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Abstract

Arctic glacial environments are rapidly changing, as the Arctic warms at a rate three to four

times faster than the global average (the phenomenon known as Arctic amplification). Micro-

organisms are uniquely adapted to extreme glacial environments and studying how ecologi-

cal and climatic feedback loops affect the diversity of these communities is crucial to the

characterisation of vulnerable Arctic habitats. Glacial landscapes span a wide range of habi-

tats, from glacier ice to marine waters, and encompass terrestrial, aquatic, and interzonal

systems. While glacier shrinkage has been the focus of scientific attention, auxiliary habitats

are also impacted by rapid glacier retreat. Auxiliary habitats include terrestrial systems,

such as outwash plains, vegetated periglacial environments, and aquatic systems, such as

glacier-fed streams, lakes, and glacier-adjacent marine environments. Glacier recession

drives high-impact changes in glacier-associated habitats: rising temperatures, increased

light penetration of glacial streams, changes in nitrogen-to-phosphate ratios, and increases

in availability of glacier-derived organic compounds. In turn, microbial systems in these habi-

tats may experience changes in nutrient dynamics and shifts in community structures. The

exposure of new lands by retreating glaciers may also result in increased dust and microbial

dispersal into the atmosphere. Here, we discuss the effects of climate change on glacial

microbiomes and the feedback loops between microbial community dynamics and the

large-scale climatic processes in the Arctic. We characterise aspects of vulnerable microbial

ecosystems and highlight the importance of preserving unseen microbial biodiversity. We

then outline current capacities for microbial conservation, focusing on cryopreservation and

biobanking. Lastly, we suggest future research directions and steps that academic and gov-

ernmental institutions may take to foster research and collaboration with Indigenous

communities.

1. Introduction

The Arctic is a rapidly changing region as it warms nearly four times faster than the global

average [1]. Climatic feedback loops play a central role in this Arctic amplification, contrib-

uting to increased air temperature, greater precipitation, Arctic greening, and decreased

snow and ice cover [2]. Furthermore, Alaska, Arctic Canada and Greenland have
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experienced decreases in Arctic glacial ice mass balance since the 1980s, in addition to

decreases in land ice mass balance in the Russian High Arctic [2]. The changing glacial land-

scapes of the Arctic have a significant impact on life inhabiting these extreme environments

[3]. Microbial life, including bacteria, archaea, fungi, protists and viruses, process nutrients

and mineral substrates, affect biogeochemical cycles, primary succession, and climatic feed-

back loops in glacial ecosystems [4,5]. As glaciers retreat, new terrestrial and freshwater

habitats are formed [3,4]. Microbiota are at the forefront of soil formation in these newly

exposed habitats and contribute to the weathering of rock substrates in addition to carbon

and nitrogen cycling, establishing soil for the primary succession of lichens, mosses, macro-

fungi and plants [6]. Similarly, newly formed freshwater aquatic habitats, such as proglacial

lakes, are colonised and transformed by microbial communities [3]. In these terrestrial and

aquatic environments, biogeochemical interactions occur at both local and global scales, as

atmospheric carbon and nitrogen sources are sequestered within the soils, streams, rivers,

and lakes [7,8].

Exploring glacial microbial diversity and microbial interactions with climate change in the

Arctic are essential to modelling future microbial and environmental dynamics in this region

[9]. Microbial community analyses may also enable biomonitoring of ecosystem health, as

community structures may shift with environmental changes [10]. However, this sensitivity

also leaves microbial communities vulnerable to dysbiosis and potential loss of taxa, emphasis-

ing the importance of capturing this diversity before it is lost [9]. This may be achieved

through utilisation of biobanks and cryopreservation of entire microbiomes, which are histori-

cally focused on agriculture and human microbiome applications [11–13]. Collections of Arc-

tic microbiota may also act as sources of raw material for biotechnological research. Arctic

microbiota have unique adaptations to extreme oligotrophic and cold environments that are

of interest for bioprospecting [14,15]. For example, cold-adapted enzymes are useful catalysts

at low temperatures, and are applied in various industries including food technology, where

products are treated at low temperatures to reduce food spoilage [16,17]. Other applications

include bioremediation of cold environments, such as degradation of oil contaminates by

cold-adapted lipases [16], further stressing the need of preserving such specialised micro-

biomes for future utilisation [14,15,18].

However, microbial research in the Arctic is challenging given the remoteness and relative

inaccessibility of the region. This limits sample collection, preservation and in situ analysis,

with further limitations surrounding the nature of extremophilic organisms, which are gener-

ally challenging to culture and isolate [14,19]. Genetic approaches are widely used for studying

Arctic microbiomes, with amplicon analysis providing insight into community composition

and species abundance, while metagenomics and metatranscriptomics further characterise the

functional potential and active microbial members [20]. In addition, the rise of multi-omics

analysis is seen in the combination of these techniques with others such as metaproteomics

and meta-metabolomics, creating a multi-layered picture of biological systems [20]. However,

there is considerable lack of these types of studies employing multi-omics tools in glacier-asso-

ciated environments [20,21].

