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Abstract

To explore the impacts of a moving tropical cyclone (TC) on the deep ocean, a linear contin-

uously stratified model is solved by the method of solving for the temporal and horizontal

structure of each vertical mode. The response of the barotropic mode to the TC’s pressure

gradient is an isostatic balance, where the sea level rise almost completely cancel the atmo-

spheric low pressure. The response of the barotropic mode to the winds is a permanent

sea level drop behind the TC. The horizontal extent of this response is determined by the

distribution of the weak negative wind curl outside the core of the strong positive curl. The

baroclinic response to the winds is dominated by the well-known train of near-inertial oscilla-

tion behind the TC. In addition, there is a mean upwelling and a resultant cooling. The lateral

scale of the first upwelling behind the TC is determined by the size of the TC’s positive curl

core; further behind in the TC’s wake, this feature spreads laterally at the group speed of

inertio-gravity waves for the mode. The three-dimensional structure is then constructed by

superposing these vertical modes. The position of the first upwelling peak coincides

between the baroclinic modes; this alignment results in a vertical column of upwelling. Fur-

ther down the wake, this coherence is gradually lost because of slight difference in the

streamwise wavelength between modes. Also, lower vertical modes dominate further away

from the TC track because of faster lower modes. A uniform-density ocean shows a similar

columnar upwelling and downwelling pattern as a response to the same wind curl. The pres-

sure anomaly field at the ocean bottom is dominated by the barotropic response to winds,

modified by the baroclinic response. The near-inertial oscillation reaches the bottom quickly

because of the columnar response.

1 Introduction

An array of pressure gauges installed on the sea floor at a depth of about 5000 m south of

Japan [1] detected a slow pressure drop of 2–3 hPa peaking 1–2 d after the nearby passage of

the center of a tropical cyclone (TC; Fig 1). The bottom pressure variability due to the weight

of the water column (po) is dominated (not shown) by the sea-level variability (ρgη). The atmo-

spheric pressure anomaly (pa) is largely canceled by po and the variability of the total bottom

pressure (po + pa) is much smaller than that of pa or po. The observed bottom pressure appears
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to start to drop during 2015-08-10 and to reach its minimum at about the end of 2015-08-12.

The corresponding time series from our OGCM (described in Section S1.1.2 in S1 Text) agrees

with the observation fairly well. This agreement suggests that the observed bottom-pressure

change is due to some systematic ocean circulation. Is this bottom-pressure change a direct

response of the ocean to the TC, an indirect response via some oceanic processes, or a totally

independent phenomenon from the TC? If it is indeed a direct response, exactly what deter-

mines its strength and its horizontal structure? More generally, how does the deep ocean

respond to a moving TC?

1.1 Upwelling and deep impacts

It is well known that the Ekman divergence due to the TC’s positive wind curl results in

upwelling into, and cooling of, the mixed layer [e.g., 3, and references therein]. This cold wake

is known to last at least for several days [e.g., 4, 5, and references therein]. A typical TC moves

faster than the local baroclinic gravity waves [e.g., 6] and as a result this upwelling system

leaves a trailing near-inertial oscillation, a feature that has been extensively studied observa-

tionally, theoretically, and numerically [e.g., 3, 7, and references therein].

Recently Yang et al. [8] reported impacts of downwelling on the mixed layer temperature in

the lee of TCs and argued that the negative wind curl of the TC contributes to the warming.

Impacts of TC potentially extend to deep ocean. Kuwano-Yoshida et al. [9] reported a

strong upwelling that reaches the bottom associated with an explosive cyclone in a high-resolu-

tion oceanic general circulation model (OGCM). Pedrosa-Pàmies et al. [10] reported that a

hurricane in the mid North Atlantic enhanced vertical fluxes of organic materials at depths of

1500–3000 m. Spencer et al. [11] analyzed horizontal velocity anomaly associated with a Hurri-

cane measured by moorings installed on the continental slope in the Gulf of Mexico near the

bottom at *1500 m.

Fig 1. (A) Typhoon 1514 (No. 14 of the year 2015), which passed very near the array of bottom pressure gauges of [1] (indicated by the star). The color shading shows

the sea-level atmospheric pressure at 2015-08-10T18:00:00Z, when the estimated typhoon’s center is closest to the observation station, from a re-analysis product which

forces our OGCM (see Section S1.1.2 in S1 Text). The observed/estimated positions (cross symbols) of the typhoon’s center are from the “best track” dataset (Section

S1.1.1 in S1 Text) at a 6-hr interval and the green filled circle is the position at the time of the atmospheric pressure map. (B) Time series of low-pass-filtered pressure

anomalies at the observation station: sea-level atmospheric pressure (pa, red), ocean-only pressure at the bottom from our OGCM (po|z=−D, blue), observed bottom

pressure anomaly (S1 Dataset) from Fukao et al.’s [1] dataset (black), and bottom pressure anomaly from our OGCM (pa + po|z=−D, green). To show the similarity

between po and pa, the sign of the former is flipped. Each anomaly is calculated by subtracting the temporal average over ±4 d about the central time of Panel A. The low-

pass filter has been applied to each time series to reduce tides, which dominate the raw bottom-pressure anomalies (not shown); the filter uses the 48-hour Hann window

[2].

https://doi.org/10.1371/journal.pclm.0000376.g001
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What is the vertical structure of this upwelling and downwelling? What determines its loca-

tion? What are the impacts of the near-inertial oscillation near the sea floor?

1.2 Linear models

Geisler [7] used a linear two-layer model, derived second-order partial differential equations

that describe the equilibrium response of the vertical velocity and interfacial displacement sep-

arately for the barotropic and baroclinic modes to a pressure anomaly and wind curl of a mov-

ing TC. They showed the Green’s function for each of the barotropic and barotropic responses

and explained various properties of the TC response, including the train of near-inertial oscil-

lation behind the TC. Their solutions predict that the first peak of upwelling comes a quarter

wavelength of the near-inertial oscillation. They also showed that the sea level permanently

drops and the thermocline is permanently raised behind the TC as an upstream integration of

the barotropic and baroclinic vertical velocities, respectively.

Shay et al. [12] studied oceanic horizontal velocity field measured with airborne expendable

current profilers (AXCPs) over the top *500 m. To understand the velocity field, they

extended Geisler’s [7] model to a linear continuously stratified (LCS) ocean, expressing the 3-d

flow field as a superposition of 10 baroclinic vertical modes. They obtained a good agreement

between the observation and the theoretical result.

1.3 Present study

The present paper is a follow-up study to [7] and the theoretical part of [12]. We construct a

complete 3-d response, including both baroclinic and barotropic responses, of the LCS ocean

to wind stress and atmospheric pressure of an idealized empirical-model typhoon. Particular

attention is payed to the vertical and horizontal structure of the vertical velocity and pressure

anomaly from the sea surface to the bottom and what determines these.

Geisler [7] looked at Green’s functions to infer the properties of the ocean response. Shay

et al. [12] used a Rankin vortex as a model TC (Section S1.4 in S1 Text) likely because of its

simplicity. We extend their works by constructing responses to a more realistic wind curl and

pressure. We show that the negative wind curl outside of the TC core, though weak, has signifi-

cant impact on the horizontal extent of the ocean response.

The rest of the paper is organized as follows. Section 2 outlines the LCS model and the

methods to solve it; a complete derivation of the formulation and solutions outlined in this sec-

tion is found in Supporting Information “S1 Text”. Section, equation, and figure numbers

from S1 Text are prefixed by an “S”. Section 3 shows the results; and the last section (Section 4)

first summarizes the results and then discusses their implications and limitations.

2 Methods: Idealized linear model

This section outlines the linear model and its solutions that will be shown in Section 3. Details

are found in Sections S1.2 to S1.4 in S1 Text.

We calculate the 4-d response of an idealized ocean (Section S1.2 in S1 Text) to an idealized

model TC (Section S1.4 in S1 Text) on an f plane in an infinite domain with a constant depth

D = 4000 m. We linearize the primitive equations around a horizontally uniform stratification

with no motion [e.g., 13]. The result is the set of 4-d equations (S3) in S1 Text. The set is

slightly unusual in that it includes horizontal gradients of atmospheric pressure. For simplicity,

we assume a constant buoyancy frequency of N = 0.002 s−1; this value is chosen so that the

gravity-wave speed for the first baroclinic mode, c1� 2.5 m/s (see S1 Table in S1 Text), is rea-

sonable [14]. The TC is assumed to be axisymmetric and have an smooth empirical radial pro-

file of pressure anomaly and tangential winds (Section S1.4 in S1 Text). The TC is also
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assumed to move eastward at a constant speed of Ctc = 8 m; this value is chosen because it is

within the typical range [6] and relatively well satisfies the inequality that c2
1
� C2

tc, which

helps our anlysis (see Section 3). It is also not too fast: the faster the TC is, the finer the zonal

grid spacing needs to be (Section S1.2.4 in S1 Text).

Elements missing from our model include nonlinearity, a more realistic stratification, lat-

eral boundary, bottom topography, and mixing and friction. An axisymmetric TC moving at a

constant speed of 8 m/s is also an idealization. We discuss consequences and limitations of

these idealizations in Section 4.2.3. Dependency of the solution to the TC speed is discussed in

Section 4.2.2.

To solve the set of 4-d equations, we expand the dependent variables in vertical modes [e.g.,

13, 15]. In this expansion, we include the barotropic mode (n = 0), whose vertical profile and

gravity-wave speed are obtained from the free-surface modes, (S4) and (S5) in S1 Text, follow-

ing [16], whereas we still use the rigid-lid modes as the impacts of free surface on the baroclinic

modes (n� 1) are very minor (Section S1.2.6 in S1 Text).

The coefficients of the expansion, all a function of (x, y, t) for each mode number n, form a

reduced-gravity model (RGM; Eq. S8 in S1 Text) forced by contributions from atmospheric

pressure and from wind stress. The strength of contribution to each mode is expressed by a

“coupling coefficient”, which is determined by the vertical profiles of the mode functions and

the mixed layer thickness. It turns out that the contribution of atmospheric pressure on the

baroclinic modes are negligible [7, also apparent from our Eq. S8 in S1 Text] and therefore

only the barotropic response is considered to atmospheric pressure, whereas wind stress

strongly forces baroclinic modes.

