figure were constrained between the 0.1 and 99.9th percentiles range due to the presence

of a few extreme values in ΔBiomass.

Biomass uncertainty evaluation

We assessed point-wise prediction uncertainty of species distribution models during the base-

line period (1996–2019) by conducting 100 simulations based on the joint precision matrix of

our model [47]. The precision matrix, often referred to as the inverse covariance matrix, char-

acterizes the relationships between variables assuming a multivariate normal distribution [38].

The variability in these simulations, and hence the level of prediction uncertainty, is directly

influenced by the precision matrix. High variability in biomass at each grid point reflects

greater uncertainty in the model’s predictions. We repeated this approach to assess biomass

projections from each climate model under the high emissions scenarios at the end of the cen-

tury (period 2077–2100). Finally, we partitioned uncertainty in the biomass estimates among

climate models and RCPs by fitting a linear model, with annual biomass estimates as a

response variable and climate models (GFDL, IPSL and ACM) and scenarios (low and high

emissions) as covariates, allocating residual error to parameter uncertainty (ei) as in formula 3.

Biomassi ¼ b0 þ b1X1i þ b2X2i þ ei ð3Þ

Biomassi represents the annual biomass estimate for the ith observation; β0 is the intercept

term; β1 and β2 are coefficients corresponding to the predictor variables X1 (climate model)

and X2 (emissions scenario), respectively. Finally, ei represents the residual error term, captur-

ing unexplained variation in the biomass estimates.

Dominance analysis is a statistical technique used to assess the relative importance of pre-

dictor variables in explaining variance in a dependent variable, and was applied to evaluate the

relative importance of each component [48, 49]. We smoothed the results by computing

10-year averages to mitigate noise and highlight the underlying trends. We acknowledge that

having three climate models and only two scenarios–only one in the case of the ACM model–

may induce bias in assessing predictor importance.

Results

For all species, models that best explained spatial patterns of biomass distribution included

depth and temperature as fixed effects and the spatial random field (Tables A-C in S1 Text).

The spatial random field represents biomass deviations in space that are not accounted for by

covariates. Its inclusion substantially improved model performance, especially for yellowtail

flounder and Atlantic cod. Model estimates are available in Table D in S1 Text.

We used the model fit to predict biomass estimates of the focal species on the Grand Banks

of Newfoundland during 1996–2019. Then, we forecasted to 2100 under the low and high

emissions scenarios. The predictive capacity of the models varies among species, with yellow-

tail flounder having the highest predictability (R = 0.74; AUC = 0.97), followed by snow crab

(R = 0.55, AUC = 0.89) and Atlantic cod (R = 0.55, AUC = 0.82) (Fig G in S1 Text). We also

assessed the out-of-sample predictability, training our model with data from 1996 to 2016 and
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testing it for the period 2017:2019. The predictability was (R = 0.7; AUC = 0.97) for yellowtail

flounder, (R = 0.41, AUC = 0.89) for snow crab and (R = 0.47, AUC = 0.79) for Atlantic cod

(Fig H in S1 Text).

Our findings underscored a long-term decline in the projected biomass of snow crab for all

climate models and scenarios except for GFDL under the low emissions scenario (Fig 3). If we

focus on the values at the end of the century (2077–2100), greater losses were observed for the

high emissions scenario, especially for IPSL model -47% [± 1.67% SD], followed by ACM

-10.4% [± 1.59% SD] and GFDL -14.68% [± 1.59% SD]. Under the low emissions scenario, bio-

mass trends fluctuated around the historical average. Values at the end of the century (2077–

2100) for IPSL projected biomass losses of -3.8% [± 1.6% SD], whereas GFDL projected bio-

mass gains of 3.7% [± 1.57% SD].

We also observed a long-term decline in yellowtail flounder biomass for the IPSL model

under the low and high emissions scenarios -8.4% [± 0.38% SD] and -29% [± 0.36% SD],

respectively (Fig 4). Biomass projections at the end of the century (2077–2100) for the GFDL

Fig 3. Projections of snow crab biomass by climate model and emissions scenario. a, Projections under low emissions (SSP1-2.6, left) and high emissions

scenarios (SSP4-6.0 for ACM and SSP3-7.0 for IPSL-CM6A-LR and GFDL-ESM4 scenario, right). b, Projections by climate models for low and high emissions

scenarios. Biomass changes are relative to the predicted values of the reference period (1996–2019), indicated by shaded grey area. Solid colored lines depict

average projected biomass, while shaded areas indicate standard deviation. Zero change is represented by a horizontal dashed line.

https://doi.org/10.1371/journal.pclm.0000520.g003
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model under both emissions scenarios indicated biomass values close to the historical average,

-1.4% [± 0.38% SD] for the low emissions and 0.39% [± 0.38% SD] for the high emissions sce-

nario. Finally, the ACM model suggests a small increase in biomass at the end of the century

(period 2077–2100) of 4.45% [± 0.34% SD].