We outline the current knowledge of microbial diversity and dynamics in Arctic glacier-

associated environments and the interaction of these microbiomes with climate change. While

we briefly discuss supraglacial, englacial and subglacial systems, the scope of this review specif-

ically focuses on microbial dynamics in proglacial terrestrial and aquatic habitats; these include

glacial outwash plains, glacial aeolian dust, proglacial streams and lakes, and the immediate

marine coast [4,22]. We explore the current limitations of Arctic microbial research and sug-

gest the next steps forward to investigate changes in this region.
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2. Glacial environments

Glaciers consist of diverse ecosystems ranging from the glacial surface (supraglacial), to the

internal glacial ice mass (englacial), and the region of the glacier in contact with the underlying

substrate (subglacial) [23] (Fig 1). Life in these extreme environments is limited by the avail-

ability of liquid water, nutrients, electron donor/acceptors, light, oxygen, and low temperatures

[19,23]. Microbial communities inhabit surface ice, cryoconite holes, glacial snow, and engla-

cial and subglacial habitats [19,23].

2.1 Supraglacial zone

Glacial microbial research has largely focused on supraglacial habitats which are readily acces-

sible on the glacier surface [23]. The supraglacial zone is exposed to the atmosphere and is vul-

nerable to immediate climatic perturbations and solar radiation [19]. The zone contains niche

environments for microbial life, such as cryoconite holes [24]. Specifically, cryoconite holes

are water-filled depressions that form on the glacial surface and are sites of nutrient accumula-

tion [23,24]. The formation of these habitats is often initiated by deposition of inorganic and

organic dust particles, from sources including proglacial dust, bird nesting sites and marine

aerosols, which reduce surface albedo and cause localised ice melt [24–27]. The microbial

composition of cryoconite holes varies to that of glacier surface ice with a larger relative abun-

dance of prokaryotes than eukaryotes [28]. Studies suggest the existence of core cryoconite

microbiomes that may be distinct and location-specific [26,27,29]. Cryoconite holes host

diverse communities of microorganisms including photosynthetic algae (eg. Raphidonema
and Ancylonema genera) and cyanobacteria (eg. Oscillatoriales and Nostocales orders) which

can build up organic carbon and support growth of heterotrophic bacteria, fungi, predatory

protists, and higher trophic level consumers, such as tardigrades [25,28,30–33]. Microbial

Fig 1. Ecosystem dynamics in warming glacial Arctic environments.

https://doi.org/10.1371/journal.pclm.0000337.g001
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activity and growth further decrease surface albedo in the cryoconite microenvironments, cre-

ating a positive feedback loop of accelerated melting [34].

Red snow is another phenomenon contributing to the accelerated surface melting via sur-

face albedo reduction from microbial darkening [35]. Red snow describes the algae and associ-

ated microbial communities that grow in snow melt and are found across the Arctic [35]. The

snow algae may appear red on the snow surface, due to the production of photoprotective pig-

ments such as the carotenoid astaxanthin, and have also been observed in a variety of other

colours, including green, golden-brown, pink, orange, and purple-grey [36–38]. Snow algae

members of the genus Chlamydomonas and Raphidonema are prevalent across geographic

regions, although it is only recently that species have been distinguished through genetic analy-

sis [35,37]. Bacteria are commonly found alongside these algae and include Cyanobacteria,

Pseudomonadota (prev. Proteobacteria), and Bacteroidota (prev. Bacteriodetes) phyla. These

taxa are known to inhabit snow environments, with community compositions that are specific

to geographic regions in the Arctic [35].

2.2 Englacial zone

Below the supraglacial zone the glacier grows more inhospitable with limited solar radiation,

increased pressure, reduced liquid water availability and limited interstitial space within the

ice interior [19]. Studies of microbial diversity in the englacial zone are restricted to ice coring

techniques, with factors such as contamination posing a greater risk to results due to low

microbial biomass [19]. The microorganisms in these habitats are thought to represent the his-

torical communities deposited in the snow that formed the glacier [19]. Ice cores from Arctic

glaciers and the Greenland Ice Sheet were found to consist of Cyanobacteria, Alphaproteobac-
teria, Actinobacteria, Bacteroidetes, WPS-2, Firmicutes, Acidobacteria, Gammaproteobacteria
and Armatimonadetes [3,39]. However, detection of excess gases such as carbon dioxide, meth-

ane, and nitrous oxide in glacial ice cores has suggested the possibility of active microbial

metabolism within the ice or recent microbial deposition through meltwater channels, imply-

ing that the microbiome composition may have changed from the initial deposited community

[40–42]. This corroborates with the recovery of viable isolates from glacial ice cores, dated

over 750,000 years old, in the Tibetan plateau [43]. Interestingly, a large proportion of supra-

glacial meltwater enters the englacial and subglacial regions which can cause altered tempera-

tures [44] and potentially provide additional nutrients that stimulate microbial activity.

Englacial meltwater channels present as cloudy ice when frozen and exhibit microbial commu-

nities less associated with glacial cold-adapted microbial taxa than communities from clear

englacial ice, indicating the effect of local conditions on microbial diversity within the englacial

zone [26,42].