We then solve the RGM of each mode numerically and superpose the solutions to obtain

the 4-d flow field. We sum up to mode 20. The numerical method consists of regular finite

differencing. See Section S1.2.4 in S1 Text for details.

One advantage of this approach is that one can get insights from the RGM to understand

the behavior of the 4-d flow field as a superposition of the RGMs [e.g., 17]. An important result

from previous studies is that the stationary response of the RGM, separately to the wind stress

and to pressure anomaly of a moving TC, is a solution to

ðr2 � g2=c2
n � a

2
nÞðwn=DÞ ¼ anð f =c2

nÞcurl t=ro; ð1Þ

ðr2 � g2=c2
n � a

2
nÞpn ¼ � aa

nr
2pa ð2Þ

on the coordinate system which is moving with the TC, where γ� −Ctc@x. The wind stress

and pressure anomaly of the TC are assumed to be steady (@t = 0) in this coordinate system.

Unfamiliar symbols are defined as follows: wn(x, y) is the coefficient of expansion such that

wðx; y; z; tÞ ¼
P1

n¼0
wnðx; y; tÞCnðzÞ; ρo is a mean sea-water density; π� p0/ρo and

pðx; y; z; tÞ ¼
P1

n¼0
pnðx; y; tÞcnðzÞ; πa(x, y, t) = pa/ρo is the atmospheric pressure anomaly

divided by ρo; cn is the gravity-wave speed of mode n; αn� | f |/cn is the inverse of the deforma-

tion radius; and an and aa
n are the coupling coefficients for wind stress and atmospheric pres-

sure. Eqs (1) and (2) are reproductions of Eqs. (S22) and (S23) in S1 Text and their derivations

are found in Sections S1.3.2 and S1.3.3 in S1 Text. Shay et al. [12] show essentially the same

expression for the wind stress response whereas Geisler [7] derives equivalent expressions

from a two-layer model for both wind stress and atmospheric pressure.

To help understand the barotropic (n = 0) solution, we also solve (1) and (2) numerically.

The numerical method is described in Section S1.3.5 in S1 Text.

Green’s functions of the operator on the left-hand side are also known [7], which we utilize

to interpret our numerical solutions to the RGM. Moreover, an analytic solution to (1) can be
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written down as a convolution integral between the wind curl and the Green’s function

(Eq. S28) in S1 Text. Although unfortunately this integral cannot be carried out analytically for

the given model TC, it can be relatively easily evaluated numerically for baroclinic modes

because the baroclinic Green’s function is benign (Section S1.3.4 in S1 Text).

In the Results section (Section 3), we first discuss each vertical mode separately. To give a

sense of the size of contribution from each mode to the total 4-d field, each RGM field we

show has the same physical dimension as the corresponding 4-d field. For simplicity, however,

we set the wind-coupling coefficient an to 1/D when showing the RGM results, ignoring the

adjusting factor a0n, which is Oð1Þ (Eq. S8) in S1 Text. This factor is put back in when con-

structing the final 4-d field. Also note that even though ψn(z) are normalized to have Oð1Þ
non-dimensional amplitudes for all modes, Cn(z)’s amplitudes are Oð1Þ only for small n (Eqs.

S20) in S1 Text.

3 Results

3.1 Vertical velocity in an OGCM

In this subsection, we show an example of a vertical-velocity field associated with one tropical

cyclone in our high-resolution ocean general circulation model (OGCM). This model and the

method of analysis are described in Section S1.1 in S1 Text. We do not claim that this vertical-

velocity field is universal or even typical. This small “result” is presented just as an additional

“motivation” to our main analysis of the idealized LCS model.

Fig 2 plots a composite of vertical velocity in the OGCM following the center of typhoon

1420 (Typhoon No. 20 of the year 2014). This TC moved approximately in the N40˚E direc-

tion. Before the time shown in Fig 2A, the TC was moving at a relatively constant speed of

*5 m/s and suddenly speeds up about that time to 10–40 m/s (not shown). The central pres-

sure is about 985 hPa in Fig 2A.

In the y-z section, the vertical velocity peaks somewhat behind the center of the TC. Its ver-

tical profile is interesting. Since the ocean depth is generally 5000–6000 m in this region, the

composite values below 5000 m are not reliable. The vertical velocity is nearly zero around

5000 m, increases linearly upwards, peaks at about 700 m, and decays towards the surface.

Although this is not visible in the plot, at the surface the velocity is weakly negative, on the

order of 10−6–10−5 m/s behind the center of the TC up to y = −2˚.

Upwelling associated with TCs is a well known feature. The shift of its position behind the

TC may be interpreted as the quarter phase delay of the near-inertial response (see Introduc-

tion). But why does it have to take this cleanly linear profile at depth? These features are com-

mon to one or two of the other several typhoons we have sampled (not shown) but they are by

no means universal. We will discuss this issue later in Section 4.2.1.

3.2 Barotropic response

3.2.1 Response torpa. First let us look at the barotropic (n = 0) response of the idealized

model to the pressure anomaly of the moving TC. For an equilibrium solution following the

moving TC, where γ = −Ctc@x, Eq (2) gives

½r2 � ðCtc=c0Þ
2
@

2

x � a
2
0
�p0 ¼ � aa

0
r2pa

) r2p0 � � r
2pa

because C2
tc � c2

0
, L2 � a� 2

0
, and aa

0
¼ 1 (note Eq. (S8) in S1 Text, c0 ¼

ffiffiffiffiffiffi
gD
p

, and ψ0(0) = 1 for

the last equality). Here L is the characteristic scale of horizontal variation in πa, which is

Oð100kmÞ according to S1 Fig in S1 Text, whereas a� 1
0
� 2900 km is the barotropic radius of
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deformation. Considering that both πa and π0 vanish at infinity and that only the gradients of

πa enter the basic equations (S3) in S1 Text, we conclude

p0 � � pa þ const:

That is indeed the case as shown in Fig 3: The upper panels plot −πa + const. and π0 and the

two curves nearly coincide; the difference between the two fields are very small (lower panel).

Moreover, sincerπ +rπa� 0, u and v are almost zero (see Eqs. S8 in S1 Text) for the equilib-

rium response.

Baroclinic modes are negligible. For example, we have run the mode 1 RGM. The maxi-

mum amplitude of p0
1
¼ rop1 would be 4.8 hPa (not shown) if the pressure coupling coeffi-

cient, aa
1
, were as large as aa

0
. Even this hypothetical amplitude is significantly smaller than that

Fig 2. (A) Sea level pressure (pa, hPa) at 2014-11-06T06:00:00Z and the track of typhoon 1420 (No. 20 of the year 2014). The green circle is the

estimated center of the TC at the time of the pressure map and the green crosses are the estimated positions at a 6-hr interval. (B) Composite vertical

velocity averaged over y = −0.3˚ to y = 0˚ in TC-centered pseudo latitude for the OGCM (Section S1.1.2 in S1 Text) following the center of the TC

(Section S1.1.3 in S1 Text). (C) Composite vertical velocity section.

https://doi.org/10.1371/journal.pclm.0000376.g002
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of p0
0

(Fig 3). It is actually much smaller because

aa
1
¼

H1

D
c1ð0Þ ¼

c2
1

c2
0

c1ð0Þ � 0:0002

whereas aa
0
¼ 1. (See Eqs. (S8) and S1 Table in S1 Text and note that c1ð0Þ ¼

ffiffiffi
2
p

according to

Section S1.2.6 in S1 Text). The actual amplitude is therefore like 4.8 × 0.0002� 0.001 hPa for

the first baroclinic mode.

With neglect of baroclinic modes, the 3-d distribution of the barotropic pressure is π0(x, y)

ψ0(z), but since ψ0(z) = 1, the anomalous pressure is, at all depth,

p ¼ pa þ p0 ¼ pa þ ð� pa þ const:Þ ¼ const:;

which is uniform in space (See Eq. S2c in S1 Text). How uniform it is is shown in Fig 3B,

which plots the residual:p0 + pa − const. The size of the residual is*0.2 hPa or less. The cause

of this residual is not clear. It may be due to the gravity waves which may still remain after the

temporal average because the data interval, 12 500 s, is not frequent enough or because the

Fig 3. pa and ρoπ0; the former is the pressure anomaly of the TC and the latter is a temporal average of the

pressure response of the n = 0 RGM to pa; ρoπ0 is the temporal average in the moving coordinates over the last 3 d

of the integration to suppress gravity waves. The center of the TC is set at (x, y) = (5000 km, 3000 km) in the moving

coordinates. The pressure anomaly is a sum of three TC instances 7000 km apart in the x direction to account for the

zonal cyclicity of the computational domain. See S1 Text. But the result is not much different if only one instance is

used (not shown) because the zonal width 7000 km is significantly larger than the zonal scale of the TC. (A) Zonal and

meridional sections of −pa + const. (blue dashed) and ρoπ0 (orange solid) across the center of the TC, but the two

curves are so close to each other that they almost coincide. pa is shifted by the constant value 19.1hPa so that the curves

coincide. See S1 Text. (B) ρoπ0 + pa − const., showing the residual.

https://doi.org/10.1371/journal.pclm.0000376.g003
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averaging period is not long enough; or it may be due to the approximation that led to the con-

clusion thatr2π0� −r2πa.

Fig 4 shows the w response. (Despite the 3-day average, it includes low-amplitude small-

scale noise, which is likely due to the weakness of any dissipation in the numerical model. See

Section S1.2.4 in S1 Text). Equations (S8f) and (S8g) in S1 Text give, on the stationary coordi-

nates,

w0 ¼
D
c2

0

@tp0 ¼
D
gD
@tðgZ0Þ ¼ @tZ0;

because c0 ¼
ffiffiffiffiffiffi
gD
p

and π0 = gη0 (Eq S8g) in S1 Text. In the equilibrium state on the moving

coordinate system, therefore,

w0 ¼ � Ctc@xZ0 ¼ Ctc@xpa=ðgroÞ:

On the front side of the TC, sea level is raised by the low atmospheric pressure (@xη0 < 0

and @xpa > 0), which requires upward vertical velocity w0 = −Ctc@xη0 > 0; after the TC center

passes, the sea level returns to its original value by the downward vertical velocity behind the

TC center. The horizontal scale of the pressure core of the model TC is L* 200 km and the

pressure drop is*10 hPa (S1 Fig in S1 Text), the latter corresponding to a sea level rise of

Δη = Δp/(gρo)� 0.1 m. Therefore, w* ΔηCtc/L* 0.4 × 10−5 m/s, consistent with Fig 4.

