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Abstract

The vulnerability of the power grid to severe weather events is a critical issue as climate

change is expected to increase extreme events, which can damage components of the

power grid and/or lessen electrical power supply, resulting in power outages. However,

largely due to an absence of granular spatiotemporal outage data, we lack a robust under-

standing of how severe weather-driven outages, their community impacts, and their dura-

tions distribute across space and socioeconomic vulnerability. Here, we pair hourly power

outage data in electrical power operating localities (n = 1865) throughout NYS with urbani-

city, CDC Social Vulnerability Index, and hourly weather (temperature, precipitation, wind

speed, lightning strike, snowfall) data. We used these data to characterize the impact of

extreme weather events on power outages from 2017–2020, while considering neighbor-

hood vulnerability factors. Specifically, we assess (a) the lagged effect of severe weather on

power outages, (b) common combinations of severe weather types contributing to outages,

(c) the spatial distribution of the severe weather-driven outages, and (d) disparities in severe

weather-driven outages by degree of community social vulnerability. We found that across

NYS, 39.9% of all outages co-occurred with severe weather. However, certain regions,

including eastern Queens, upper Manhattan and the Bronx of NYC, the Hudson Valley, and

Adirondack regions were more burdened with severe weather-driven outages. Using tar-

geted maximum likelihood estimation, we found that the frequency of heat-, precipitation-,

and wind-driven outages disproportionately impacted vulnerable communities in NYC.

When comparing durations of outages, we found that in rural regions, precipitation- and

snow-driven outages lasted the longest in vulnerable communities. Under a shifting climate,

anticipated increases in power outages will differentially burden communities due to regional

heterogeneity in severe weather event severity, grid preparedness, and population
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socioeconomic profiles/vulnerabilities. As such, policymakers must consider these charac-

teristics to inform equitable grid management and improvements.

Introduction

Electricity is a critical aspect of modern life, supporting everyday activities like making a

phone call, cooking a meal, and heating or cooling one’s home [1, 2]. Despite how central elec-

tricity is to daily life, having resilient and reliable power systems remains a challenge in the

United States (US) [2]. Power outages (POs) are becoming increasingly common–in large part

due to the age and disrepair of the electrical grid and its vulnerability to severe weather events.

Severe weather, the leading cause of widespread power outages in the US [3–5], can lead to cas-

cading effects such as throwing key parameters of power quality like frequency or voltage out

of sync, overloading transmission lines, or even complete voltage/frequency collapse [5]. A

range of severe weather conditions threaten the grid, including extreme heat, extreme cold,

and tropical storms. For example, the Chicago Heat Wave of 1995 led to a surge in power use

and the failure of three power transformers. This led to widespread outages for over two days

[6]. In 2012, Hurricane Sandy downed overhead lines and flooded underground lines, leading

to extensive outages, sometimes lasting weeks and affecting millions of customers across 21

Northeastern states [7]. In Texas, Winter Storm Uri in 2021 froze natural gas wells, power

plants, and gathering lines, leaving millions of customers without power for days to weeks [8].

The power grid’s vulnerability to severe weather events becomes even more critical in the

context of climate change, which is expected to increase weather variability and prevalence of

extreme events (e.g., storms, wildfires, heatwaves, floods) [9]. Such events readily damage com-

ponents of the power grid including power plants, substations, distribution centers, and power

lines. In addition to causing more extreme events, climate change will result in rising tempera-

tures and increased temperature variability, affecting electricity reliability and use. High tem-

peratures can decrease the output from thermoelectric plants and the carrying capacity of

power lines, but also increase the power demand as people run air conditioning to keep cool

[10, 11]. The energy transition will result in greater reliance on electricity for heating, cooking,

and transit, making continuous access increasingly vital [12]. Outages, especially those occur-

ring with very hot or cold weather have been tied to adverse cardiovascular, respiratory, and

renal outcomes [13]. Thus, preventing prolonged outages or providing backup power sources

is critical for population health.

Climate-driven increases in power outages raise important environmental and climate jus-

tice concerns. Persistently marginalized communities may already be disproportionately bur-

dened by severe weather-driven outages due to a confluence of factors such as discriminatory

housing practices [14], historic underfunding in communities of color, inequitable restoration

guidelines [15, 16], and the concentration of low-income communities and communities of

color high-risk areas like flood zones [17] and hot neighborhoods [18, 19]. Researchers cata-

loged exposure disparities during some outages [20, 21]. Outages in New York City resulting

from Tropical Storm Isaias were longer in regions that were lower income and/or had higher

percentages of non-white residents [22]. Thus, documenting the dual burden of extreme

events and power outage exposure is necessary to promote health equity. However, previous

assessments of severe weather-driven outages (a) rarely included data at a sub-county level;

and (b) often failed to consider urban/rural differences for which outages may have varying

community impacts due to population/housing density, demographic profiles and/or backup
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power accessibility [3, 4, 13]. Such analyses could inform policies related to electrical grid reli-

ability and restoration to promote health equity.