2.3 Subglacial zone

The basal ice found in the deepest layer of the glacier, the subglacial zone, hosts an accumula-

tion of nutrients transported through the preceding glacial layers by water flow [19]. The sub-

glacial zone encompasses the basal ice of the glacier and the bedrock it grinds below, in

addition to the water created from this friction, geothermal heat, and pressure [31]. This envi-

ronment is predominantly anoxic, hosting methanogens and chemolithotrophs such as anaer-

obic nitrate reducers and sulphate reducers, while aerobic chemoheterotrophs have also been

successfully cultivated from subglacial habitats [45,46]. Predominately Proteobacteria, Gracili-
bacteria, Bacteroidetes, Actinobacteria and Parcubacteria were identified from the subglacial

environment via sampling of naled ice bodies in the glacier forefield [47]. Zdanowski et al.
(2017) investigated the deposition of supraglacial cryoconites into the subglacial habitat and
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identified increased abundance of anaerobic cryoconite species [31]. The study suggests that

with increased climate warming, cryoconite inhabiting taxa can establish within the englacial

and subglacial zones as they are flushed through the glacier [31]. Cryoconite microbial migra-

tion into the subglacial habitat is yet to be explored further but may have interesting conse-

quences for subglacial microbial diversity.

3. Proglacial environments

Glaciers exist as part of larger landscapes and interact with the surrounding terrestrial and aquatic

habitats [4,22] (Figs 1 and 2). Investigating the effects of climate change on glacial microbiomes

and microbiomes influenced by deglaciation requires a holistic approach that addresses the

exchange of nutrients and microorganisms between atmospheric, terrestrial, and aquatic spheres.

Here we focus on the changing microbiomes of the terrestrial and aquatic proglacial environments

that encompass the region beyond the glacial terminus, including the glacial outwash plains,

moraines, proglacial lakes and streams, and downstream marine environments [4,22] (Fig 3).

3.1 Terrestrial environments

3.1.1 Glacial outwash plains. Glacial outwash plains are created from the sediment

exposed as glaciers recede [4]. This sediment has been crushed by the weight of the glacier as it

moves and contains limited nutrients, thus creating challenging conditions for life [4]. Despite

this, microorganisms are capable of colonising this newly exposed oligotrophic environment

[48]. Initial microbial colonisation of glacial outwash plains is derived from atmospheric

sources and also extends to organisms originating from the adjacent supraglacial and subgla-

cial environments [7], potentially from ephemeral fluvial connections. Glacial outwash plains

provide a spatial study of microbial succession, known as a chronosequence, as newly exposed

sediment at the glacier terminus transitions to more developed soils [49]. Colonisation by

autotrophs and chemolithotrophs initiates soil development, and with time the microbial com-

munity shifts to include heterotrophic members [4,7,49]. The colonising microbes create

nutrient stocks of available carbon and nitrogen, providing a mechanism of soil development,

in addition to physical and chemical weathering of the exposed sediment [50]. Nitrogen fixing

bacteria such as Geobacter, Frankia, Nostoc, Polaromonas, Bradyrhizobium, Rivularia, Pseu-
doanabaena and Rhodobacter were identified in Arctic glacier forefields [49,51]. These diazo-

trophs are important during early succession and can be found closer to the glacier terminus

[7,49]. Overtime, this early primary succession can facilitate plant growth [52] and glacier out-

wash plains may become carbon sinks due to microbial and plant autotrophy resulting in accu-

mulation of soil carbon stocks [4,53]. Further, multiple studies have identified increased

methane uptake by aerobic methane-oxidising bacteria in older soils of Alpine and sub-Arctic

glacier forefields, suggesting a possible methane sink in proglacial environments [54–56].

Microbial diversity and abundance tend to increase in more developed soils containing

higher amounts of bioavailable nutrients [48]. Pessi et al. (2018) identified that cyanobacteria

(predominantly filamentous) increased in abundance with soil age in multiple glacier fore-

lands of Svalbard across the chronosequence [57]. Filamentous cyanobacteria function in soil

stabilisation and can develop biological soil crusts [57]. Soil crusts have been found to facilitate

initial plant establishment and are associated with greater plant density, suggesting soil stabili-

sation by microbial communities which aids primary succession [52,57]. While few studies

focus on plant—arbuscular mycorrhizal (AM) fungi associations in the Arctic [58–61], some

pioneer plants that colonize soils exposed by retreating glaciers have been found to associate

with ectomycorrhizal fungi [58,62]. Studies suggest that these fungal communities in Arctic

forelands will undergo taxonomic shifts with climate change [58,62].
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Importantly, the diversity of microbial communities and underlying biogeochemical pro-

cesses in developing outwash plains remains largely unexplored in relation to Arctic warming.

Mateos-Rivera et al. (2016) determined that increases in surface temperature of sub-Arctic gla-

cier forefield soils resulted in a more diverse microbial community that shifted from psychro-

philic to psychrotolerant members [63]. Further, Bárcena et al. (2011) identified increased

Fig 2. Features of a typical glacial outwash plain, Kiattuut Sermiat, Narsarsuaq, Greenland Base map available at: https://

www.arcgis.com/home/item.html?id=7ec08e5438304dbfa1e26181503e6fa8.

https://doi.org/10.1371/journal.pclm.0000337.g002
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Fig 3. Proglacial microbial studies in the Arctic.

https://doi.org/10.1371/journal.pclm.0000337.g003
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methane consumption in sub-Arctic glacier foreland soil incubated at 22˚C compared to 10˚C,

indicating increased temperature influencing microbial function and highlighting the impor-

tance of investigating temperature effects in Arctic proglacial regions [56].