The vertical profile of this vertical velocity is linear: C0(z) = z/D + 1, whereC0(z = 0) = 1.

The magnitude of the vertical velocity is, therefore, w0 at the surface, which is

Oð1� 10� 5m=sÞ. The horizontal velocity (not shown) is vertically uniform (because ψ0(z) =

1 = const.) and Oð10� 4m=sÞ.
It is concluded that at the equilibrium, the pressure anomaly of the TC does not induce any

significant disturbance to the ocean, except that sea level rises to cancel out the atmospheric

pressure anomaly (η = η0 = π0/g = −πa/g) and except for the associated vertical velocity to sup-

ply for the sea level rise and fall on the front and rear sides of the TC center. This state is often

called “isostasy”. This property always holds for TCs because they are not nearly as fast as baro-

tropic gravity waves and their core size is much smaller than the barotropic deformation

radius.
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Fig 4. w0 of the n = 0 RGM forced by pa; average over the last 3 d of the integration to suppress gravity waves.

https://doi.org/10.1371/journal.pclm.0000376.g004
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3.2.2 Response to curl τ. The barotropic response to a delta-function curl τ is described

by [7]. Such a response is often called the “unit impulse response” or the “Green’s function”.

Here, we extend his/her results to a more realistic wind-curl distribution.

Fig 5 shows the w0 field of the barotropic response to the wind stress of the model TC. As

can be inferred from the results of [7], the w0 field is very nearly circular because curl τ is circu-

lar. Anisotropy results only from the anisotropic Laplacian (Eq. (S22) in S1 Text) ð1 �

C2
tc=c

2Þ@2
x þ @

2
y but this anisotropy is negligible for the barotropic mode because C2

tc=c
2
0
� 1.

Since curl τ is concentrated near the center of TC (S1 Fig in S1 Text), one would suspect

that the impulse response would be an excellent solution. It is therefore interesting that the w0

solution (blue curves) spreads much less than the impulse response (orange curves). Fig 6

compares the impulse response with the actual distribution of w0. This time w0 has been

0 1 2 3 4 5 6 7

0
[1

0−
7

m/
s]

-4
-3
-2
-1
0
1

[1000 km]
0 1 2 3 4 5 6 7

[1
00

0 k
m]

2

3

4

0 [10−7 m/s]
-4 -3 -2 -1 0 1

[1
00

0 k
m]

2

3

4

0
[1

0−
7

m/
s]

-3
-2
-1
0
1
2
3

Fig 5. The distribution of w0 from the mode-0 RGM forced by winds at the end of the integration; zonal and

meridional sections across the center of the TC. The orange curve is the analytic impulse response to a delta-function

forcing at the center of the TC (Green’s function; Eq. S25 in S1 Text); its amplitude is adjusted so that the peak visually

agrees with that of w0, which is fine for a qualitative comparison like this. See Section S1.3.6 in S1 Text for a discussion

about the amplitude.

https://doi.org/10.1371/journal.pclm.0000376.g005

Fig 6. Distribution of w0 along y = 3000 km from the wind-driven RGM solution. The solid blue curve is the same

as that in the top left panel of Fig 5 except that this version is a temporal average over the last three days to suppress

gravity waves. The orange curve is different: this time, it is a numerical solution to the “w-equation” (1) forced by a

delta-function-like wind curl; its amplitude is adjusted so that the peak visually agrees with that of w0. The thick dashed

green curve is the numerical solution to the w-equation forced by the curl of the same wind stress as forces the RGM.

https://doi.org/10.1371/journal.pclm.0000376.g006
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temporary averaged to suppress gravity waves. Also plotted is a numerical solution to the “w-

equation” (1) forced by the curl of the same wind stress as forces the RGM. (The numerical

method is described in Section S1.3.5 in S1 Text). This solution is plotted with the thick dashed

green curve, which agrees well with the RGM solution (blue curve). In contrast, the orange

curve is the numerical solution to the w-equation forced by a delta-function-like curl: curl τ =

const. within a 20 × 20 km square centered at the center of the TC and curl τ = 0 outside. The

solution is then scaled in such a way that its peak visually agrees with the peak of w0.

Solutions to the w-equation can be viewed as a steady solution to the virtual “heat-conduc-

tion equation” (S29) in S1 Text, where positive wind curl is analogous to “heat source” and −w
is analogous to “temperature”. The “heat” provided by the forcing is laterally diffused by the

Laplacian term and gradually lost by the “radiative cooling” −α2 � (−w). Since “cooling” is

weak, that is, the radius of deformation (α−1) is large, the anomaly spreads broadly.

The difference between the realistic w0 response and the impulse response must therefore

be attributable to the negative wind curl, “heat sink”, outside the TC core (S1 Fig in S1 Text). It

is therefore the negative wind curl outside the TC core which limits the horizontal extent of w.

Although weak in magnitude, the negative curl is effective (in absorbing “heat”) because it cov-

ers an area much larger than the area of positive curl. A region of negative curl is an integral

part of a TC because its wind decays (or must decay) fast outside the TC core. See the discus-

sion of S1 Fig in S1 Text.

As discussed for the pa response in the previous subsection, the pressure, and equivalently

sea-level, response is the zonal integration of w (Fig 7). The pressure starts to drop *400 km

before the TC center and reaches its negative peak *400 km behind the TC center, corre-

sponding to the zonal scale of w0 (Fig 7). Since the speed of this TC is 8 m/s, these corresponds

to *0.7 d before and after the passage of the TC center in the stationary system. The lateral

extent is the same as that of w0, that is, Δy* ±400 km. In the wake of the TC, the low pressure

stays at its peak value. Geostrophic circulation is left behind; (u, v)� g(−ηy, ηx)/f is a very good

approximation (not shown). The velocity is vertically uniform (because ψ0(z) = 1) and its

amplitude is less than 0.75 cm/s (not shown). The horizontal scale of the pressure anomaly and

the associated velocity anomaly are therefore ultimately determined by the radial structure of

the wind curl of the TC.

Fig 7. The distribution of η0 from the mode-0 RGM at the end of the integration; zonal and meridional sections

across the center of the TC. Since p0
0
� rop0 ¼ groZ0, of sea level anomaly corresponds to 1 hPa of pressure anomaly

(note that ψ0(0) = 1). The arrows indicate the horizontal velocity (in the stationary coordinates).

https://doi.org/10.1371/journal.pclm.0000376.g007
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3.3 Baroclinic response

Next we look at baroclinic modes. As stated above, the baroclinic response to pa is extremely

weak, and here we focus on response to curl τ.

3.3.1 Mode 1: w. Fig 8 plots −w1 from the n = 1 RGM and from the numerical evaluation

of the analytic solution (Section S1.3.4 in S1 Text) to (1). The unfortunate consequence of the

sign convention (ψ(0) > 0) and ψ’s relation with C (Eqs. S6) in S1 Text is thatCn(z)< 0 near

the surface for all n� 1; for this reason, wn< 0 means upwelling near the surface.

As is well known, a typical TC leaves a train of near inertial oscillation behind, which is

because Ctc > c1 for a typical TC as explained in the following. The orange curve is a plot of the

Green’s function centered at ð~x; ~yÞ of the w-equation:

Gðx � ~x; y � ~yÞ ¼ �
a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

tc=c2 � 1
p J0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x∗2 � y∗2

p
Þyð� x∗ � jy∗jÞ; ð3Þ
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Fig 8. Vertical velocity −w1 of RGM mode 1 at the end of the integration (A) (B) (C) and the numerically evaluated

analytic solution (D) (E) (F). See Eq. (S28) in S1 Text for the latter solution. The zonal section goes through the center

of the TC (y = 3000 km) whereas the meridional section is x = 2850 km, where the peak of w1 is. The impulse response

(Green’s function, orange curves) is shifted westward by 30 km and its amplitude is adjusted, both in such a way that

the curve visually agrees with the w1 curve.

https://doi.org/10.1371/journal.pclm.0000376.g008
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where J0 is the Bessel function of the first kind of order 0 and

x∗ �
a ðx � ~xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

tc=c2 � 1
p ; y∗ � a ðy � ~yÞ ð4Þ

[7, and see Eq. (S26) in S1 Text of the present paper]. The actual solution is a convolution inte-

gral between the Green’s function and the wind-stress curl (Eq. S28) in S1 Text, but since the

strong positive wind-stress curl is concentrated in a circle of a radius *100 km (S1 Fig in S1

Text) the Green’s function is a fairly good representation of the actual solution.

The meridional extent of the solution scales as α−1 (= c/f). The wavelength of J0(r*) is very

nearly 2π near r* = 0 (not shown) and therefore the zonal wavelength at y* = 0 near x* = 0 is

ln ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

tc=c2
n � 1

p

an
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

tc � c2
n

p

f
; ð5Þ

which slowly increases as cn decreases for higher modes. For mode 1, where c1� 2.55 m/s,

λ1� 655 km. But, because usually c2 � C2
tc for all baroclinic modes,

l � 2pCtc=f and l < 2pCtc=f ;

and the structure of the solution depends only weakly on c in the x direction and the zonal

wavelength is mainly determined by the speed of the TC. In the stationary coordinate system,

because this wave train moves eastward at the speed of Ctc, the angular frequency of the oscilla-

tion is ω = 2πCtc/λ� f and ω> f, that is, this oscillation is near-inertial.

An obvious difference between the Green’s function and the actual solution (Fig 8A) is that

the former extends westward indefinitely because it assumes a steady state in the moving coor-

dinates. The system can propagate disturbance no faster than c and this explains the nearly

perfect circle centered at (x, y) = (1000 km, 3000 km) (Fig 8B), where the TC initially was.

Also, the meridional extent of w1 at its peak is much narrower in the Green’s function (the

orange curve in Fig 8C). This is again because the signal from the forcing, which is a delta

function for the impulse response, cannot propagate faster than c. Moreover, to obtain a good

match with the actual solution, the Green’s function has to be shifted westward by 30 km (the

orange curve in Fig 8A).