New York State (NYS), however, collects power outage data statewide at a granular (~zip

code tabulation area) level, providing data availability to fill this gap. Here, we use hourly

power operating locality level power outage, temperature, precipitation, wind speed, snowfall,

lightning, urbanicity, and social vulnerability data across NYS to characterize the impact of

extreme weather on power outage distributions and durations from 2017–2020. We also con-

sider inequitable exposure by community vulnerability factors. We conduct analyses in three

regions: NYC, non-NYC urban, and rural regions of NYS to assess (a) the lagged effect of

severe weather on power outages, (b) the most prevalent combinations of severe weather types

that contribute to outages, (c) the spatial distribution of the severe weather driven outages, and

(d) disparities in severe weather-driven outages by community social vulnerability.

Methods

Study overview

In the present analysis, we use locality-level (n = 1,764) power outage, weather, urbanicity, and

social vulnerability data from January 1, 2017-December 31, 2020 to assess the impact of

extreme weather on power outage distributions and durations, while considering vulnerability

factors.

Power outage ascertainment

We obtained information on customers without power in 30-minute increments within locali-

ties from the NYS Department of Public Service from 2017–2020 [23]. We excluded localities

with<30 customers or>5% temporal missingness over the study period, resulting in 1,764

(94.6%) included localities. The dataset also included locality boundaries in a shapefile format

and the number of customers served, and the electrical utilities operating in each locality. A

power operating locality is the smallest level at which outage data is reported to the state and is

comparable in size to zip code tabulation areas; the localities serve ~11,000 customers, on aver-

age. These customers include residential, commercial, and electrical meters. We aggregated

the 30-minute data to the hourly level to match our weather metric data.

Weather metric ascertainment

We primarily sourced weather data from land-surface model estimates. We pulled data on

average temperature, windspeed, and precipitation at the hourly-level from forcing data for

Phase 2 of the North American Land Data Assimilation System (NLDAS-2) [24]. NLDAS-2

provides gridded estimates of each of these variables with ~14km2 resolution. We obtained

hourly snowfall data from the ERA5-Land reanalysis dataset, which is available hourly with

~11km2 resolution [25]. We aggregated the gridded datasets to locality boundaries via areal

weighting using Google Earth Engine [26]. We collected lightning strike data from the Interna-

tional Space Station Lightning Imaging Sensor, which records the time and location of light-

ning strikes, starting in March 2017 [27]. To match the spatial and temporal resolution of the

other data, we calculated the hourly number of lightning strikes in each locality. Since light-

ning data was only available beginning March 2017, to preserve as much data as possible, we

assumed no lightning strikes occurred during the first two months of 2017. Lightning strikes

were most common from April to August (n = 1624 total strikes), and only 4 total strikes

occurred in January and February 2018–2020 combined.
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Urbanicity ascertainment

Because of unique population, outage, and weather profiles, we ran all analyses separately for

NYC, non-NYC urban, and rural regions of NYS. To classify localities into their respective

regions, we first used 2010 US Census on the percent of the total population classified as

urban/rural at the block group. We interpolated this to the locality-level with areal weighting.

When localities had >50% of inhabitants designated as rural, we assigned the locality a rural

classification [28]. We distinguished between NYC and non-NYC urban, using the county

indicators included in the power outage data. We assigned localities listed in the New York,

Bronx, Kings, Queens, and Richmond counties as NYC. The final classification of each locality

used in all further analysis is available in Fig 1 and S1 Fig.

The lagged effect of severe weather on power outages, by severe weather

metric and by region

To assess the lagged and non-linear effects of weather on the proportion of customers without

power in a locality, we used negative binomial generalized additive models, an extension of

generalized linear models that allow for smoothed or nonlinear fits [29]. We selected the nega-

tive binomial fit after assessing regression diagnostics using the DHARMa package across a

Fig 1. The spatial boundaries of each power operating locality in NYC, non-NYC urban, and rural regions of NYS. Republished from The New York State

Department of Public Service under a CC BY license, with permission from The New York State Department of Public Service original copyright 2020.

https://doi.org/10.1371/journal.pclm.0000364.g001

PLOS CLIMATE Severe weather-driven power outages in New York State, 2017–2020

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000364 May 1, 2024 4 / 20

https://doi.org/10.1371/journal.pclm.0000364.g001
https://doi.org/10.1371/journal.pclm.0000364


range of model types including Poisson, negative binomial, Tweedie, and zero-inflated Poisson