In addition, rapidly changing fluvial systems shape Arctic glacial outwash plains into a

dynamic environment for life, an aspect which has not been explored in the literature. Of par-

ticular interest are glacier flooding events known as jökulhlaups, which are caused by geother-

mal or volcanic activity under the glacier or from the bursting of an ice-dammed supraglacial

lake [64]. The ensuing flood passes around or through the glacier to the outwash plain where

water levels are greatly increased for the span of a few days and large amounts of sediment are

transported [64]. The flooding events can cause significant morphological changes to the pro-

glacial landscape but currently the effects on terrestrial and aquatic biology are unknown. As

jökulhlaup flooding events are becoming more frequent in regions such as Greenland, as a

consequence of warmer temperatures [64], the effects of these floods on soil development and

outflow forefield microbiomes warrants investigation.

3.1.2 Glacial aeolian dust. The fine sediments of glacial outwash plains can be emitted

into the atmosphere as dust containing bioaerosols which may be transported across large dis-

tances through atmospheric dispersal [5,65]. Proglacial environments are a significant source

of dust at high latitudes and contribute to dust deposition on glacial surfaces, which reduces

albedo and drives increased melt [66]. The dust can include viable cells and spores which in

turn can potentially colonise new areas despite exposure to intense UV, low nutrients and

extreme temperatures during atmospheric transport [67]. Few studies have focused on aerial

microbial diversity in the Arctic specifically, with a study in Svalbard by Cuthbertson et al.
(2017) observing predominantly Pseudomonadota, Actinobacteria, and Firmicutes in accor-

dance with findings from other aerial bacterial studies in both polar and nonpolar regions

[67,68].

Further, bioaerosols in aeolian dust can have ice nucleating properties by initiating water

crystallisation at higher temperatures [5]. This phenomenon is observed in gram-negative bac-

teria from Gammaproteobacteria (e.g. Pseudomonas), and less commonly in gram-positive

bacteria from certain species of Lysinibacillus [69,70]. The biologically induced freezing is

attributed to ice nucleating activity (INA) proteins which bind water molecules in a specific

structure favourable to ice crystallisation [69]. The ability of bacteria to induce freezing at

higher temperatures may have developed as a way to cause frost damage to plants, resulting in

the release of plant nutrients [71]. While the role of ice nucleation in bacterial species originat-

ing from the Arctic is largely unknown, it likely plays a role in reducing atmospheric residence

time via precipitation [72,73].

Increased glacial dust from newly exposed proglacial outwash plains has climatic ramifica-

tions as ice nucleation from bioaerosols encourages cloud formation via glaciation of low-level

clouds [5]. Specifically, Arctic mixed-phase clouds can form, which contribute to warming

effects through cloud forcing [74]. Warming occurs as long-wave radiation emitted by the

Earth is absorbed by mixed-phase clouds and partly emitted back to the Earth surface [74].

Cloud forcing takes place at high latitudes, including the Arctic, where incoming solar (short-

wave) radiation is reduced [74]. Hence, the ice nucleating activity of glacially sourced bioaero-

sols can contribute to the changing climate of the Arctic.

3.2 Aquatic environments

Besides influencing the surrounding terrestrial environments, glacial retreat also affects a vari-

ety of proglacial freshwater and marine habitats [75,76]. Freshwater environments include

both proglacial streams/rivers, which are formed by glacial meltwater release into the glacier
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forefield, as well as proglacial lakes, which can be formed when glacial meltwater is dammed

by moraines or the bedrock [22]. Furthermore, freshwater from proglacial streams, lakes, and

direct glacial run offs can reach the ocean and influence marine environments [76–78]. Warm-

ing in the Arctic increases glacial melting, leading to changes in water volume, flow velocity,

turbidity, sediment and microbial transport, nutrient concentrations, salinity, and tempera-

ture, all of which influence the bacterial and archaeal communities in glacial streams, lakes,

and the connected marine environments [79–82].

3.2.1 Freshwater proglacial streams and lakes. Proglacial freshwater environments can

consist of interconnected networks of glacial meltwater streams/rivers and proglacial lakes [3].