These discrepancies indicate that the position of the peak in w1 behind the TC and its

meridional structure need to be explained by the convolution integral between the actual dis-

tribution of curl τ and G. Fig 8D to 8F show a numerical evaluation of the convolution integral,

which we sometimes call the “analytic” solution for convenience. This solution is quantitatively

very similar to the RGM solution. Fig 9 compares the two solutions in detail. The match is

nearly perfect in the zonal section (Fig 9B) except that the first peak is somewhat larger in the

“analytic” solution. The wavelength of the Green’s function is slightly longer than that of the

actual solution (Fig 8A); this difference also comes from the difference between the Green’s

function itself and the convolution. Since the actual solution is a westward integration of

wind-stress curl times the Green’s function (Eq. S28) in S1 Text, the peak response in wn is a

westward accumulation of forcing curl τ and the peak comes west of the TC center, whereas

the peak of the Green’s function itself is located right at the TC center. This is the reason for

the 30km westward shift applied to the orange curve in Fig 8A.

The meridional structure at the first peak (Fig 9C) also agrees well between the two solu-

tions. The Green’s function shows a clear causal relation (Eq. (S26) in S1 Text): No response

PLOS CLIMATE Linear response of deep ocean to a moving tropical cyclone

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000376 December 17, 2024 12 / 29

https://doi.org/10.1371/journal.pclm.0000376


shows up outside the causal triangle x*< y*< −x* with x*< 0. In dimensional variables,

�
c

Ctc
ð~x � xÞ < ðy � ~yÞ <

c
Ctc
ð~x � xÞ ð6Þ

from (4) because C2
tc=c

2 � 1 and α = f/c. The triangle extends from ð~x; ~yÞ westward, north-

ward, and southward. This triangular shape is a natural consequence of the condition that

Ctc > cn [7] but we are not aware whether it has been observed or not. If there are no observa-

tional reports, it may be because the near surface response is dominated by higher vertical

modes (see Section 3.4 below), for which the meridional spread is narrower (see Section 3.3.3

below).

This is the bound where gravity waves can reach from the delta-function forcing. This is the

reason why G has a sharp edge at the triangle. The actual response is smoother because the

forcing is smooth but the amplitude of the response rapidly decays outside the triangle which

starts from the TC center (Fig 8A and 8C) because the forcing (wind curl) decays rapidly away

from the TC core.

The meridional spreading due to gravity waves, as represented by the width of the orange

curve in Fig 8C, is narrower than the meridional scale of the wind curl itself and therefore the

overall meridional width at this point (150 km behind the TC center) is determined mainly by

the meridional scale of the wind curl.

Further west (Fig 9A), the upwelling or downwelling region spreads meridionally by gravity

waves but the total response is a superposition of gravity waves generated at various places.

(This superposition is what the convolution integral does.) The net result is a wavy pattern that

includes small scale features near the edge (Fig 9A). It is interesting that at the poleward edges

the “analytic” solution has small but nonzero amplitudes beyond the latitudes where the

numerical RGM response vanishes. This may be because the numerical convolution integral

must be carried out at a higher horizontal resolution to cancel out these tiny wiggles or because

small-scale gravity waves are somewhat slower in the numerical RGM.

3.3.2 Mode 1: Other fields. Fig 10 plots η1ψ1(0). We include the factor ψ1(0) to indicate

the contribution of the mode to the actual total sea level; see (S7) in S1 Text. As stated for the

barotropic mode, wn = −Ctc@xηn at the equilibrium state on the moving coordinates and there-

fore the ηn field is proportional to a westward integration of wn. For this reason, the peaks of η1

is a quarter phase behind those of w1. The location of the first minimum pressure (sea level) is

therefore determined by both the horizontal size of the strong-curl core of the TC and the

Fig 9. Vertical velocity −w1 of RGM mode 1 (a) at x = 2290 km, where the 9th peak is, (b) across the center of TC, y = 3000 km, and

(c) at x = 4850 km, where the 1th peak is. The solid blue curve is the numerical solution to the RGM at the end of integration, and the

thicker dashed green curve is the numerically evaluated analytic solution to the w equation (Eq 1; see Section S1.3.4 in S1 Text).

https://doi.org/10.1371/journal.pclm.0000376.g009

PLOS CLIMATE Linear response of deep ocean to a moving tropical cyclone

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000376 December 17, 2024 13 / 29

https://doi.org/10.1371/journal.pclm.0000376.g009
https://doi.org/10.1371/journal.pclm.0000376


natural wavelength (2πf/Ctc) of the near-inertial oscillation. It is located 300 km behind the TC

center, which corresponds to about 10 hr behind in the stationary coordinate system. Interest-

ingly the response of pressure is not only a near-inertial oscillation but also there is a net pres-

sure drop. The size of the average drop is less than 1/10 of the barotropic mode (Fig 7).

Since pressure (π), sea level (η), and buoyancy (b) are tied by πn = gηn = −Dbn for each

mode (Eqs. S8e and S8g) in S1 Text, a negative pressure anomaly simultaneously means a neg-

ative sea level anomaly and a positive density anomaly near the surface (because ψn(0) > 0

according to our sign convention). Therefore, pressure anomaly near the surface is negative

owing to the lowered sea level despite the positive density anomaly. The density response is

shown later for the total 4-d field.

It is not easy to show the velocity field in arrows on the map (10) as it is dominated by

eddy-like wave pattern as shown in [3]. Its magnitude is less than 0.8 cm/s (not shown).

3.3.3 Mode 10 and higher. As the mode number increases (that is, as cn decreases), the tri-

angle of causality (6) shrinks in the meridional direction because cn/Ctc decreases. For mode

10, for example, c10’ 0.25 m/s and c10/Ctc’ 0.03, which means that even after 5000 km of TC

passage the meridional spread of the signal is just ±160 km (Fig 11). As a result, the response

to the forcing is dominated by the westward integration of wind curl with the Green’s function

as in (S28) in S1 Text. That is why the meridional structure of w10 near the TC center (Fig

12C) is similar to the meridional structure of wind curl, which has two peaks at Δy� ±20 km

(S1 Fig in S1 Text).

According to (5), the zonal wavelength near the TC center is approximately 690 km, some-

what longer than 655 km for mode 1. These wavelengths are not inconsistent with the distance

between the 1st and 9th peaks in |w| quoted in the captions to Figs 9 and 12, according to

which the wavelengths are 695km for mode 10 and 640km for mode 1.

The pressure response again includes a mean drop and is much smaller (Fig 11) than that

of mode 1 (Fig 10). The velocity field again takes a form of series of eddies and is smaller than

1 cm/s.

Further reduction in cn brings about even smaller changes to the response of the mode to

wind curl. The meridional spread of signal becomes even narrower and as a result, so does the

causal triangle, and the westward convolution integration dominates even more. In other
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Fig 10. Same as Fig 8 except that this one plots η1ψ1(0). Note that the meridional section is still where w1 is at its

peak, not η1.

https://doi.org/10.1371/journal.pclm.0000376.g010
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Fig 11. Vertical velocity −w10 and sea level η10ψ10(0) of RGM mode 10 at the end of the integration. The zonal

section goes through the center of the TC (y = 3000 km) whereas the meridional section is 170 km to the west, where

the peak of w10 is.

https://doi.org/10.1371/journal.pclm.0000376.g011

Fig 12. Vertical velocity −w10 of RGM mode 10 (A) at x = 2050 km, where the 9th peak is, (B) across the center of TC, y = 3000 km, and (C) at x = 4830 km,

where the 1th peak is. The solid blue curve is the numerical solution to the RGM at the end of integration, and the thicker dashed green curve is the numerically

evaluated analytic solution to the w equation (Eq 1; see Section S1.3.4 in S1 Text).

https://doi.org/10.1371/journal.pclm.0000376.g012
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words, the response of the mode converges as cn becomes smaller. (If we looked at x! −1,

the signal always spreads meridionally for all modes, but we are interested in a limited range

of x.)

Our numerical RGM solution agrees with the convolution integral at mode 20 (not

shown) as well as it does at mode 10 (Fig 12) even though with c20� 0.13 m/s, the deforma-

tion radius c20/f� 1.9 km is hardly resolved by our meridional grid spacing of 2 km. This

result must be because the meridional spread of the solution (as embodied by the Green’s

function) is negligible and the numerical grid does not need more meridional resolution

than for lower modes.

3.4 Three-dimensional structure

The three-dimensional (x, y, z) structure is constructed as a summation of the RGM solution

times the vertical structure function (Eq. S7) in S1 Text. For the wind-forced solution, we

adjust the amplitude of each RGM solution to reinstate the factor a0n (Eq. S8) in S1 Text in the

summation. For the pa-forced solution, we just use mode 0 only as the higher modes are negli-

gible (Section 3.2.1).

3.4.1 w field. Fig 13 shows the wind-forced 3-d solution at the end of integration. (The

pa-force w is negligibly small as discussed later in Section 3.6.1 and so is ignored here.) At

about 150 km behind the TC center, there is a vertical column of strong upwelling, which

grows linearly from 0 at the bottom to *4 × 10−4 m/s at z� −250 m and then decays to 0 at

the surface (Fig 13G). This profile is similar to that found in the JCOPE model (Fig 2) except

that the depth of the peak appeared more like 700m in the latter. This vertical coherence in

the idealized model is because all baroclinic modes have the first peak in wn approximately

here. The vertical structure is a result of constructive interference in the upper ocean and

destructive interference at depth between the vertical structure functions Cn(z) of the

modes.

Further behind, the phase lines tilt backwards. The zonal wavelength becomes longer as

cn decreases (Eq 5) but the rate of this change slows down as n increases (and λn approaches

a constant value). For this reason, the vertical alignment of peaks in wn (Figs 8 and 11) is

gradually lost between the lowest modes and the higher modes whereas the coherence

between the higher modes mostly remains, and the shallowest peak in w remains at *300

m, which is created by the sum of the higher modes where as the relation of the other, deeper

peak(s), which are created by lower modes, to the shallowest peak, keeps shifting (Fig 13E

and 13F).

The meridional evolution of the wave train is also explained as a superposition of modes.

The meridional spread is obviously faster for lower modes (Eq 6; Figs 8 and 11), and as a result,

the outer edges are dominated by a 1st-mode-like structure and variability is found only at

mid depths away from the TC track (Fig 13B and 13C).