[30]. We modelled weather using distributed lag nonlinear models (DLNMs), which simulta-

neously allow for the modelling of nonlinear exposure-outcome relationships and delayed

events [31]. DLNMs are also advantageous because they provide constrained lag terms which

account for high temporal autocorrelation, a feature of the hourly weather data. We adjusted

for seasonal and temporal trends by including a natural spline term with 6 knots per year for

the date [32]. We also included fixed effects for the utility that serves each locality to account

for a lack of spatial independence. We used the Akaike information criterion to select the

appropriate degrees of freedom for both the exposure and the lag out of a range of 2–5. We

used the Moran’s I to assess spatial autocorrelation in the final models (S15–S17 Figs) [33].

Outage, severe weather, and severe weather-driven outage classifications

For the remainder of our analyses, we conceptualized outages, severe weather events, and a

severe weather-driven outage each as binary variables. We relied on the severe weather and

power outage literature, our weather and outage data’s distribution, and the results from our

first objective, which assessed the lagged effect of severe weather on outages.

In previous literature, outages have been defined as hours where the proportion of custom-

ers without power exceeds the 90th percentile of the hourly proportion without power state-

wide [34, 35]. We adapted a similar definition for our analyses, but instead defined the 90th

percentile separately for each region (NYC, urban non-NYC, and rural) to prevent the under-

counting of outages in NYC, where the population in a locality was much larger than in rural

regions. The 90th percentile of customers without power was 0.04%, 3.4%, and 15.2%, for

NYC, non-NYC urban, and rural, respectively. As an example, for our binary outage metric,

any hour where the percentage of customers without power exceeded 3.4% in a non-NYC

urban power operating locality was classified as an outage.

We similarly used percentile classifications from our data distribution to determine the

presence of a severe weather event. We hoped to identify pertinent thresholds in our first

objective, but we observed the general pattern of outages increasing at the extreme of weather

metric distributions rather than distinct thresholds. Thus, we used a statewide 97.5th percentile

to define severe weather events. We chose to keep this metric statewide for interpretability. For

most of the continuous metrics (precipitation, wind speed, snowfall) we identified the 97.5th

percentile of each metric from 2017–2020, and then any hour above that threshold we defined

as a severe-weather event. For temperature, the definition slightly deviated. To define

extremely hot hours, we calculated the 97.5th percentile of temperatures during the during the

hot months (May-Sept) and to define extremely cold hours, we calculated the 2.5th percentile

during cold months (Oct-April). The presence of lighting was collapsed to a binary depending

on whether a locality experienced any lightning strikes during that hour.

Finally, to create a severe weather-driven outage definition, we used the two previously

described definitions and a lag component. Using the results from our first objective, it

appeared that much of the effect of the extreme events was immediate (within 8–12 hours of

exposure). Therefore, we decided to use 8 hours as our window of interest. Our final definition

for a severe weather-driven outage was an outage that started either within the same hour of a

severe weather event or within 8 hours following a severe weather event.

The most prevalent and hazardous combinations of severe weather types

that contribute to outages

Once we defined outages and severe weather-driven outages, we used these definitions to

achieve study objectives 2–4. We wanted to identify the severe weather events (or combination
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of severe weather events) that lead to the most significant power outages in frequency, dura-

tion, or proportion of customers impacted. To do so, we first calculated the frequency, average

duration, and average proportion of customers impacted for each classification of severe

weather driven outage (e.g., wind + precipitation-driven, wind-driven). We omitted snow-

driven outages from this analysis to reduce the number of classes and redundancies between

groups, as snow is part of the precipitation estimates.

We then calculated a severe/non-severe outage ratio for each severe weather combination.

We calculated this using the following formula:

number of outages caused by with severe weather event i
number of hours with severe weather event i

� �

number of outages without any severe weather event
number of hours without any severe weather event

� �

where, for each severe weather combination, we divided the number of outages from a severe

weather combination, by the number of hours with the severe weather combination. Then to

standardize this across non-severe outages, we divided the numerator by the number of out-

ages without any severe weather event divided by the hours without any severe weather events.

A severe/non-severe ratio > 1 indicates that outages are more likely due to that severe weather

combination, i, than times without any severe weather events. The ratios can then be com-

pared across severe weather types to quantify which combinations are the most likely to cause

outages.