As there are few studies on microbial dynamics in Arctic proglacial freshwater ecosystems,

currently knowledge is also supplemented with mid-latitude Alpine systems [83]. Glacial

streams originate from glacial meltwater and are variable in their geochemical and geographi-

cal settings, which influences the bacterial and archaeal community of these environments,

resulting in endemism [83]. Due to the low salinity, the communities found in glacial streams

mostly consist of freshwater associated taxa and are often similar but distinct to those found in

glaciers [78,84]. The main phyla found in glacial streams in various Arctic environments

including Svalbard, Greenland, and Alaska, are Pseudomonadota, Bacteroidia, and Actinobac-
teria, with lower abundances of Verrucomicrobia, Acidobacteria, Planktomycetota
[78,83,85,86]. While the common genera in these environments are Polaromonas, Methylote-
nera, Methylophilus, Nitrotoga, and Rhodoferax, this is variable between different environ-

ments [83,85,87]. The initial community of such streams is seeded mostly from the subglacial

run off [77,88]. However, diversity of the community often increases downstream, which in a

space-for-time approach may imply that glacial retreat and changes in the physicochemical

parameters is followed by a succession in the bacterial and archaeal community, based on their

metabolic capabilities and preferences, as an effect of climate change or from increased con-

nectivity with the surrounding terrestrial environments [84,87]. The microbial communities

in downstream areas of proglacial rivers are likely more influenced by the surrounding soils

(e.g. Actinobacteria) and groundwater [86] compared to upstream areas closer to the glacier

source [84,88,89]. This increased influence of the surrounding soil microbiota on the glacial

river microbiome is also true for glacial rivers with larger catchment sizes compared to smaller

ones [87]. In benthic biofilms of proglacial streams, Pseudomonadota and Bacteroidia, together

with Patescibacteria and Planctomycetota, are the most dominant phyla [90,91]. While Cyano-
bacteria can be found in stream biofilms and microbial mats, their abundance and photosyn-

thesis rates partially depend on the outflow volume and turbidity of glacial discharge, due to

the effect of shear forces on light permeability [82,84,92]. The similarity of benthic biofilm

communities to the glacial stream water communities might be due to the constant mixing of

sediment particles into the water and the corresponding dispersal of microbes [93].

Groundwater microbiomes are the least studied of glacial-associated ecosystems [86]. These

microbiomes are influenced by glacial runoff, specifically, community compositions depend

on the type of aquifer, the source of the water, flow dynamics, and the distance to the glacier

[86,94,95]. Importantly, groundwater provides an interphase between surface water and sur-

rounding soil microbiomes [86], however this dynamic may be altered with increased glacial

melt causing a shift from confined to unconfined aquifers [95]. While the groundwater and

glacial river are hydrologically interconnected, they host distinct microbial communities

[86,96]. Purkamo et al. (2022) found a dominance of Burkholderiales and Pseudomonadales in

Icelandic glacial groundwater, but relatively low abundance of Candidatus Yanofskybacteria in

comparison to glacial river water [86]. Bacterial and archaeal diversity were greater in ground-

water sites with increasing distance from the river, indicating the influence of the unique envi-

ronmental pressures between these glacial sub-habitats [86,96]. While no archaea were
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detected in the river, the groundwater archaeal communities were dominated by Woesearch-
aeales, highlighting the distinction between interconnected groundwater and river micro-

biomes [86]. Furthermore, presence of anaerobic microorganisms in groundwater was

supported by Bomberg et al (2019), who detected methanogenic archaea and iron reducing

bacteria in deeper groundwater [96]. However, seasonal environmental conditions impact the

dynamics between shallow and deep groundwater ecosystems [97]. For example, in the sum-

mer, shallow oxygenated groundwater mixes with deeper anaerobic groundwater, driving sea-

sonal microbial methane oxidation [97,98]. In the winter, this dynamic shifts, shallow

groundwater freezes while deeper methane-rich groundwater remains active, potentially

resulting in greater methane emissions [97,98]. This is corroborated by identification of

methanogens in deep anaerobic groundwater (such as Bathyarchaeota) [96].

Proglacial lakes reside in the glacial forefield and are formed by, in-contact with, or directly

influenced by the glacier ice margin and glacial meltwater [22]. Proglacial lakes are variable in

physicochemical characteristics (although generally characterised by oligotrophy) and micro-

bial diversity, as they often depend on the influx of glacial streams and meltwater [8,22,78].

Consequently, the microbial taxa often found in glacial lakes are similar to those in streams,

characterised by the presence of Pseudomonadota, Bacteroidia, Actinobacteria, Planctomycetes,
Verrucomicrobia, Chloroflexi, and at times Acidobacteria, Patescibacteria, Elusimicrobia, and

Cyanobacteria, as well as microalgae and diatoms, in addition to overall low abundances of

archaea [78,99–104].

Arctic proglacial lakes are increasing in numbers and extent as glaciers retreat [105]. These

proglacial lakes can interrupt the delivery of meltwater and sediment to oceans and potentially

act as partial freshwater reserves in place of glaciers [22]. Microbial succession in Arctic pro-

glacial fluvio-lacustrine systems depends on gradients of environmental conditions acting on

the microorganisms originating from the glacier, as well as new colonisation from the sur-

rounding habitats (e.g., soils) [84,88,100]. While there is interconnection and sourcing of

microbial taxa across the glacier and the proglacial freshwater environments, there appears to

be strong taxonomic sorting across the habitats despite hydrological connectivity across envi-

ronments [77,78,100]. For example, the study by Girard et al. (2023) demonstrated that while

the surface of glacial ice was dominated by Cyanobacteria, the adjacent proglacial lake was

dominated by an assemblage of Chloroflexi, Actinobacteriota, and Planctomycetota [78]. Inter-

estingly, this study detected Polaromonas, a psychrophilic bacteria, across all sampled habitats

(e.g. glacial and lake ice, proglacial lake and stream waters) but with unique phylotype assem-

blages in each habitat [78], suggesting strong sorting even at lower taxonomic levels.