SDMs projected a long-term decline in Atlantic cod biomass for the GFDL-low emissions

scenario of -11.5% [± 0.53% SD] at the end of the century (2077–2100), and an increase in bio-

mass for the rest of model and scenarios (Fig 5). The biomass projection for IPSL-low emission

scenario indicates a gain of almost 9.8% [± 0.53% SD] at the end of the century. Under the

high emissions scenario, GFDL oscillates around the historical average but showed an increase

of 3.12% [± 0.53% SD] at the end of the century (period 2077–2100). IPSL and ACM both

showed a similar trend of biomass gain at the end of the century, reaching values of 15.21% [±
0.55% SD] and 19.2% [± 0.52% SD], respectively.

The analysis revealed a consensus among earth system models (IPSL and GFDL) regarding

the locations with the most pronounced losses in snow crab biomass, specifically at the north

Fig 4. Projections of yellowtail flounder biomass by climate model and emissions scenario. a, Projections under low emissions (SSP1-2.6, left) and high

emissions scenarios (SSP4-6.0 for ACM and SSP3-7.0 for IPSL-CM6A-LR and GFDL-ESM4 scenario, right). b, Projections by climate models for low and high

emissions scenarios. Biomass changes are relative to the predicted values of the reference period (1996–2019), indicated by shaded grey area. Solid colored lines

depict average projected biomass, while shaded areas indicate standard deviation. Zero change is represented by a horizontal dashed line.

https://doi.org/10.1371/journal.pclm.0000520.g004
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and south of the Grand Banks (Fig 6). However, ACM depicted a less pronounced decline

(Fig 6A). The majority of yellowtail flounder biomass changes were observed on the southeast

shoal of the Grand Banks. GFDL and ACM mostly agreed for projected spatial biomass

changes. In contrast, IPSL suggested a stronger decline in the southern part of the southeast

shoal (Fig 6B). Spatial biomass patterns for Atlantic cod showed the biggest disagreement

among climate models (Fig 6C). GFDL predicted losses in the north and southern edge, with

some gains on the southern shoal. IPSL indicated biomass losses on the southeastern shoal and

gains on the rest of the Banks. Finally, ACM projected gains mostly in the south of the Banks.

Uncertainty

We observed marked spatial variability in SDM biomass projections during the historical

period (1996–2019), with standard deviations of biomass ranging from 0 to 4 kg/25 km2 for

snow crab, yellowtail flounder and Atlantic cod (Fig 7-SDM). Areas of high variability were

Fig 5. Projections of Atlantic cod biomass by climate model and emissions scenarios. a, Projections under low emissions (SSP1-2.6, left) and high emissions

scenarios (SSP4-6.0 for ACM and SSP3-7.0 for IPSL-CM6A-LR and GFDL-ESM4 scenario, right). b, Projections by climate models for low and high emissions

scenarios. Biomass changes are relative to the predicted values of the reference period (1996–2019), indicated by shaded grey area. Solid colored lines depict

average projected biomass, while shaded areas indicate standard deviation. Zero change is represented by a horizontal dashed line.

https://doi.org/10.1371/journal.pclm.0000520.g005
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associated with areas of biomass absence, likely driven by the gamma component of the delta-

gamma model (Figs B, D and F in S1 Text). For snow crab, the periphery and the southeast

shoal of the Grand Banks showed high variability (Fig 7A). For yellowtail flounder, variability

was higher in the northern part of the Banks and on the periphery (Fig 7B). In the case of

Fig 6. Spatial patterns of species biomass changes (in kg/25 km2) for a, snow crab; b, yellowtail flounder and c, Atlantic cod on the Grand

Banks of Newfoundland by climate model (GFDL-ESM4, IPSL-CM6A-LR and ACM) under the high emissions scenarios (SSP4-6.0 for

ACM and SSP3-7.0 for IPSL and GFDL) during the 2077–2100 period relative to the historical period (1996–2019). The Avalon Peninsula

is the southern piece of land (in grey). Base map layer from Natural Earth (https://www.naturalearthdata.com/about/).

https://doi.org/10.1371/journal.pclm.0000520.g006
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Atlantic cod, variability was pronounced around the Avalon peninsula and on the periphery of

the Banks (Fig 7C).