The distribution of the severe weather driven outages across the state

With outages, severe weather driven outages, and pertinent combinations of severe weather

types defined, we performed descriptive analyses by mapping the frequency, average number

of customers without power, and the duration of outages during severe weather driven and

non-severe weather driven outages for each region. We also calculated the percentage of out-

ages that were due to severe weather events in each locality. Finally, we presented the fre-

quency of severe weather driven outages by type. For this mapping and for subsequent

analyses, to reduce the number of analyses, we present outages driven by each of the six

weather metrics of interest (cold, heat, lightning, precipitation, snow, and wind). Thus, outages

caused by both wind and precipitation would be counted in both the wind and precipitation

panels of Fig 4.

Disparities in the frequency and duration of severe weather-driven outages

We then aimed to assess the association between social vulnerability and outage exposure.

Social vulnerability classification

We used the 2020 Social Vulnerability Index (SVI) created by the CDC/ATSDR to determine

the social vulnerability of each power operating locality [36]. The CDC/ATSDR designed the

index to identify communities that may need support during disasters like those driven by cli-

mate change. It incorporates 16 social factors from the 2016–2020 American Community Sur-

vey that capture several aspects of outage-related vulnerability (e.g., poverty, disability,

housing type, age, English-language proficiency). The final index score ranges from 0–100

where higher values indicate increased social vulnerability. We downloaded the 2020 SVI at

the census tract level, and used areal interpolation to determine the scores using to the power

operating locality using a target-density weighting approach [37]. Finally, for each urbanicity

PLOS CLIMATE Severe weather-driven power outages in New York State, 2017–2020

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000364 May 1, 2024 6 / 20

https://doi.org/10.1371/journal.pclm.0000364


region, we grouped each locality into their respective SVI quartile resulting in the final distri-

bution displayed in S2 Fig.

Statistical analysis–the frequency and duration of severe weather-driven

outages

To estimate disparities in the distribution of outages, we used targeted maximum likelihood

estimation (TMLE) [38], a doubly robust maximum-likelihood–based approach. We estimate

the average treatment effect of being in the highest quartile of SVI versus all others on risk of a

severe weather-driven outage. We performed these analyses separately for each of the rural,

non-NYC urban, and NYC regions. We implemented TMLE using the ltmle [39] and Super-

Learner [40] packages in R. We ran three sets of sensitivity analyses. In the first, we stratified

the analyses by year. In the second, we re-ran the analyses raising the thresholds for the num-

ber of severe-driven outages from n = 1+ to n = 3+ and then n = 5+. In the third, we included

latitude and longitude to account for possible spatial confounding.

To understand disparities in the duration of outages, we present the duration of each outage

type by SVI quartile along with results from Kruskal−Wallis tests [41]. All code for the con-

ducted analyses are available on GitHub: https://github.com/nina-flores/nys_severe_weather_

outages.

Results

From 2017–2020, we identified 40,646 electrical power outages, of which we linked 16,236

(39.9%) to severe weather. Non-severe weather-driven outages lasted 3.6 hours, on average,

whereas outages due to severe weather events lasted anywhere from 3 to 17 hours, on average

(Table 1).

The lagged effect of severe weather on power outages, by type and by region

Using DLNMs, we examined both nonlinear exposure-outcome relationships and delayed

events, for each weather metric of interest. An example of the output from these analyses

showing the lagged relationship between hourly temperatures and the proportion of customers

without power for non-NYC urban localities is displayed in Fig 2. Here, we visualize the rela-

tive rate of customers without power as temperatures increase or decrease away from the

median of 9.8˚C across 24 hours of lags. By focusing on the same hour of exposure, lag 0, we

found that an increase in temperature to 30˚C in non-NYC urban localities leads to 3.8 (95%

CI: 3.6–4.1) times the rate of customers without power, during that same hour of the tempera-

ture increase, compared to the median temperature. However, we observed a 5–15-hour lag

between extreme cold temperatures and an increased rate of outages. We created a Shiny dash-

board so that readers could view the 3D plots (Fig 2A) and 2D plots across any number of lags

up to 24 (Fig 2B) for each of the weather metrics (precipitation, snowfall, temperature, and

windspeed) and each of the regions of analysis (NYC, non-NYC urban, rural; https://oyb6ek-

nina-flores.shinyapps.io/severe-weather-app/).

We found that the weather metrics most strongly associated with power outages varied by

region: in NYC and non-NYC urban areas, precipitation led to the largest rate ratios whereas

in rural NYS, extreme wind led to the largest rate ratios. However, no region had a clear

threshold at which any of the weather metrics distinctly increased outages. Rather, there was a

smooth trend that outages increased as each weather metric became more extreme.