This 3-d structure should also be explainable as a behavior of 3-d inertio-gravity waves

because after the passage of the TC, the w disturbance left behind should follow the dispersion

relation of internal gravity waves. Although the 3-d disturbance field is a superposition of

waves with a wide range of vertical wave numbers and does not render itself to a simple WKB

interpretation, at least the propagation of the phase is consistent with the interpretation that

this is a kind of lee wave response: We have plotted x-t and z-t Hovmöller diagrams at a fixed x
behind the center of TC (not shown) and found that the phase propagates upward and forward

(positive x), consistent with the regular lee wave [e.g., 18].
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This indicates a downward and forward energy propagation [e.g., 15]. Using the standard

dispersion relation [e.g., 15] of internal gravity waves

o ¼
N2ðk2 þ l2Þ þ f 2m2

k2 þ l2 þm2

� �1=2

;

and for the 1st baroclinic mode, which has a vertical wavenumber of m = π/D (Eqs. S20) in

S1 Text, a zonal wavenumber of k ¼ 2p=l1 ¼ f =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

tc � c2
1

p
(Eq 5), and a meridional

Fig 13. Vertical sections of w(x, y, z) forced by winds at the end of integration. The units for the contouring are 10−4 m/s. Arrows indicate velocity vectors (v, w) in

each meridional section; velocity is omitted for the zonal section to avoid too much cluttering. The velocity components, v and w, are scaled in such a way that the

arrows are parallel (tangent) to local stream lines, each pointing in the direction of the motion of the local water parcel. The zonal section (A) is through the center of

the TC; the meridional sections are where the 9th peak is located for mode 10 (B) and for mode 1 (C) and where the 1st peak is for mode 1 (D); and the vertical profiles

(E)(F)(G) are taken at y = 3000 km for these three sections. The position of the 1st peak for mode 10 is omitted because it is quite close to that for mode 1.

https://doi.org/10.1371/journal.pclm.0000376.g013
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wavenumber of l = 2π/800 km from a rough estimate of the half-amplitude meridional width

of 400 km (Fig 12), we calculate the group velocities

ðcx
g; c

y
g; c

z
gÞ ¼ ðok;ol;omÞ

¼
mðN2 � f 2Þ

ðk2 þ l2 þm2Þ
2
o
ðkm; lm; � k2 � l2Þ

� ð0:78; 0:64; � 0:015Þ m=s:

(The horizontal group velocities can be calculated from the standard dispersion relation ω2 =

f2 + c2(k2 + l2) of the inertio-gravity wave (Poincaré wave) of the single-mode RGM because

c1 = ND/π = N/m for mode 1. This is because the 3-d internal-wave dispersion relation reduces

to that of the Poincaré wave in the limit that k2 + l2�m2.) Likewise, for mode 10 as another

example,

ðcx
g; c

y
g; c

z
gÞ � ð0:008; 0:007; � 1:6� 10� 5Þ m=s:

Morozov & Velarde [19], analyzing observed near-inertial waves generated by a typhoon near

Japan, reported that the vertical propagation speed is 1–10 m/hr (2.8 × 10−4–2.8 × 10−3 m/s).

Because the wave pattern is a superposition of vertical modes with a wide range of wavenum-

bers, the range of the propagation speed is large. One caveat is that our linear model misses the

potential trapping of small-scale near-inertial waves owing to the relative vorticity [e.g., 20].

In the coordinate system moving with the TC, energy propagates backwards away from the

TC, which corresponds to the typical lee-wave situation, where winds blow over a mountain.

When the wave maker is moving, however, the energy propagates toward the wave maker

[e.g., 18] in the stationary coordinate system. One interesting difference from typical lee waves

is that the TC generates anomaly from the surface to the bottom at once as a column, which is

the reason why disturbance shows up near the bottom relatively quickly despite the slow verti-

cal group speed.

It is interesting that the meridional profile (Fig 14B) of w at a shallow depth retains the dou-

ble peak structure of higher modes (Fig 12C).

3.5 Density field

The vertical structure of ρ0 (= −ρob/g), as shown in Fig 15, is similar to that of w (Fig 13): like

w, the maximum value, *5 × 10−3 kg/m3, is located at *200–300 m. The density anomaly is,

however, is a westward integration of N2w as one can see by replacing @t with −Ctc@x in (S3e)

Fig 14. Zonal (y = 3000 m) and meridional (x = 4850 m) profiles of w (blue) at z = 300 m, where w is maximum

(see Fig 13G). The latter section is where the first peak in w is. The orange curves are from the analytic solution (S45)

in S1 Text of the uniform-density ocean. This point is discussed later.

https://doi.org/10.1371/journal.pclm.0000376.g014
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in S1 Text, and the maximum density anomaly is located (x� 4670 km) a quarter phase

behind that of w (Figs 8 and 13). More importantly, positive density anomalies are much stron-

ger than negative ones everywhere and the near-inertial oscillation occurs between zero and

the maximum (Fig 15). Since the initial upwelling is the largest (Fig 8), the subsequent near-

inertial oscillation does not entirely cancel out the densification. This result is of course consis-

tent with the well known phenomenon that TC-induced upwelling leaves cold water behind

(see Introduction).

3.6 Pressure field

Figs 16 and 17 plot the pressure field. The response to pa is again ignored because it is too

small (Fig 3). The dominant response is the barotropic one (Fig 7): p0 starts to drop throughout

the water column*400 km ahead of the TC center and the drop is complete *400 km behind

the TC center. The size of this anomaly is about 1.7 hPa (Figs 7 and 17). The meridional scale,

* ± 400 km, of the response also comes from the barotropic mode (Figs 7 and 16).

Fig 16E plots only the baroclinic modes, i.e., a superposition of modes 1–20 excluding

mode 0. The baroclinic modes generally reinforce the pressure drop near the surface and

weakens it near the bottom. This baroclinic structure is a result from the combination of the

density anomaly and sea level anomaly: At z = 0, where only ρogη contributes to the pressure

anomaly (Eq. (S2c)) in S1 Text, the lowered sea level (Fig 17A, green curve) provides negative

pressure anomalies; at z = −D, the positive pressure anomaly due to the positive density anom-

aly (Fig 15) overwhelms the negative surface pressure anomaly (Fig 17B, green curve).

As a result of this anti-symmetric baroclinic anomaly, after the passage of the TC the surface

pressure reaches its first negative maximum *300 km behind, but the bottom pressure

reaches its first negative maximum *600km (Fig 17); these numbers correspond to 10 hr and

20 hr, respectively, of delay after the passage of the TC center.

Even though the baroclinic pressure anomaly vanishes on vertical average (because
R 0

� D dzcn ¼ 0 for n� 1), the maximum amplitude is larger and its vertical extent is smaller

near the surface than near the bottom (Fig 16E). As a result, the total pressure anomaly is

*1.4 hPa at the bottom and sometimes exceeds *2 hPa at the surface, as compared with the

barotropic pressure anomaly of *1.7 hPa (Fig 17).

3.6.1 Sea surface response. Since we include only mode 0 for the pa-forced solution, the

3-d structure of the pa-forced w is the 2-d structure of Fig 4 times the vertical structure func-

tionC0(z) = z/D + 1 of mode 0. This w field is more than 10 times smaller than that driven by

Fig 15. Density anomaly at y = 3000 km: zonal profile for z = 300 m (left) and vertical profile at for x = 4670 km

(right).

https://doi.org/10.1371/journal.pclm.0000376.g015
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winds (Figs 8 and 11). We actually tried adding this w field to the wind-driven w above, but

the result was visually indistinguishable from that of the wind-forcing-alone solution except

very near the sea surface.

Even smaller is the barotropic, wind-driven w. Although too weak to be visible in Fig 13,

w< 0 at the surface for the wind response. This feature is solely due to the barotropic mode

(Fig 5) as C0(0) = 1 and Cn>0(0) = 0.

In contrast, the sea level anomaly is utterly dominated by pa forcing (Fig 3). The associated

surface pressure anomaly, however, is almost totally canceled by pa itself (Fig 3) and the sea-

level pressure anomaly is dominated by the barotropic response to winds (Fig 17) followed by

the baroclinic response.

3.7 Uniform-density ocean

The clean linear profile of w below the mixed layer (Figs 2 and 13) is curious. In this subsec-

tion, we consider the response of the same linear ocean (S3) in S1 Text except that density is

uniform, that is, N = 0, and show that a similar vertical profile of w results. A key equation in

Fig 16. Vertical section of p0 forced by winds at the end of the integration. The first four panels plot the total p0 whereas Panel

E plots the baroclinic component only. Note the color levels: positive values in the total p0 are negligibly small and the shading is

designed to cover negative values, whereas the shading for the baroclinic p0 is balanced and covers a smaller range of values.

https://doi.org/10.1371/journal.pclm.0000376.g016
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this discussion is Eq. (S40) in S1 Text; to reproduce it here

ð@
2

t þ f 2ÞwE ¼ f curl t=ro; ð7Þ

where wE is the Ekman pumping velocity (positive upward).

3.7.1 Stationary wind curl. The theoretical steady response of a flat-bottom, uniform-

density linear ocean to a stationary, steady wind is well known (Section S1.5.3 in S1 Text).

Eq (7) reduces to the familiar Ekman pumping wE = curl τ/(ρof). Since below the mixed layer,

geostrophy gives wz = −(ux + vy) = 0, a vertically uniform column of vertical velocity equal to

the Ekman pumping is expected [Section S1.5.3 in S1 Text; 21, see his Fig. 4.13.3]. To reconcile

with the bottom boundary condition that w|z=−D = 0, a bottom boundary is necessary; other-

wise, this state cannot exist.

3.7.2 Equilibrium response. If we relax the requirement that @t = 0 for all variables and

assume only that @tw is constant in time, (7) reduces to the familiar Ekman pumping wE =

curl τ/(ρof) again and we obtain an equilibrium solution Eq. (S42) in S1 Text, which satisfies

w|z=−D = 0. To reproduce it here,

w ¼
ðz þ DÞg

f 2
r2Zt ð8aÞ

¼
z þ D

D
wE: ð8bÞ

That is, w has a linear profile up to the bottom of the Ekman layer.

Fig 17. Zontal distribution of pressure anomalies at the sea surface (A) and bottom (B) behind the TC center

(y = 3000 km): total pressure anomaly (blue), barotropic mode (orange), and the sum of the baroclinic modes (green).

https://doi.org/10.1371/journal.pclm.0000376.g017
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The problem with this solution is that the sea level keeps dropping because of the Ekman

divergence. As seen below, the response to a moving TC is analogous to this state except that

the sea level does not keep dropping there because the TC is moving.