Variability in biomass projections amplified between the historical period to the end of the

century (2077–2100), where the standard deviation of the biomass increased, especially for yel-

lowtail flounder (30 kg/25 km2) (Fig 7).

We partitioned uncertainty to assess the relative contribution of each component: climate

model, SSP-RCP scenario and SDM parameters (Fig 8). For all three species—snow crab, yel-

lowtail flounder, and Atlantic cod—climate model uncertainty was the dominant factor con-

tributing to biomass uncertainty across all years, consistently showing the highest influence

(above 50%). However, the contribution of SDM parameters and scenarios varied over time.

In the three cases, the influence of SDM parameters and scenarios increased slightly after 2050,

indicating that uncertainty associated to SDMs parameters and SSP-RCP scenarios become

more important as projections extend further into the future.

Fig 7. Spatial uncertainty of SDM biomass estimates (historical period; 1996–2019) and climate model projections (GFDL, IPSL and ACM) at the end of the

century (2077–2100) measured as the standard deviation from 100 simulation draws for (a) snow crab, (b) yellowtail flounder and (c) Atlantic cod projected

biomass. Base map layer from Natural Earth (https://www.naturalearthdata.com/about/).

https://doi.org/10.1371/journal.pclm.0000520.g007
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Discussion

Depth and temperature are known to be key factors that determine distribution and survival

of many species, including snow crab [50], yellowtail flounder [51, 52] and Atlantic cod [28,

53]. As expected, both depth and temperature were relevant variables to explain spatial distri-

bution. The best fitting models also included the spatial random field that explains variability

not captured by the covariates.

Projected changes in species biomass to 2100 under low and high emissions scenarios

showed an overall decline in snow crab and yellowtail flounder biomass compared to the his-

torical period (1996–2019), whereas Atlantic cod is expected to gain biomass across the 21st

century under the high emissions scenario. However, in the GFDL simulation, biomass

declines through the mid-century before increasing. While there are differences in the magni-

tude of biomass projections across climate models, a consensus in the direction of changes was

evident in all models except for GFDL-low emissions scenarios. This divergence can be attrib-

uted to the GFDL-low emissions scenario forecasting a decline in bottom temperature by the

end of the century, in contrast to temperature increases projected by the other models and sce-

narios. The IPSL model projected the biggest warming on the Grand Banks.

Changes in species geographic distributions can be analyzed by focusing on their range

boundaries. At leading edges, species expand into new territories as environmental conditions

improve, while at trailing edges, population extirpations lead to range contractions [54].

Marine ectotherm species tend to fully use their potential latitudinal ranges in relation to their

thermal tolerance limits [55], and distribution shifts are thought to be higher at the leading

edge than at the trailing edge [56], although this is case specific [57]. Snow crab are commonly

found in subpolar and Arctic regions, favoring cold water environments below 5˚C [58]. On

the Grand Banks of Newfoundland, higher biomass has been observed at temperatures close to

0˚C [25]. Being stenothermic, snow crabs are believed to be highly responsive to changes in

bottom temperature, particularly during their juvenile period [59]. Snow crab on the Grand

Banks of Newfoundland are at the trailing edge of their distribution. This is because they are

near their upper thermal threshold, making them particularly susceptible to ocean warming. A

recent study has detected a general shift of snow crab distribution from the Newfoundland

region into the Arctic [30]. Here, we found that snow crab biomass on the Grand Banks is

expected to decline throughout the 21st century for all models under the high emission scenar-

ios, while remaining close to the historical period under the low emissions scenario.

Fig 8. Relative uncertainty in biomass projections for a, snow crab; b, yellowtail flounder and c, Atlantic cod, partitioned across climate models (i.e.,

IPSL, GFDL and ACM), emissions scenarios (low-SSP1-2.6 and high-SSP4-6.0 & SSP3-7.0) and SDM parametrization.

https://doi.org/10.1371/journal.pclm.0000520.g008
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On the Grand Banks, yellowtail flounder thrive in sea bottom temperatures ranging from

1–6˚C, with biomass peaking at around 3˚C [25]. Despite the species’ ability to tolerate a

broad range of temperatures, there is evidence that stock productivity declines significantly at

both extremes of the temperature range [23]. The case of yellowtail flounder is interesting as

uncertainty widely amplifies over time, which was not the case for snow crab and Atlantic cod.

