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Abstract

Land surface temperatures (LSTs) captured via satellite remote sensing are widely used as

a proxy for the surface air temperatures (SATs) experienced outdoors, a key component of

human heat exposure. However, LST’s accuracy in capturing SAT can vary through space

and time across climate types and geographies and has been less explored in subtropical,

seasonally wet regions (where summer precipitation exceeds 570 mm). Utilizing daytime

(11 AM/12 PM local time, ET/EST) Landsat 8 remote sensing data, this study derived LST

and evaluated its spatiotemporal patterns, as well as its relationship with SAT retrieved from

local weather stations, using the case of Miami-Dade County, Florida, USA. Over 2013–

2022, a surface urban heat island effect is distinctly present (mean SUHII = 3.43˚C)—most

intense during spring months rather than summer months (mean spring SUHII = 4.09˚C). As

such, LST peaks in May/June as opposed to July/August for many other parts of the north-

ern hemisphere. In contrast, Miami-Dade SAT is greatest in August, and the strength of its

relationship with LST varies by season. LST and SAT are most correlated in winter (R =

0.91) and spring (R = 0.59) months and least correlated during the wetter fall (R = 0.40)

months. The relationship between LST and SAT during the summer is statistically insignifi-

cant. In this subtropical region with a seasonally wet climate, LST effectively reflects the

spatial heterogeneity of the urban thermal landscape, consistent with the literature across

urban regions globally. However, because the strength of the LST-SAT relationship consid-

erably weakens during wet season months, LST data therefore have limits as a proxy for the

heat exposure people experience outdoors annually, as they may not accurately represent

the magnitude of localized potential heat risks. These findings underscore important consid-

erations in using LST data to identify urban heat exposures and inform potential adaptive

responses in seasonally wet, subtropical-to-tropical regions.
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1. Introduction

Spatially explicit heat-hazard data are important in informing adaptive responses to reduce

risks to human health and well-being [1, 2]. This is of increased relevance in rapidly expanding

urban regions, where heat exposure and its heterogeneity are further amplified [3–6]. Because

land surface temperature (LST) can be captured at high resolutions across large regions,

highlighting the heterogeneity of thermal landscapes such as the surface urban heat island

(SUHI), LST data have served useful in identifying potential heat exposures [7–25]. Such use-

fulness is largely attributed to the physical relationship that LST shares with that of surface air

temperature (SAT), a measure that is representative of the ambient temperature that humans

feel and a key component of heat exposure [5, 6]. Although controlled by different physical

mechanisms and properties, LST and SAT have been found to be well correlated both tempo-

rally and spatially—for example, SATs are higher where LSTs are higher due to heat fluxes

from the surface, and LST and SAT follow similar annual patterns [4, 5, 7, 26–35]. Therefore,

LST, generally derived from satellite observations, has been widely used as a spatiotemporal

proxy for SAT [26, 36–44]. However, LST’s strength as such a proxy can vary across space and

time [18, 33, 34, 37, 45–57].

In lower-latitude urban regions that experience seasonally wet, tropical climates (where

summer precipitation exceeds 570 mm), the quantitative relationship between LST and SAT

has been less explored [16, 58–60]. This gap is notable given different physical processes that

operate at lower latitudes (e.g., increased solar radiation, more intense water cycle, etc.), as

compared to more arid or temperate climates that have strong LST-SAT correlations year-

round [19, 33, 55, 56]. The presence of such physical processes may affect LST’s accuracy as a

predictor for SAT values [1, 7, 34]. Thus, it cannot be simply assumed that LST can serve as a

year-round proxy for SAT in lower-latitude regions with seasonally wet climates, informing

decisions around heat exposures and appropriate heat responses. Although heat hazards in

such a region are a function of more than SAT alone (e.g., increased water vapor/humidity),

the LST-SAT relationship remains key to spatial heat exposure. For example, a lower atmo-

sphere that is heated by the increased heat fluxes of a warm surface allows for a moister air

mass and the potential for exacerbated heat stress [60, 61]. Identifying the strength of the

LST-SAT relationship throughout the course of the year in a region with a seasonally wet, trop-

ical climate is important for determining its ability to accurately quantify areas of potential

increased heat risks. If LST and SAT are weakly correlated at a point in time annually (e.g.,

during the wet season or dry season), then LST may misrepresent the magnitude of a potential

heat hazard across the seasonal cycle. Such a misrepresentation of heat exposure profiles could

misinform appropriate, spatially explicit heat responses and adaptation strategies.