3.7.3 Moving TC. Here we discuss only the results; the derivation is detailed in Section

S1.5.4 in S1 Text. When the TC is moving at a steady speed of Ctc, the vertical profile of w is

still linear as in (8b), and (7) can be written as

ðC2
tc@

2

x þ f 2ÞwE ¼ f curl t=ro ð9Þ

in the moving coordinates. The solution can be written as a zonal convolution integral between

curl τ and the Green’s function (S45) in S1 Text. This integral is again easily evaluated numeri-

cally on a grid as discussed (Eq. S1.3.4) in S1 Text for the solution shown in Fig 9. This solution

agrees fairly well (Fig 17) with the actual w at z = 200–300 m, where w takes its peak value

(Fig 13G).

In the uniform-density solution, the oscillation continues at a constant amplitude and its

wavelength is Ctc/| f | (Eq. S45) in S1 Text, which is the wavelength in the limit that c2
n � C2

tc, a

good approximation for a typical TC translation speed (see Eq 5). Indeed, in that limit, the “w-

equation” (1) for each mode n reduces to

ðC2

tc@
2

x þ f 2Þð� wnÞ ¼ a0nf curl t=ro;

which indicates that � wn=a0n ¼ wE for all n� 1. As we mentioned earlier, our sign convention

means that −wn is proportional to the mode’s contribution to the 3-d w and the factor a0n is the

nondimensional weight for each mode. In this limit, the peaks of all baroclinic modes coincide

with that of the delayed Ekman pumping (9) and the resultant perfect vertical alignment

would lead to the columnar w.

These observations suggest that the uniform-density solution can be viewed as a limit that

cn! 0 for all baroclinic modes (n� 1). That interpretation is supported by the result shown

in Section S1.2.5 in S1 Text that in the limit of weak stratification, the baroclinic c’s all

approach zero with the eigenfunctions changing little, whereas the barotropic mode changes

little.

In the actual solution, the amplitude slowly decays to the west because the vertical modes

gradually lose vertical alignment (Section 3.4.1). In the meridional profile (Fig 14B), the dou-

ble-peak structure, reflective of the structure of the wind curl (Fig 11), is more pronounced in

the delayed Ekman pumping than in the actual w. This must be because with a finite cn, the

impacts of curl are spread meridionally by inertio-gravity waves, whereas for the uniform-

density ocean, solution takes the form of a pure zonal integration of wind curl (Eq. S45) in

S1 Text.

As expected, the sea level response of this uniform-density solution is almost identical to

that of the barotropic mode (Section S1.5.4 in S1 Text).

4 Summary and discussion

4.1 Summary

To explore the impacts of a tropical cyclone (TC) on the oceanic circulation near the sea floor

in a deep sea, we construct a 4-d solution to a set of linearized primitive equations (S1) in S1

Text on an f plane with a flat bottom at z = −D and constant density stratification N forced by

wind stress and atmospheric pressure anomaly from an axisymmetric empirical model TC

(Section S1.4 in S1 Text) that moves at a constant speed Ctc. To do so, we expand each depen-

dent variable into vertical modes, numerically solve the reduced-gravity model (RGM) of each
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mode, and superpose the solutions to obtain the 4-d field (Section S1.2 in S1 Text). To verify

and interpret the numerical solutions of the RGM, we use the Green’s functions, semi-analytic

solutions, and numerical solutions to the “w-equation” (Eq 1; see Section S1.3 in S1 Text).

4.1.1 Barotropic response. The barotropic mode responds to the TC’s low pressure (pa)

with an almost matching sea level rise, canceling the low pressure and generating little hori-

zontal flow (Fig 3). This “isostatic” balance holds because C2
tc � c2

0
and L2 � a� 2

0
, where c0 ¼ffiffiffiffiffiffi

gD
p

is the barotropic gravity-wave speed, L is the horizontal characteristic scale of pa, and

α−1� c0/f is the barotropic Rossby radius. Both conditions are usually satisfied for TCs. The

only significant response is the upwelling that feeds the sea-level rise in front of the TC and the

matching downwelling that restores the sea level behind the TC (Fig 4). It is Oð1� 10� 5m=sÞ
(Fig 4) and linearly decreases to zero at the bottom. This is not insignificant but it is an order

of magnitude smaller than the baroclinic w to be discussed below.

The barotropic response to the TC’s wind stress is a permanent sea level drop due to the

(barotropic component of) Ekman divergence behind the TC (Fig 7). The resultant pressure

anomaly is roughly *2 hPa. The vertical velocity associated with this motion is a very small

downwelling which is Oð1� 10� 7m=sÞ at the surface and linearly decreases to zero at the bot-

tom (Fig 5). The horizontal scale of the pressure drop,*400 km, is significantly limited by the

negative curl surrounding the positive curl of the TC core (Fig 6). This is because even though

the amplitude of the negative curl is weak, its area is much broader than that of the positive

core.

4.1.2 Baroclinic response. The baroclinic response to pa is negligible because this forcing

term enters the primitive equation as a vertically-uniform body force (Eq. S3) in S1 Text,

whose contribution to each mode is proportional to the vertical integration of the p-mode

functions, ψn(z), and the vertical integration is negligibly small for all baroclinic modes.

The baroclinic response to winds takes a form of the well-known train of waves (Figs 8 and

11). Its streamwise wavelength is approximately 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

tc � c2
n

p
=f , and the angular frequency is

Ctcf =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

tc � c2
n

p
. As the mode number n is increased, the zonal wavelength gradually increases

and approaches the constant value 2πCtc/f, and the frequency gradually decreases and

approaches the constant value f. Both are, however, already close to the final value because

C2
tc � c2

n.

The first peak of upwelling comes about a quarter wavelength behind the center of the TC

(Figs 8 and 11) and a regular oscillation in w follows. The net impact of the wave train is a per-

manent pressure drop in the upper ocean, lowered sea level, and cooling near the surface (Figs

10 and 11).

The lateral scale of the first upwelling peak is almost that of the TC’s core of positive curl τ
(Figs 8C and 9C) because the lateral scale of the meridional propagation (Eq 6) is smaller than

that of the TC’s core at this point. The subsequent peaks in the wake gradually spread as a

packet of inertio-gravity waves; this spread is naturally larger in lower modes (Fig 9A) and

smaller in higher modes (Fig 12A).

4.1.3 4-d structure. The most striking feature of the superposed w field (Fig 13) is the col-

umn of upwelling that linearly grows from zero at the bottom to its maximum near the bottom

of the mixed layer (Fig 13G). This structure is a result of the vertical coherence of the modes:

all baroclinic modes have the first peak in wn approximately here. This vertical coherence is

gradually lost because the zonal wavelength lengthens for higher modes. The lateral spread of

the wave train also reflects the speed difference between modes (Eq 6; Figs 8 and 11).

Viewed as a collection of near-inertial waves, this pattern may be interpreted as a “lee wave”

response, except that the wind curl of TC initially generates the disturbance throughout the

water column, not just within the mixed layer. For this reason, the near-inertial waves appear
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near the bottom quickly without waiting for the wave packets to propagate downward at the

very slow vertical group velocity.

As expected, upwelling wins on average and the wave train leaves a region of colder water.

The density anomaly increases from zero at the bottom to its maximum value at the bottom of

the mixed layer (Fig 15). The lateral convergence of water that feeds the upwelling creates this

density structure.

The pressure anomaly is dominated by the barotropic response to wind curl. The pressure

drop starts *400 km before the TC center and completes *400 km after the center (Fig 16).

The lateral spread is of a comparable scale (Fig 16) because the w response is approximately

circular (Fig 5).

The baroclinic modes modifies this pressure field with their near-inertial oscillation. Since

this oscillation starts with negative and positive pressure anomalies in the upper and lower

oceans (Fig 16E), it reinforces and weakens the barotropic pressure anomaly in the upper and

lower oceans, respectively (Fig 17). The first negative peak in pressure anomaly at the bottom

is delayed (Figs 16A and 17B) as a result.

4.1.4 Uniform-density ocean. The same moving wind stress curl drives a train of inertial

oscillation in the linearized primitive equations without stratification (N = 0). The streamwise

structure of this w field is a simple inertial oscillation very similar to that of the numerical solu-

tion (Fig 14A) and its vertical structure is the same as that of the first upwelling column of the

numerical solution (Fig 13), that is, a linear profile from the bottom to the bottom of the

mixed layer. This solution is a response to the “delayed Ekman pumping” (7) and can be

regarded as a limit that cn! 0 for n� 1 and thus explains the solution with a stratification

because c2
n � C2

tc for n� 1.

4.2 Discussion

4.2.1 Typhoon composites. The composite vertical profile of w from the OGCM in Fig 2

has some similarity and some discrepancies with that of our idealized theoretical calculation in

Fig 13G. The theoretical amplitude, which is the same as that of the delayed Ekman pumping

according to our interpretation (Section 3.7), is 4 × 10−4 m/s and that of the composite (Fig 2)

is about 1 × 10−3 m/s or somewhat larger.

The central pressure of this TC is about 985 hPa at the time of Fig 2A and it was about 960

hPa one day before when the TC center was at about 26˚N. The ambient pressure, though

hard to estimate visually, seems to be about 1015 hPa in Fig 2A. That is, ΔP* 30–55 hPa,

which is 1.5–2.5 times the value we have used for the theoretical calculations. Near the center

of the TC, where the centrifugal force dominates [e.g., 22, and references therein], the squared

wind speed, and hence the wind stress, is proportional to ΔP (Section S1.4 in S1 Text) and

therefore the magnitude of w is roughly proportional to ΔP. The theoretical amplitude is,

hence, not inconsistent although more detailed comparison would be necessary to give a more

reliable answer.

The peak depth is *1000 m for the composite (Fig 2B). The mixed layer cannot be this

deep and, if our interpretation of the depth profile is correct, this discrepancy must be because

of noise, including tides and other flows, which are not directly driven by the TC.

At this point, however, we do not attempt further detailed comparisons because we do not

know how representative the composite Fig 2 is. We just show the one that looked the most

clean among the several composites we looked at. Although strong vertical velocity reaching

near the bottom was a common feature, the vertical profiles varied (not shown).
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JCOPE-T includes tidal forcing generating barotropic tides, and large-scale internal tides

are also abundant in the model [23, 24]. This may be one of the reasons why the composites

differ so much between different typhoons (not shown).