Distance from the glacier and age of the proglacial lakes appear to be driving factors in

microbial abundance and diversity, although without a consistent pattern. The study by Gór-

niak et al. (2016) in an Arctic fluvio-lacustrine system (Svalbard) demonstrated that shifts in

physicochemical parameters result in selective pressure on microorganisms across the progla-

cial field chronosequence, with higher diversity but lower biomass in the younger colder lake,

closer to the glacier, compared to an older warmer downstream lake [100,106]. This was fol-

lowed by increased abundance of Actinobacteria and Bacteroidota and decreased abundance of

Alphaproteobacteria [100]. A similar pattern of reduced diversity with distance from the glacier

was demonstrated in sediments of Icelandic proglacial lakes, Lamsters et al. (2020) showed

that the oldest, least oligotrophic, furthest lake from the glacier had a considerably different

community assemblage and lower taxonomic diversity compared to the younger lake that was

still hydrologically connected to the glacier [102]. Contrary to these studies, a more recent

analysis of five proglacial chronosequences demonstrated an increase in both bacterial cell

number and diversity in older lakes, further from the glacier [8], suggesting no universal trend

in proglacial lake succession. However, this could be due to differences in hydrological
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connectivity of the lakes or the influences of bird-driven nutrient fertilization and pH changes

across the different studies [8]. Hydrological connectivity across the glacier habitats in the con-

text of increased melt can also be important in the context of viral control of ecological dynam-

ics. Viruses originating from glacier cryoconite holes are able to infect microbiota in

downstream proglacial ponds, with increased viral abundance associated with higher host

availability and higher temperatures in proglacial ponds [107].

Based on Alpine systems, turbidity seems to be a main driving factor for the bacterial and

archaeal community, and the loss of turbidity due to climate change in glacial streams and

connected lakes may lead to a shift in the autotrophic and heterotrophic bacterial diversity

[108]. These differences between glacier fed and disconnected proglacial lakes suggest that

with increased glacial retreat the proglacial lake communities may shift from chemohetero-

trophic processes in connected lakes to photoautotrophy in disconnected lakes, which can

result in shifts of ecosystem functions [109].

3.2.2 Marine environments. Glacial meltwater is not only released into terrestrial envi-

ronments, but also shed into marine systems, thus transporting nutrients, sediment, freshwa-

ter, and microorganisms into the coastal ocean with effects for the marine bacterial and

archaeal communities and potential downstream impacts on higher trophic levels [110,111].

These glacial runoff influxes are more pronounced in the melting season and might increase

with ongoing climate warming, while affecting the water column and pelagic ecosystem struc-

ture within fjords [110–112]. The transport of macro- and micro- nutrients from both land

and marine terminating glaciers can include nitrogen, phosphorus, silicic acid, manganese

and bioessential iron; these can increase marine productivity, and therefore zooplankton and

downstream ecosystem dynamics [113–117]. Though for marine terminating glaciers, the

nutrient influx dynamics into the marine photic zone depends on the glacier grounding line

depth and induced upwelling of deeper nutrient-rich marine water [113,118].

The glacial runoff also creates gradients in salinity and turbidity, with turbidity sometimes

causing decreases in phytoplankton productivity and tipping the system to net heterotrophy in

the inner fjord compared to coastal shelf waters [119,120]. During high influx times, the

microbial communities found in glacial meltwater persist in the freshwater layer and mix with

marine communities, which continues until mixing and eventual lower influx lead to a

homogenisation of the marine community and a disappearance of glacial derived microbiota

[120]. Dissolved organic carbon (DOC) transported with the glacial meltwater may stimulate

bacterial and archaeal production, while nutrients can stimulate phytoplankton production,

which may have a secondary effect on the bacterial and archaeal community by additional car-

bon source availability [76,121,122]. However, the stimulation of phytoplankton growth again

seems to be largely dependent on the turbidity of the water [121,122]. The origin of the water,

whether directly from the glacier or from glacier influenced terrestrial sources, seems to be a

key factor for the influx of nutrients and sediments [76]. With increased melt, the high influx

of sediments with glacial runoffs can lead to a burial of glacial stream bacteria in the marine

sedimentation zones [123,124]. This burial can then have implications for the oxygenation and

consequently the sulfur- and iron cycling in the glacial influenced marine sediments [123,124].