Yellowtail flounder distribution is centered around the southeast shoal of the Grand Banks

due to the presence of a mild current system, facilitating the retention of eggs and larvae [23].

This region is considered as a nursery ground for yellowtail flounder [51], and is the area in

which higher warming is expected on the Grand Banks (Fig 2B). We found that yellowtail

flounder biomass projections are expected to remain close to the historical average for GFDL

and slightly higher for ACM, but to be negatively impacted for the IPSL model under high and

low emissions scenarios.

Atlantic cod tolerates higher temperatures than the other two species, with a peak in bio-

mass found at 5˚C on the Grand Banks [25]. Our analysis indicates that by the end of the cen-

tury, most climate models (excluding the GFDL-low emissions scenario) predict an increase in

Atlantic cod biomass on the Grand Banks. In particular, the ACM showed the greatest biomass

gains. These results contrast with findings in the Gulf of Maine, where biomass decrease was

noted with ocean warming [60, 61], but are in agreement with forecasted thermal habitat for

cod on the Newfoundland and Labrador Shelf [62]. The difference can be attributed to the dis-

tinct thermal environments of these regions. The Gulf of Maine has an average bottom tem-

perature of 7.1˚C [60], while the Grand Banks experiences significantly cooler temperatures,

averaging 1.34˚C during our historical period (1996–2019). This suggests that Atlantic cod

could potentially benefit from moderate warming in the Grand Banks, while those in the Gulf

of Maine may be experiencing temperatures beyond their physiological limits, leading to

declines in biomass [54]. Gains in Atlantic cod biomass are expected to occur mostly in the

southern Grand Banks (3NO stock).

While temperature is a key factor influencing species biomass and distribution, other fac-

tors may also play a significant role. In the Grand Banks, the community structure has shifted

since the collapse in the early 1990s [63], altering predator-prey interactions and productivity

dynamics. Concerns have been raised that fishery-induced changes in these interactions could

significantly hinder or even prevent the recovery of depleted populations like Atlantic cod

[64]. Moreover, documented changes in life history traits—such as reduced age and size at

maturity—and increased natural mortality may complicate recovery, even when thermal habi-

tat conditions are optimal [26, 65, 66]. Continuing fishing and bycatch in low productivity

conditions could further delay recovery [67].

Variability in the predictive capacities of the SDMs directly impacts the reliability of biomass

projections. For instance, our leave future out cross-validation showed that yellowtail flounder

model exhibited the highest predictability (R = 0.7; AUC = 0.97), indicating more confidence in

biomass projections. Conversely, the Atlantic cod model had the lowest predictability (R = 0.47;

AUC = 0.79). Snow crab falls in between with moderate model predictability (R = 0.41;

AUC = 0.89). However, the RV trawl survey has low catchability for this species [68]. Hence,

our model may be underestimating the impact of ocean warming on snow crab biomass.

The low spatial uncertainty of the SDMs indicated consistency in the biomass predictions

during the historical period (1996–2019). However, projecting to 2100 under the high emis-

sions scenario (SSP3-7.0 for IPSL and GFDL and SSP4-6.0 for ACM) showed increased uncer-

tainty, especially for yellowtail flounder. This finding aligns with other species distribution

studies [47, 69], reflecting challenges in extrapolating predictions to novel conditions and/or

the model’s capacity to capture the underlying mechanisms governing species distributions

[49]. In all species, there is a notable overlap between regions with biomass absence and areas
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of high uncertainty (Figs A, D and F in S1 Text). Furthermore, observation uncertainty, linked

to bias in the sampling coverage, can lead to an incomplete depiction of a species’ entire envi-

ronmental niche [70]. While the Grand Banks region has relatively comprehensive sampling

coverage, we anticipate observation uncertainty to be more pronounced near the Avalon pen-

insula, since in this area independent inshore sampling is performed, and at the periphery of

the Grand Banks, corresponding to deeper waters that are less sampled [71]. Depth sampling

limitation may elucidate the higher uncertainty observed in the biomass predictions for the

three species at the periphery of the Grand Banks. Another possible explanation is related to

the spatial resolution of the climate models, increasing bias near the slope of the Banks.