To find common features, we trialed composites of low-pass-filtered data. Specifically, we

applied a Hann filter with a half window size of 24 hours at each spatial point before calculat-

ing the temporal anomaly. That is,

anomalyðtÞ ¼ low-pass-filteredðtÞ � temporal mean;

where the period of the temporal average is ±4 d around the TC’s time. The composite now

showed a much smoother and more systematic vertical velocity field (not shown). Since the

timescale of smoothing much reduces the near-inertial oscillation, the vertical profile of this

smoothed field is no longer that of the first upwelling peak. Also, the direction of the zonal and

meridional sections are different from the angle of the TC track and therefore the temporal

average includes variability somewhat outside the variability directly behind the TC.

Also, many typhoons rapidly change their courses or their speeds or both during their tra-

versal south of Japan. (One can confirm this by looking at the “best track” dataset described in

Section S1.1.1. in S1 Text) Composites like Fig 2 may not capture the core of the upwelling

column.

The best approach would therefore be 1) use another high-resolution model that does not

include tides, 2) choose TCs that traveled in a relatively straight line, 3) discard the portion of

the track where the TC’s speed changed drastically, and 4) set the vertical section along the

track, not in the meridional or zonal direction. This would be an interesting future project.

4.2.2 TC speed. Our analysis has been benefited from the parameter range that c2
n �

C2
tc � c2

0
for all n� 1. (Even though c1� Ctc does not hold, c2

1
� C2

tc does.) When Ctc is faster,

not much changes (as long as C2
tc � c2

0
). The dependency of the frequency and wavelength of

the near-inertial oscillation on cn will be even weaker (see Eq (5) and discussion below it) and

the frequency will become even closer to f. Consequently the dispersion of the near-inertial

waves behind the TC (Fig 13) will be weaker still. The triangle of causality (Eq (6), the wedge

shape behind the TC in Fig 8) will become narrower. When Ctc is slower, the frequency and

wavelength will become somewhat more sensitive to cn (Eq (5)) and the inertial oscillation will

be somewhat more dispersive. The triangle of causality will become wider.

An interesting question is what happens when Ctc� c1, although such a situation is rare [6].

Trying to see what happens, we ran our RGM with Ctc = c1. The response was weak and noise

was relatively large (not shown). This is understandable. As Ctc! c, the Green’s function for

Ctc > c (Eq. S25 in S1 Text) becomes wigglier (its wavenumber becoming shorter and shorter)

in the x direction and that for Ctc < c (Eq 3) becomes narrower. Finite-difference error would

inevitably contribute. To solve this problem for a finite-difference model, one would need to

introduce some form of spatial mixing.

On the other hand, this is not a resonance. When Ctc = cn, the left-hand-side operator of the

w-equation (1) becomes @2
y � a

2
n and allows for a finite solution with a simple Green’s function

(not shown). Because there is no x dependency, the solution would retain the x structure of the

forcing and integration happens only in the y direction.

One approach would therefore be to replace the numerical RGM with convolution integrals

like (S28) in S1 Text for all baroclinic modes. To obtain other fields than w, one would use the

convolution integrals of [12]. Even though the numerical RGM is much more versatile, being

applicable to a much wider variety of situations (what if the TC’s track isn’t straight, for exam-

ple?), this kind of semi-analytic approach would cover a wider range of Ctc for the simplest sit-

uation we have been looking at.
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4.2.3 Limitations and potential extensions. Obviously, our linear model lacks horizontal

advection of momentum and density and therefore nonlinear impacts such as enhanced mix-

ing [25] are missing. The potential trapping of small-scale near-inertial waves by relative vor-

ticity [20, 26, e.g.] is also missing. Jaimes & Shay [27] reported upward energy propagation of

near-inertial waves with wavelengths of * 200 –300 m in their observation, whereas our

results include only a large-wavelength near-inertial waves whose energy propagates down-

ward. This feature could also be due to some subsurface nonlinear processes.

The large-scale (lower-mode) part of the inertial oscillation (Fig 13) would probably be

affected less by advection because of its higher group speeds, but how nonlinearity affects the

near-bottom anomaly field would be an interesting subject of future studies.

Another process missing from our model is the deepening of the mixed layer due to the

increased turbulent mixing [e.g., 3, and references therein]. Assessing this impact on the basis

of the present study’s results, we conjecture that the deepening can be simply handled by

changing hm. Since this is a vertical mixing, the overall weight of the water column is not

affected and the impacts on the bottom pressure would be small.

We used a constant stratification for simplicity and in hindsight this was a good choice

because a more realistic stratification would not bring about something significantly new. The

relation between n and c� 1
n is no longer linear with a more realistic stratification, but the prop-

erty that cn decreases as n increases stays. Because of the different n–cn relation, the phase lines

behind the TC in Fig 13A would take somewhat different curvatures and vertical profiles of w
in the wake further down (after the dispersion of the vertical modes) would be different. For

example, The vertical profile of w away from the TC track in Fig 13B is similar to sin πz/D
because that is the vertical profile of C1(z) for mode 1 with N = const. With a more realistic N
(z) with a typical pycnocline, the vertical profile of mode 1 has its peak near the pycnocline

[15]. Crucially, however, the vertical column of w just behind the TC would not change

depending on N (Section 3.7).

Presence of lateral boundaries would not affect the equilibrium response to TC since the

main oceanic response is the columns of near-inertial oscillation, which do not propagate far,

behind the TC.

If the planetary beta is included, the anomalies behind the TC would slowly propagate as

Rossby waves. In addition, if the TC moves in the meridional direction, the frequency of the

near-inertial oscillation behind the TC should depend on latitude. It would be interesting to

explore how these elements modify the solution we have obtained.

Finally, the flat bottom assumption was necessary for the modal-decomposition approach

to work. The column of strong vertical velocity may induce strong currents on bottom slopes,

which in turn may affect bottom pressure anomaly.

4.2.4 Bottom pressure. In the introduction, we mentioned an observation in which the

bottom pressure starts to decrease as a TC’s center approaches and reaches its minimum

(Δp* 2 hPa) 1–2 d later. Although our result shown in Fig 16 is not inconsistent with the

observation, there is still too much uncertainty to draw any conclusion from this comparison.

We looked at the vertical velocity anomalies in JCOPE-T and recognized strong w anomaly

extending upward from the Bonin Trench slope (not shown) next to the observational site.

This feature may be an indication of enhanced local circulation, which may or may not be due

to the TC and may or may not be affecting the bottom pressure anomaly.

The motivation of this comparison is two-fold: one is to validate and extend our simple lin-

ear model and the other is to provide the observationalists with information as to what signal

one would expect from TCs. For both purposes, we would need to look at more observational

data and to analyze OGCMs in more details.
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Supporting information

S1 Text. Appendices. Details of the methods are provided. Auxiliary datasets and methods of

their analyses are described.

(PDF)

S1 Dataset. Sea-floor pressure measurement. A netCDF data file containing the hourly-aver-

aged sea-floor pressure in Pa at the “B06” station of [1] from 2015-08-05T00:00:00Z to 2015-

08-16T00:00:00Z. An arbitrary uniform offset has been subtracted from the pressure values.

(NC)

S2 Dataset. JCOPE-T station subset. NetCDF files containing the hourly-mean potential

temperature (B06-tm-2015.08.05-2015.08.16.nc), salinity (B06-sm-2015.08.
05-2015.08.16.nc), and sea level (B06-em-2015.08.05-2015.08.16.nc) from

2015-08-05T00:00:00Z to 2015-08-16T00:00:00Z from the JCOPE-T-NEDO model [23, 29] at

the closest gridpoint to the “B06” station of [1]. The hourly atmospheric pressure data that

forced the model [23] is also included (B06-slpmhour-2015.08.05-2015.08.16.
nc); this data is interpolated to the same mid-hour time as the hourly-mean model data is

defined at.

(ZIP)

S3 Dataset. JCOPE-T sea-level pressure subset. NetCDF file containing two snapshots, at

2014-11-06T06:00:00Z and 2015-08-10T18:00:00Z, of the sea-level pressure data that forced

the JCOPE-T model.

(GZ)

Acknowledgments

We would like to thank Kosuke Ito for discussion about typhoons. Thanks are extended to

Toshiyuki Hibiya, Jay McCreary, Kensuke Nakajima, Hideharu Sasaki, Yuki Tanaka, and Akira

Yamazaki (alphabetical order) for helpful discussion. Comments from anonymous reviewers

and the handling editor helped improve the manuscript. The OGCM used here is called JCOPE-

T, part of the JCOPE project at JAMSTEC (https://www.jamstec.go.jp/jcope/). The JCOPE-T

data we use in the present study is available either as Supporting Information “S2 Dataset” and

“S3 Dataset” or from the zenodo repository (https://doi.org/10.5281/zenodo.13132471). See Sec-

tion S1.1.2 in S1 Text for details. The bottom-pressure observation [1] was supported by JSPS

KAKENHI Grant Number JP25247074. The pressure-gauge data used for Fig 1B is provided as

Supporting Information “S1 Dataset”. To plot most of the figures, we have used the graphics

package “Makie” [28], https://docs.makie.org/] of the Julia language. Special thanks go to Julius

Krumbiegel, who answered many novice questions from RF about Makie. We also used the

PyFerret program to plot some of the figures. PyFerret is a product of NOAA’s Pacific Marine

Environmental Laboratory. (Information is available at http://ferret.pmel.noaa.gov/Ferret/).

Author Contributions

Conceptualization: Ryo Furue, Yoshio Fukao.

Data curation: Hiroko Sugioka.

Formal analysis: Hiroko Sugioka.

Investigation: Ryo Furue, Yoshio Fukao.

Writing – original draft: Ryo Furue.