4. Future perspectives

Overall research on microbiomes in Arctic glacial forefields is generally limited to phyloge-

netic identification [6,85,102], although some recent studies are expanding upon this with

greater metagenomic insights [7,8,51]. While there are Arctic centric studies that utilise multi-

omics, these are not focused on proglacial environments [21,125]. Therefore, it would be bene-

ficial to analyse microbial function and active taxa through combinations of multi-omic
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technologies, including metagenomics, metatranscriptomics, metaproteomics and meta-meta-

bolomics [20], to better understand microbial dynamics and succession in developing progla-

cial environments. Furthermore, while there is evidence for future carbon sequestration in

proglacial terrestrial and aquatic environments [7,126], there is a lack of nuanced understand-

ing of microbially mediated production and sequestration of greenhouse gases (carbon diox-

ide, methane, and nitrous dioxide) in Arctic proglacial fields. Recent innovations regarding in
situ metagenomic analysis will aid the study of these extreme environments [127–129], for

example metagenomic analysis was demonstrated in the field using a Nanopore MinION

device and flow cell in a solar powered offline system, across a remote Icelandic ice cap [129].

While there is hydrological, nutrient, and microbial interconnectivity between supra-, en-,

and sub-glacial zones [3,26,45,78,98,130], few studies approach this in a holistic way. For

example, glacial microbiomes interact with the microbial systems in groundwater [95], glacier-

fed streams, and lakes [78,86] –ecosystems with direct impacts on the human communities in

the Arctic. Thus, research to gain better understanding of those interactions is a priority to

establish baselines for future monitoring [10]. For example, future research could focus on

interconnectedness of these environments (e.g. proglacial fields and cryoconites) in relation to

seasonality, biogeochemical cycles, and climate change-related disturbances.

As Indigenous communities are the key stakeholders in Arctic research, researchers work-

ing in Indigenous lands should strive to avoid colonial parachute science, and work in partner-

ships with local communities [131]. For meaningful collaborations, it is important to consider

the historical interactions of western science initiatives in the Arctic, and to ensure equitable

benefit sharing between stakeholders [132]. Collaborative research can be co-productive or

Indigenous-led [133], where all parties participate in writing research proposals, project plan-

ning, selection of priorities, local training (skill sharing), iterative co-managing, and co-assess-

ing [134,135] (reference). Co-production is an inherently interdisciplinary paradigm that

lends itself well to ecosystem-centred science [133,136]. These community partnerships should

extend beyond the data gathering–community members should be acknowledged in publica-

tions and study results delivered back to the community. Moreover, Arctic communities have

already developed recommendations for researchers to meaningfully engage with indigenous

communities (e.g. ScIQ framework) [137] and online resources/databases of existing commu-

nity-based monitoring (CBM) and Indigenous Knowledge (IK) projects [138,139]. Lastly,

involving indigenous communities in research can also be a more sustainable approach with

potential decrease in field work-associated carbon footprint [140].

As Arctic environments are rapidly changing it is important to preserve samples of current

microbial diversity as baselines for future studies, environmental monitoring, conservation

management and restoration of biomes, and as a bioprospecting resource for future industrial

and medical applications [14,141,142]. Future basic environmental research would also benefit

from reliable preservation, archival, and sharing of raw environmental samples (reference

specimens) and samples in preservation solutions (e.g. ethanol, DNA/RNA ShieldTM, RNAla-

ter1) [141,143]. This may be especially true for Arctic studies with challenging and expensive

campaigns that rely on non-reproducible samples from a limited set of locations and time-

points [28,144]. Furthermore, availability of samples for reanalysis with novel techniques

would facilitate reproducibility and new avenues of inquiry that were not part of the original

focus (for example looking at the virome of a proglacial soil sample that was previously used

solely for prokaryotic analysis) [143].

Database collections of multi-omic data are useful resources for research, lend themselves

well to public access (e.g. NCBI) [145], and allow comparison between different studies. How-

ever, as sequencing and molecular techniques continue to advance, it may become increasingly

difficult to compare newly generated research with older studies without access to the original
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source material [143,146]. Microbial domain biological resource centres (mBRCs), also known

as culture collections, store and distribute microorganisms and replicable genetic and viral

material, with ~790 mBRCs worldwide, holding over three million strains [147]. Government-

supported initiatives to interlink mBRCs and other biodiversity archives are building interna-

tional networks to support research and democratise access [148,149]. Cryopreservation can

maintain bacterial diversity in phylogenetically complex samples [150]. Two common temper-

ature options are -80˚C and -196˚C [151,152]. For long-term storage (over 5 years), preserva-

tion in liquid nitrogen at -196˚C is recommended to avoid degradation [152–154].

Cryopreservation damage may be assessed with viability PCR, utilising the DNA-binding dye

propidium monoazide (PMA) to prevent amplification of extracellular (from dead cells) and

relic DNA [155]. Cryopreservation also allows mBRCs to efficiently hold large microbial

inventories, which can be recovered upon thaw, and reduces the risks of genetic drift inherent

in long-term sub-culturing [151–153,156]. However, most mBRC collections are confined to

culturable axenic isolates and do not generally include whole microbiomes, which limits envi-

ronmental microbiome research [13]. Hence, there are calls for the creation of biobanks

(based on adapted mBRC infrastructure) of cryopreserved complex microbial communities,

representing whole ecological microbiomes [13,141,147,157], as done for medical stool bio-

banks, which may aid environmental research [13]. However, more research is needed on

cryopreservation protocols, to optimise microbial survival and preservation of community

structures [143].