Lagged effects differed by weather metric and region. For instance, in non-NYC urban

areas, extremely hot temperatures (>30˚C) were most strongly associated with immediate

increases in the rate of outages whereas extremely cold temperatures (<-10˚C) were most
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strongly associated with increases in the rate of outages after 6–8 lagged hours. However, in

rural regions of NYS, the impacts of extremely hot and extremely cold temperatures were most

observable at lag 0. Though there was heterogeneity in the lagged effects, we observed that the

effect peaked across most weather metrics and regions after 8–12 lagged hours, which influ-

enced our final definition of weather-driven outages.

The most prevalent and hazardous combinations of severe weather types

that contribute to outages

We identified outages that exceeded the region (NYC, non-NYC urban, and rural) specific

90th percentile of customers without power and described their summary statistics (Table 1).

By calculating the frequency of outages, their average duration, and the average proportion of

customers without power during outages, by severe weather cause, we found that wind was the

most frequent and the strongest single predictor of prolonged outages across all 3 regions

(Table 1). Following wind, precipitation and heat alone also had consistently high frequency

and durations across regions. Extreme cold alone had varying impacts across regions. For

instance, in rural regions of NYS, outages driven by extreme cold were less likely to induce

prolonged outages than non-severe weather conditions; however, in NYC, extreme cold condi-

tions were more likely to cause prolonged outages than non-severe weather conditions.

When comparing multiple severe weather metrics simultaneously, we found that some

combinations of multiple severe weather events led to longer or more widespread outages than

single causes alone. The combination of extreme precipitation + wind led to the longest aver-

age duration for any severe weather type across all three regions, with an average duration of

20.2 hours in NYC, 18.5 hours in non-NYC urban, and 12.5 hours in rural NYS.

Using a severe/non-severe weather ratio to understand the impact of each weather metric

on outages, we found that, though outages associated with lightning were relatively infrequent,

they were the most likely single severe weather event to co-occur with outages across all 3

regions (Table 2). Following lightning, precipitation and wind also had consistently high

Fig 2. The lagged relationship of hourly temperature and the proportion of customers without power for non-NYC urban localities at all lags 0–24 (a), and at

lag 0 (b). Panel b is constructed by slicing panel a where the lag = 0, as shown by the light blue plane at lag 0. All rates are relative to the overall median

temperature of 9.8˚C, shown by the dotted blue vertical line (b). To view these figures for all other weather metrics (precipitation, snowfall, temperature, and

windspeed) and regions of analysis (NYC, non-NYC urban, rural), please visit our shiny dashboard: https://oyb6ek-nina-flores.shinyapps.io/severe-weather-

app/.

https://doi.org/10.1371/journal.pclm.0000364.g002
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severe/non-severe weather ratios across regions. Extreme cold alone had varying impacts

across regions. For instance, in rural regions of NYS, outages driven by extreme cold were less

likely to induce outages than non-severe weather conditions, however, in NYC, extreme cold

conditions were more likely to cause outages than non-severe weather conditions.

When comparing multiple severe weather metrics simultaneously, we found that, generally,

the combination of multiple severe weather events had higher ratios than single events alone.

Overall, the top 5 combinations driving outages of multiple types, heat + lightning + precipita-

tion, lightning + precipitation, lightning + wind, heat + precipitation, and precipitation

+ wind, all had ratios greater than lightning’s 105. Of note, heat + precipitation and precipita-

tion + wind were both frequent (caused 718 and 1,878 outages, respectively) and had high

severe/non-severe weather ratios.

Across NYS, 39.9% of all outages co-occurred with severe weather (Table 1). However,

there was heterogeneity in this percentage across regions and localities. Severe weather con-

tributed to over 50%, 85%, and 87% of all outages in some NYC, non-NYC urban, and rural

localities, respectively. Across all 3 regions, generally, severe weather-driven outages impacted

larger percentages of electrical customers and had longer durations than non-severe weather-

driven outages (S3–S6 Figs and Table 2). In maps of the frequency of severe weather-driven

outages overall and by weather metric, we found that certain localities were vulnerable to out-

ages across all severe weather metrics. In NYC, localities in Queens, the Bronx, and Staten

Island experienced the most severe weather-driven outages, with localities in Queens

experiencing outages driven by each weather metric (cold, heat, lightning, precipitation, snow,

and wind; Fig 3). In non-NYC urban regions, the most frequent severe weather outages

occurred on Long Island and in the Hudson Valley and in rural regions, the most frequent

severe weather outages occurred in North and Central NYS (S7 and S8 Figs).

In analyses assessing whether differences in the distribution of outages were due to social

vulnerability, we found different effects across urbanicity (Fig 4). We estimated that in NYC,

had all regions been in the 4th quartile of SVI the number of heat-, precipitation-, and wind-

Table 2. The frequency and severe/non-severe weather ratios for each weather driven outage.