PLOS CLIMATE Linear response of deep ocean to a moving tropical cyclone

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000376 December 17, 2024 27 / 29

http://journals.plos.org/climate/article/asset?unique&id=info:doi/10.1371/journal.pclm.0000376.s001
http://journals.plos.org/climate/article/asset?unique&id=info:doi/10.1371/journal.pclm.0000376.s002
http://journals.plos.org/climate/article/asset?unique&id=info:doi/10.1371/journal.pclm.0000376.s003
http://journals.plos.org/climate/article/asset?unique&id=info:doi/10.1371/journal.pclm.0000376.s004
https://www.jamstec.go.jp/jcope/
https://doi.org/10.5281/zenodo.13132471
https://docs.makie.org/
http://ferret.pmel.noaa.gov/Ferret/
https://doi.org/10.1371/journal.pclm.0000376


References
1. Fukao Y, Kubota T, Sugioka H, Ito A, Tonegawa T, Shiobara H, et al. Detection of “rapid” aseismic slip

at the Izu-Bonin Trench. J Geophys Res Solid Earth. 2021; 126(9):e2021JB022132. https://doi.org/10.

1029/2021JB022132

2. Blackman RB, Tukey JW. The Measurement of Power Spectra: From the Point of View of Communica-

tions Engineering. Dover Publications; 1959.

3. Zhang H, He H, Zhang WZ, Tian D. Upper ocean response to tropical cyclones: a review. Geosci Lett.

2021; 8(1):1. https://doi.org/10.1186/s40562-020-00170-8

4. D’Asaro EA, Black PG, Centurioni LR, Chang YT, Chen SS, Foster RC, et al. Impact of Typhoons on

the Ocean in the Pacific. Bull Am Meteorol Soc. 2014; 95(9):1405–1418. https://doi.org/10.1175/BAMS-

D-12-00104.1

5. Ezer T. Numerical modeling of the impact of hurricanes on ocean dynamics: sensitivity of the Gulf

Stream response to storm’s track. Ocean Dynamics. 2019; 69(9):1053–1066. https://doi.org/10.1007/

s10236-019-01289-9

6. Fujii T, Mitsuta Y. Simulation of winds in typhoons by a stochastic model. Journal of Wind Engineering.

1986; 1986(28):1–12. https://doi.org/10.5359/jawe.1986.28_1

7. Geisler JE. Linear theory of the response of a two layer ocean to a moving hurricane. Geophys Fluid

Dyn. 1970; 1(1-2):249–272. https://doi.org/10.1080/03091927009365774

8. Yang CY, Yang YJ, Tseng YH, Jan S, Chang MH, Wei CL, et al. Observational evidence of overlooked

downwelling induced by tropical cyclones in the open ocean. Sci Rep. 2024; 14:335. https://doi.org/10.

1038/s41598-023-51016-0 PMID: 38172221

9. Kuwano-Yoshida A, Sasaki H, Sasai Y. Impact of explosive cyclones on the deep ocean in the North

Pacific using an eddy-resolving ocean general circulation model. Geophys Res Lett. 2017; 44(1):320–

329. https://doi.org/10.1002/2016GL071367

10. Pedrosa-Pàmies R, Conte MH, Weber JC, Johnson R. Hurricanes Enhance Labile Carbon Export to

the Deep Ocean. Geophys Res Lett. 2019; 46(17-18):10484–10494. https://doi.org/10.1029/

2019GL083719

11. Spencer LJ, DiMarco SF, Wang Z, Kuehl JJ, Brooks DA. Asymmetric oceanic response to a hurricane:

Deep water observations during Hurricane Isaac. J Geophys Res Oceans. 2016; 121(10):7619–7649.

https://doi.org/10.1002/2015JC011560

12. Shay LK, Elsberry RL, Black PG. Vertical Structure of the Ocean Current Response to a Hurricane. J

Phys Oceanogr. 1989; 19(5):649–669. https://doi.org/10.1175/1520-0485(1989)019%3C0649:

VSOTOC%3E2.0.CO;2

13. McCreary JP. A linear stratified ocean model of the equatorial undercurrent. Phil Trans Roy Soc Lond

A. 1981; 298:603–635. https://doi.org/10.1098/rsta.1981.0002

14. Chelton DB, de Szoeke RA, Schlax MG, El Naggar K, Siwertz N. Geographical variability of the first bar-

oclinic Rossby radius of deformation. J Phys Oceanogr. 1998; 28(3):433–460. https://doi.org/10.1175/

1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2

15. Gill AE. Atmosphere-Ocean Dynamics. San Diego: Academic Press; 1982. Available from: https://

archive.org/details/atmosphereoceand0000gill/.

16. Kelly SM. The vertical mode decomposition of surface and internal tides in the presence of a free sur-

face and arbitrary topography. J Phys Oceanogr. 2016; 46(12):3777–3788. https://doi.org/10.1175/

JPO-D-16-0131.1

17. McCreary JP, Shetye SR. Observations and Dynamics of Circulations in the North Indian Ocean. Atmo-

sphere, Earth, Ocean & Space. Singapore: Springer Nature; 2023. Available from: https://link.springer.

com/10.1007/978-981-19-5864-9.

18. Tanaka Y, Hibiya T, Sasaki H. Downward lee wave radiation from tropical instability waves in the central

equatorial Pacific Ocean: A possible energy pathway to turbulent mixing. J Geophys Res Oceans.

2015; 120(11):7137–7149. https://doi.org/10.1002/2015JC011017

19. Morozov EG, Velarde MG. Inertial oscillations as deep ocean response to hurricanes. J Oceanogr.

2008; 64(4):495–509. https://doi.org/10.1007/s10872-008-0042-0

20. Oey LY, Inoue M, Lai R, Lin XH, Welsh SE, Rouse LJ Jr. Stalling of near-inertial waves in a cyclone.

Geophys Res Lett. 2008; 35(12). https://doi.org/10.1029/2008GL034273

21. Pedlosky J. Geophysical Fluid Dynamics. 2nd ed. New York: Springer-Verlag; 1987.

22. Yan D, Zhang T. Research progress on tropical cyclone parametric wind field models and their applica-

tion. Regional Studies in Marine Science. 2022; 51:102207. https://doi.org/10.1016/j.rsma.2022.

102207

PLOS CLIMATE Linear response of deep ocean to a moving tropical cyclone

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000376 December 17, 2024 28 / 29

https://doi.org/10.1029/2021JB022132
https://doi.org/10.1029/2021JB022132
https://doi.org/10.1186/s40562-020-00170-8
https://doi.org/10.1175/BAMS-D-12-00104.1
https://doi.org/10.1175/BAMS-D-12-00104.1
https://doi.org/10.1007/s10236-019-01289-9
https://doi.org/10.1007/s10236-019-01289-9
https://doi.org/10.5359/jawe.1986.28_1
https://doi.org/10.1080/03091927009365774
https://doi.org/10.1038/s41598-023-51016-0
https://doi.org/10.1038/s41598-023-51016-0
http://www.ncbi.nlm.nih.gov/pubmed/38172221
https://doi.org/10.1002/2016GL071367
https://doi.org/10.1029/2019GL083719
https://doi.org/10.1029/2019GL083719
https://doi.org/10.1002/2015JC011560
https://doi.org/10.1175/1520-0485(1989)019%3C0649:VSOTOC%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1989)019%3C0649:VSOTOC%3E2.0.CO;2
https://doi.org/10.1098/rsta.1981.0002
https://doi.org/10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2
https://archive.org/details/atmosphereoceand0000gill/
https://archive.org/details/atmosphereoceand0000gill/
https://doi.org/10.1175/JPO-D-16-0131.1
https://doi.org/10.1175/JPO-D-16-0131.1
https://link.springer.com/10.1007/978-981-19-5864-9
https://link.springer.com/10.1007/978-981-19-5864-9
https://doi.org/10.1002/2015JC011017
https://doi.org/10.1007/s10872-008-0042-0
https://doi.org/10.1029/2008GL034273
https://doi.org/10.1016/j.rsma.2022.102207
https://doi.org/10.1016/j.rsma.2022.102207
https://doi.org/10.1371/journal.pclm.0000376


23. Varlamov SM, Guo X, Miyama T, Ichikawa K, Waseda T, Miyazawa Y. M2 baroclinic tide variability

modulated by the ocean circulation south of Japan. J Geophys Res Oceans. 2015; 120(5):3681–3710.

https://doi.org/10.1002/2015JC010739

24. Fukao Y, Miyama T, Tono Y, Sugioka H, Ito A, Shiobara H, et al. Detection of ocean internal tide source

oscillations on the slope of Aogashima Island, Japan. J Geophys Res Oceans. 2019; 124(7):4918–

4933. https://doi.org/10.1029/2019JC014997

25. Chang SW, Anthes RA. Numerical Simulations of the Ocean’s Nonlinear, Baroclinic Response to Trans-

lating hurricanes. J Phys Oceanogr. 1978; 8(3):468–480. https://doi.org/10.1175/1520-0485(1978)

008%3C0468:NSOTON%3E2.0.CO;2

26. Pallàs-Sanz E, Candela J, Sheinbaum J, Ochoa J, Jouanno J. Trapping of the near-inertial wave wakes

of two consecutive hurricanes in the Loop Current. J Geophys Res Oceans. 2016; 121(10):7431–7454.

https://doi.org/10.1002/2015JC011592

27. Jaimes B, Shay LK. Near-Inertial Wave Wake of Hurricanes Katrina and Rita over Mesoscale Oceanic

Eddies. J Phys Oceanogr. 2010; 40(6):1320–1337. https://doi.org/10.1175/2010JPO4309.1

28. Danisch S, Krumbiegel J. Makie.jl: Flexible high-performance data visualization for Julia. Journal of

Open Source Software. 2021; 6(65):3349. https://doi.org/10.21105/joss.03349

29. Wang S, Guo X, Morimoto A, Cao A, Tsutsumi E, Miyazawa Y, et al. Semidiurnal Internal Tides in a

Shelf Sea South of Japan: Characteristics, Energetics, and Temporal variations. Progress in Oceanog-

raphy. 2024; 222:103229. https://doi.org/10.1016/j.pocean.2024.103229

PLOS CLIMATE Linear response of deep ocean to a moving tropical cyclone

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000376 December 17, 2024 29 / 29

https://doi.org/10.1002/2015JC010739
https://doi.org/10.1029/2019JC014997
https://doi.org/10.1175/1520-0485(1978)008%3C0468:NSOTON%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1978)008%3C0468:NSOTON%3E2.0.CO;2
https://doi.org/10.1002/2015JC011592
https://doi.org/10.1175/2010JPO4309.1
https://doi.org/10.21105/joss.03349
https://doi.org/10.1016/j.pocean.2024.103229
https://doi.org/10.1371/journal.pclm.0000376