Variation in spatial warming among climate models is crucial to understand uncertainty

surrounding species distribution projections. In the present analysis, we found greater varia-

tion among climate models than among scenarios. We also found differences in the variability

of the temperature projections, with ACM temperature increasing steadily, while the ESMs,

GFDL and IPSL showed high variability. This is likely due to low spatial resolution of ESMs,

leading to incorrect circulation patterns due to inaccuracies in the bathymetry (Figs K and L in

S1 Text). In a dynamic coastal region like the Grand Banks, changes in circulation patterns,

particularly the strength of the shelf break current, play a crucial role in determining sea bot-

tom temperature [18, 19]. These small-scale circulation features are poorly captured by ESMs,

and can even vary among ROMSs [19]. In the same way, the cold intermediate layer is a key

feature of the Banks that also affects the temperature pattern distribution, with colder waters

prevailing in the northern Grand Banks due to the advection of winter-origin waters from the

Labrador Shelf, and warmer temperatures observed in the southern Grand Banks, including

the shallow southeast shoal [13]. The CIL falls within a specific depth range (~50–200 m); thus

models with high bathymetry bias would likely misrepresent the CIL.

Model caveats and assumptions

The SDMs used here do not capture mechanistic drivers of species distribution based on func-

tional traits and physiological constraints–thus, reducing confidence in the projections. For

instance, in the Bering Sea, the recent collapse of the snow crab population has been linked to

elevated water temperatures [72]. Despite these temperatures not exceeding the thermal limits

of the species, they heightened the crabs’ caloric requirements. This, together with a restricted

distributional range, resulted in a mass starvation event [72]. Therefore, it is important to

acknowledge that ocean warming can trigger unforeseen ecological responses. Moreover,

when including the spatial component in our model, we are assuming that the biotic and abi-

otic conditions (all but temperature and depth) are going to remain the same in the future.

This assumption may not be correct. For instance, shifts in species distributions can affect

predator-prey dynamics, community structure, and ecosystem structure and functioning

[73, 74]. Thus, exploring joint SDMs could help clarify how these species’ interactions and

environmental changes jointly impact biomass projections [75]. However, neglecting to con-

sider unexplained spatial correlation in species distribution modeling can result in several

problems, including an increased likelihood of false positive findings, misinterpretation of the

relationships between environmental factors and species distribution, and decreased model

accuracy [76]. The inclusion of the spatial random field could impact the estimates of fixed

effects due to spatial confounding, which refers to a situation where predictors in the model

are correlated with spatial or spatio-temporal effects, potentially leading to bias [77]. When

confounding exits, spatial random fields may absorb variability associated with climate vari-

ables, potentially leading to an underestimation of the true impacts of climate change on spe-

cies biomass [47].
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In this study, species biomass was estimated across the model domain by predicting bio-

mass values over a 5x5 km grid, allowing for spatial estimates beyond the specific locations

where trawl surveys were conducted. This method, which is increasingly used to calculate bio-

mass indices, has been previously applied for our target species in the Grand Banks, comparing

it to traditional strata-based biomass estimation methods [25]. There are some uncertainties

related to these biomass estimations, associated to trawl survey coverage, low catchability of

certain species like snow crab, seasonal limitations from using only spring data, and ontogenic

variations in species distribution that are not considered in here (see [25] for further details).

As exploited populations shift, it is important to consider how fisheries management efforts

can be adapted to more effectively manage and conserve marine resources [78, 79]. The projec-

tions generated by our SDMs can directly inform fisheries management by highlighting future

hotspots for species of commercial interest, allowing for the adaptation of fishing zones to ensure

sustainable harvests. It is important to note that while these projections indicate expected biomass

changes, they should not be interpreted as definitive predictions. Nonetheless, these results hold

significant relevance for fisheries management. Firstly, they confirm that changes in habitat suit-

ability are indeed anticipated with warming waters, which could have varying impacts on different

fisheries. Secondly, our findings underscore the potential of SDMs to inform medium and long-

term planning for fisheries management. By anticipating areas where key species may decline or

increase, management can proactively adjust quotas, spatial closures, or gear restrictions to miti-

gate overfishing or habitat damage [80]. In a socio-economic context, these projections could be

used to assess the impacts of distribution shifts on local fishing communities, industry profitabil-

ity, and food security. For example, fishers who rely on species predicted to decline in their cur-

rent fishing grounds (i.e., snow crab) might face economic challenges, while others might benefit

from newly available species in their region. Understanding these shifts enables better planning

for transitions in fisheries-dependent communities, whether by supporting diversification strate-

gies, reallocating fishing rights, or investing in alternative livelihoods [81]. SDMs offer valuable

insights into the spatial dimension of these biomass changes, aiding in strategic decision-making.
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