As oligotrophic Arctic samples have low microbial biomass, microbiome molecular analysis

is susceptible to contamination during sample gathering and transport, and from extraction

kits which can be contaminated with oligotrophic and extremophile taxa [19,142]. This can be

mediated with the use of cryopreserved reference samples that can be standardised and

included across different studies to enhance reproducibility and reduce impact of contami-

nants. Additionally, a PMA-treated field sample aliquot (immediately after collection and

before cryopreserving) can help identify contaminants introduced during downstream pro-

cessing [158]. Publicly funded repositories could be a future source of these shared reference

samples and their associated metadata, processing history, and storage protocols [13,159,160].
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Atmospheric Bacterial Community in the Greenlandic High Arctic Is Influenced by Weather Events and

Local and Distant Sources. Front Microbiol. 2022; 13. https://doi.org/10.3389/fmicb.2022.909980

PMID: 35879956

66. Bullard JE, Baddock M, Bradwell T, Crusius J, Darlington E, Gaiero D, et al. High-latitude dust in the

Earth system. Vol. 54, Reviews of Geophysics. 2016.

67. Cuthbertson L, Amores-Arrocha H, Malard LA, Els N, Sattler B, Pearce DA. Characterisation of arctic

bacterial communities in the air above svalbard. Biology (Basel). 2017; 6(2). https://doi.org/10.3390/

biology6020029 PMID: 28481257

PLOS CLIMATE Microbial dynamics in transforming Arctic proglacial landscapes

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000337 June 25, 2024 16 / 21

https://doi.org/10.1093/femsec/fiy114
http://www.ncbi.nlm.nih.gov/pubmed/29901729
https://doi.org/10.1093/biosci/biw158
http://www.ncbi.nlm.nih.gov/pubmed/28596614
https://doi.org/10.1128/AEM.01139-17
http://www.ncbi.nlm.nih.gov/pubmed/28687652
https://doi.org/10.1093/femsec/fiy059
https://doi.org/10.1093/femsec/fiy059
http://www.ncbi.nlm.nih.gov/pubmed/29617984
https://doi.org/10.1007/s00248-018-1203-3
https://doi.org/10.1007/s00248-018-1203-3
http://www.ncbi.nlm.nih.gov/pubmed/29796758
https://doi.org/10.1093/femsec/fiaa171
https://doi.org/10.1093/femsec/fiaa171
http://www.ncbi.nlm.nih.gov/pubmed/32816005
https://doi.org/10.1093/femsec/fiaa185
https://doi.org/10.1093/femsec/fiaa185
http://www.ncbi.nlm.nih.gov/pubmed/32918451
https://doi.org/10.1007/s00253-020-10468-4
https://doi.org/10.1007/s00253-020-10468-4
http://www.ncbi.nlm.nih.gov/pubmed/32076773
https://doi.org/10.3389/fpls.2018.01473
https://doi.org/10.3389/fpls.2018.01473
http://www.ncbi.nlm.nih.gov/pubmed/30405652
https://doi.org/10.1093/femsec/fiw038
https://doi.org/10.1093/femsec/fiw038
http://www.ncbi.nlm.nih.gov/pubmed/26902803
https://doi.org/10.3389/fmicb.2022.909980
http://www.ncbi.nlm.nih.gov/pubmed/35879956
https://doi.org/10.3390/biology6020029
https://doi.org/10.3390/biology6020029
http://www.ncbi.nlm.nih.gov/pubmed/28481257
https://doi.org/10.1371/journal.pclm.0000337


68. Harding T, Jungblut AD, Lovejoy C, Vincent WF. Microbes in high arctic snow and implications for the

cold biosphere. Appl Environ Microbiol. 2011; 77(10). https://doi.org/10.1128/AEM.02611-10 PMID:

21460114

69. Failor KC, Schmale DG, Vinatzer BA, Monteil CL. Ice nucleation active bacteria in precipitation are

genetically diverse and nucleate ice by employing different mechanisms. ISME Journal. 2017; 11(12).

https://doi.org/10.1038/ismej.2017.124 PMID: 28753208

70. Huang S, Hu W, Chen J, Wu Z, Zhang D, Fu P. Overview of biological ice nucleating particles in the

atmosphere. Vol. 146, Environment International. 2021. https://doi.org/10.1016/j.envint.2020.106197

PMID: 33271442

71. Lukas M, Schwidetzky R, Eufemio RJ, Bonn M, Meister K. Toward Understanding Bacterial Ice Nucle-

ation. Vol. 126, Journal of Physical Chemistry B. 2022. https://doi.org/10.1021/acs.jpcb.1c09342

PMID: 35084861

72. Roeters SJ, Golbek TW, Bregnhøj M, Drace T, Alamdari S, Roseboom W, et al. Ice-nucleating pro-

teins are activated by low temperatures to control the structure of interfacial water. Nat Commun.

2021; 12(1). https://doi.org/10.1038/s41467-021-21349-3 PMID: 33608518
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85. Kohler TJ, Vinšová P, Falteisek L, Žárský JD, Yde JC, Hatton JE, et al. Patterns in Microbial Assem-

blages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers. Front Microbiol. 2020; 11.

https://doi.org/10.3389/fmicb.2020.00669 PMID: 32351489
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