Overall NYC non-NYC Urban Rural

Number of

events

Severe weather

event(s)

Frequency of outages

of this combination

Ratio1 Frequency of outages

of this combination

Ratio1 Frequency of outages

of this combination

Ratio1 Frequency of outages

of this combination

Ratio1

no severe weather 24410 1.0 5071 1.0 10314 1.0 9025 1.0

single lightning 29 105 2 106 6 117 21 141

precipitation 3678 30 230 8.9 1698 32 1750 39

wind 6972 11.5 1035 4.7 3072 11.2 2865 14.2

heat 2540 9.4 947 5.2 1152 7.8 441 7.1

cold 282 0.8 9 1.3 96 1.2 177 1.0

multiple heat + lightning

+ precipitation

10 23819 2 - 4 - 4 14431

lightning

+ precipitation

17 378 2 - 4 390.5 11 472

lightning + wind 4 733 - - 3 2245.1 1 361

heat + precipitation 718 391 117 55.3 445 478.0 156 445

precipitation

+ wind

1878 182 135 22.6 1091 186.0 652 276

heat + lightning 3 101 1 53.2 - - 2 180

1A severe/non-severe ratio > 1 indicates that outages are more likely due to that severe weather combination, i, than times without any severe weather events.

https://doi.org/10.1371/journal.pclm.0000364.t002
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Fig 3. The frequency of (a) any severe weather driven outage and the frequency of outages co-occurring with extreme (b) cold,

(c), heat, (d) lightning, (e) precipitation, (f) snow, and (g) wind in NYC, from 2017–2020. Republished from The New York State

Department of Public Service under a CC BY license, with permission from The New York State Department of Public Service

original copyright 2020.

https://doi.org/10.1371/journal.pclm.0000364.g003
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driven outages would have been 12.1% (3.3%, 21.0%), 14.8% (-0.5%, 30.2%), and 19.1% (8.5%,

29.8%) higher, respectively, versus if all localities had been in quartiles 1–3. We estimated that

in non-NYC urban NYS, had all regions been in the 4th quartile of SVI the number of heat-

driven outages would have been 7.5% lower (-16.3%, 1.3%), versus if all localities had been in

quartiles 1–3. Finally, in rural NYS, we estimated that if all regions had been in the 4th quartile

of SVI the number of snow-driven outages would have been 5.6% lower (-13.2%, 2.0%), versus

if all localities had been in quartiles 1–3. Otherwise, SVI did not seem to have an impact on

outage frequency for non-NYC urban and rural localities. These results were consistent with a

sensitivity analysis that used higher counts of severe weather outages (n = 3+ and 5+, rather

than n = 1+) as the outcome (S9 Fig). When stratifying analyses by year, in NYC we found sig-

nificantly positive associations between SVI and snow-driven outages for the year 2018–2019

as well (S10 Fig). When adding latitude and longitude to the models to account for possible

spatial confounding, most estimates remained the same. However, in NYC there was no longer

a relationship between vulnerability and precipitation-driven outages (S11 Fig).

The duration of some outage types was also longer in regions with higher SVI; for example,

outages driven by wind and precipitation lasted the longest in regions in the 4th quartile of SVI

Fig 4. The percent difference in the average treatment effect comparing the highest quartile of SVI (most vulnerable) to all others, presented for each

outage cause and by urbanicity. The percentages can be interpreted as the percent difference in the probability of an outage of each severe weather type had all

localities been in the highest quartile of SVI (most vulnerable) versus if all localities had been in quartiles 1–3, presented for each outage cause and by

urbanicity.

https://doi.org/10.1371/journal.pclm.0000364.g004
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(SVI Q1 = 15.0, SVI Q2 = 17.2, SVI Q3 = 15.8, and SVI Q4 = 18.0 hours, S1 and S2 Tables).

However, this also varies by region (S12–S14 Figs). In NYC, outages with the longest durations

in high vulnerability regions co-occurred with precipitation whereas in rural regions, these co-

occurred with precipitation and snow.

Discussion

In this analysis, we assessed severe weather-driven outages in NYS from 2017–2020 by region

and social vulnerability. We found that the frequency, duration, and magnitude of outages

depend on a combination of severe weather type, urbanicity, and vulnerability status. In NYC,

severe weather driven outage were more common and lasted longer in marginalized commu-

nities. In rural regions, outages were no more common in socially vulnerable communities but

when they occurred, lasted longer for socially vulnerable communities.

This paper is among the first to consider differences in severe weather-driven outages

across urbanicity. This stratification is important because differences in housing stock (e.g.,

size, attached/detached), grid infrastructure (e.g., presence of overhead/buried distribution

lines, sprawl), population size/density, and behaviors surrounding energy often vary by urba-

nicity [42]. Furthermore, region-specific analyses are important in the context of climate

change because climate change drives unexpected weather event occurrences and magnitudes

that the grid may be ill-equipped to handle. Severe weather intensity may be region and urba-

nicity specific due to the urban heat island effect, proximity to water, and tree canopy. The

NYC, non-NYC urban, and rural stratification provided nuance to our analyses of outage

prevalence and disparities.

Our definition of severe weather-driven outages allows us to more precisely understand the

relationship between weather and outages. Including a temporal component of severe

weather-driven outages (i.e., considering lagged effects of weather to determine severe-weather

related outage) improves upon previous definitions of severe weather-driven outages that use

the co-occurrence of outages on the same day to define outages [35]. The previous definition

did not (a) account for outages occurring earlier in the day than the extreme event or (b) incor-

porate lagged effects of outages on the preceding day–two limitations our definition over-

comes. Our definition could be used in future papers or further adapted to more accurately

define outages or other adverse events caused by severe weather.

By investigating the most prevalent and hazardous combinations of severe weather types

that contribute to outages, we found that extreme heat/precipitation and extreme precipita-

tion/wind were the most likely to precede outages while extreme precipitation/wind and

extreme wind alone led to the longest outage durations. This was largely consistent across the

three regions studied and with a national assessment of severe weather and power outages,

which found that 8+ hour outages were the most likely to occur on county-days with heavy

precipitation/cyclone /heat and heavy precipitation/cyclone [35]. Our analyses revealed that,

though the likelihood of outages due to these events may be similar across urbanicity, the res-

toration times differed. The average duration of outages due to extreme precipitation/wind in

rural regions was 12.5 hours compared to 18.5 hours in non-NYC urban and 20.2 hours in

NYC regions, respectively. Such information is critical for utilities, policymakers, and electric-

ity users preparing for outages in a changing climate.

By investigating disparities in the frequency and duration of severe weather-driven outages,

we add to a growing literature identifying disparities in power outage experiences, though we

highlight that this varies across urbanicity. Previous analyses of major severe weather-driven

outages demonstrated evidence of disparities, across a range of locations. Outages during the

2021 Texas Power Crisis were more widespread and longer in counties with a higher
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percentage of Hispanic residents [20]. Outages after Hurricane Irma were longer in regions

with more Hispanic residents, regions with more residents with disabilities, and rural regions

[21]. Outages in New York City resulting from Tropical Storm Isaias were longer in regions

that were lower income and/or had higher percentages of non-White residents [22]. Previous

work posits that increased outage exposure in vulnerable communities may be the result of his-

torical and current discriminatory practices. Practices such as redlining and zoning have had

longstanding impacts, including (1) underinvestment in marginalized communities and (2)

the placement of marginalized communities in disaster-prone regions–both of which may

make these communities more likely to experience outages. During outage events, many elec-

tric utilities prioritize power restoration in regions with community assets, such as mass tran-

sit, hospitals, police and fire stations, and sewage and water stations. Regions with these assets

were outlined as a priority for Con Edison in NYS following Tropical Storm Ida in September

of 2021 [43]. By tying power restoration preferences to community assets, these guidelines can

lead to inequitable outage distributions and durations for underfunded and under-resourced

communities [16].

We found evidence of disparities in outages by community social vulnerability, with varia-

tion by region and severe weather event. In NYC, we identified that heat-, precipitation-, and

wind-driven outages disproportionately impacted vulnerable communities. We also found

that in NYC, on average, the duration of precipitation-driven outages was highest in localities

with the highest social vulnerability. In rural NYS, on average, the duration of precipitation-

and snow-driven outages were higher in localities with greater social vulnerability. Given the

centrality of electrical energy for daily life in the US, an imbalance in electrical disruptions (in

distribution, duration, or health impact) is inherently an environmental justice and climate

justice issue. Furthermore, the energy transition will result in greater reliance on electricity for

heating, cooking, and transit, making electrical disruptions even more impactful [12]. We add

that plans to achieve grid reliability may look different across urbanicity. For example, NYC

may prioritize improvements that increase reliability during extreme precipitation, as extreme

precipitation-driven outages were both more frequent and longer in vulnerable regions. While

reliability remains a concern, it is important to ensure that urban dwellers have safe backup

power options. Diesel generators, for example, are commonly used as backup power sources

but “emit pollutants, are prone to failure, can be difficult to operate and refuel”, and have been

linked to spikes in carbon monoxide poisonings observed with natural disasters [44]. Cleaner

backup power sources are becoming available (e.g., solar + storage [44]) but may require fur-

ther work to fully incorporate urban and low-income communities. Residents in multiple unit

housing face more challenges in accessing backup power options than people living in single

family homes, a housing typology more common in suburban and rural areas. Such that even

if people living in low density housing setting are experiencing more frequent outages, they are

likely equipped with whole house generators that reduce the likelihood of a full interruption in

contrast to apartment dwellers. Furthermore, any out-of-pocket expenses required for backup

options may be inhibitive for low-income renters. Thus, developing programs that can provide

these options for renters free of fees, as was done in a pilot program providing Powerwall bat-

tery systems to customers in Vermont, could be one way to equitably move toward resilient

power [44]. Based on our results, rural NYS may instead prioritize addressing the longer dura-

tions of outages in vulnerable communities during extreme snow or precipitation. This could

look like prioritizing power restoration in regions with higher concentrations of low-income

and/or medically vulnerable individuals first.

In the 2011–2021 decade, the United States experienced a 78% increase in weather-related

power outages, compared to the previous decade [45]. Addressing power outages, in the face

of climate change and the energy transition is a public health issue [45]. Power outages can
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directly impact health through a variety of mechanisms. These include carbon monoxide poi-

soning, a common consequence of using generators to cope with outages [46, 47], or the

exacerbation of underlying cardiovascular, respiratory, renal, and mental health diseases due

to sudden shifts in temperature, air filtration, stress, physical activity (e.g., through using the

stairs when an elevator in not powered), or status of electricity-dependent medical devices

[13, 44]. As such, increasing electrical reliability, equitably, will be a key part of a just energy

transition and climate justice.

Our analysis had limitations. First, though the meteorological data was the most temporally

resolved available, it is still hourly averages (or totals). Therefore, results from our first objec-

tive cannot be interpreted as the exact values at which power outages occur, but rather show

that generally, power outages increase as each of the meteorological variables become more

extreme. Second, we added nuance to our analyses by focusing on urbanicity differences.

However, the urbanicity classifications were still quite coarse. Refining these classifications by

incorporating information on population density or region (e.g., rural-central NYS) may pro-

vide deeper insights. Third, our choice to use 8 hours of lags rather than a larger value (e.g., 12,

24) may undercount the number of outages that had a severe weather antecedent. We chose 8

hours to be more conservative as many of the increased rates of outages due to severe weather

peaked near 8 hours. Fourth, we used the CDC’s social vulnerability index as a metric of social

vulnerability because it was designed to identify communities that may need support during

disasters like those driven by climate change and it incorporates social variables that capture

several aspects of outage-related vulnerability like poverty, disability, housing type, age,

English-language proficiency. Though this index includes a comprehensive list of outage-rele-

vant variables, important variables may still be omitted. For example, when creating plans for

disaster or grid management, one may directly want to know the number of individuals using

electricity-dependent medical devices. Though this may be partially captured by disability or

correlate with poverty and age, the use of the index alone may not fully identify regions or

households with more severe electricity vulnerabilities. Fifth, it is important to note that a

power outage does not equate to powerlessness for everyone because it is customary in places

where outages are more frequent to have backup generators, and many houses that are

equipped with them have an automatic switch over in the context of an outage. For urban

dwellers the lack of backup power options may indeed render them without power for the

duration of the outage [48]. This is especially problematic for socially and medically vulnerable

groups, but we cannot decipher whether outages herein were directly related to powerlessness.

Finally, our results may not be generalizable outside of NYS. Instead, our results highlight the

importance of considering regional and social differences to inform grid improvements. Such

information can promote climate justice in the modernization of the US electrical grid.

Conclusion

The US power grid is proven to be highly reliable in general; however, the resilient and reliable

grid operation is increasingly challenged by severe weather events–events that are increasing

in frequency and magnitude due to climate change. Considering the adverse health impacts of

power outages and the increasing reliance on electricity, addressing severe weather-driven

electrical outages is critical for population health and environmental and climate justice. Our

NYS analysis provides a definition of severe weather-driven outages that could be used to doc-

ument the impacts of power outages further, especially those co-occurring with severe weather.

Here, we document that, regardless of region, extreme heat/precipitation and extreme wind/

precipitation were the most likely to precede outages from 2017–2020. We also provided

region-specific information, highlighting that outage lasted the longest for vulnerable, rural
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communities following snow or precipitation. Thus, we highlight the importance of consider-

ing regional, social, and economic characteristics to inform equitable grid management and

improvements.
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