Here, we examine the spatiotemporal relationship between LST and SAT in a subtropical,

seasonally wet region. We use the case of Miami-Dade County—a large, densely populated

metropolitan region within subtropical latitudes that experiences a seasonally wet climate and

possesses a unique geography. We ask: what is the spatiotemporal accuracy of daytime LST as

a proxy for SAT in Miami-Dade? First, we develop a climatology of daytime LST (11 AM/12

PM local time, Eastern Time/Eastern Standard Time) over 2013–2022, as has not been done

before for the region. Second, using this new LST record, we assess spatial patterns in LST,

quantifying the surface urban heat island (SUHI) phenomenon and its seasonality. Third, we

examine the spatiotemporal relationship between daytime LST and SAT. We thereby uncover

strengths and limitations in using LST data to identify spatiotemporal urban heat exposures,

based on its relationship with SAT in a subtropical, seasonally wet region. Such results are of

increasing relevance to urban planning and heat adaptation policy, where accurate tools are

needed to measure localized urban heat hazards under intensifying climate change.
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2. Materials and methods

2.1. Study area

Miami-Dade County, Florida, USA, a large metropolitan region bordering the southern limit

of subtropical latitudes, was chosen as the area of study (Fig 1). Miami-Dade is the state of

Florida’s third largest county by total area (2,431 square miles) and largest by population

(2,701,767 people) [62]. Located in Southeast Florida, the county is bordered by the Atlantic

Ocean to the east and the Everglades wetlands to the west. The wetlands account for the major-

ity of Miami-Dade’s total area and extend beyond the county’s western border. Urban develop-

ment, encroaching on wetlands over time, has increased Miami-Dade County’s urban build

up from 12% to 21% of the region’s total area between 2001 and 2016, following global urbani-

zation trends [3, 23]. To the south is the Caribbean Sea and the Florida Keys archipelago.

Miami-Dade is characterized by a Tropical Monsoon (Am) climate closest to the Atlantic

Ocean and a Tropical Savanna (Aw) climate further inland to the southwest [63].

On average, Miami-Dade is the warmest county within the state of Florida and contains the

state’s second warmest city (City of Miami, second warmest mean annual SATs statewide after

Key West) [67]. During August, Miami-Dade SATs are at their highest on average annually

(Fig 2A) [67–69]. The county’s newly designated heat season begins May 1 and continues until

Fig 1. A map of the study area, Miami-Dade County, in Southeast Florida, USA and its Köppen-Geiger Climate Zones [63].

The county’s urban development boundary separates developed, urban Miami-Dade from the rural, Everglades wetlands to the

west. USA shapefile: U.S. Census Bureau [64]. Miami-Dade County boundary shapefile, Urban development boundary shapefile:

Miami-Dade County [65]. Climate zone map: GloH2O [66].

https://doi.org/10.1371/journal.pclm.0000278.g001
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the end of October, a period during which SATs can remain well above 25˚C, both during the

day and at night. Closely aligned with the period of Miami-Dade’s heat season is the Southeast

Florida rainy season (Fig 2C). Although incoming solar radiation is highest in June, surface

solar radiation does not simultaneously peak (Fig 2B).

2.2. Datasets description

Upgraded Level 2 LST data were retrieved from the National Aeronautics and Space Adminis-

tration (NASA) and United States Geological Survey (USGS) Landsat 8 satellite, captured by

the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments. Landsat

observations have higher resolutions, than other satellite products for urban surface thermal

analysis (e.g., MODIS and Sentinel have 1-km resolutions) [73]. The Landsat 8 satellite orbits

Earth on a 16-day cycle, capturing images of the planet’s surface and providing data at

30-meter resolution [74]. Data from the satellite were downloaded by individual recorded day

from the USGS Earth Explorer website [75], packaged with GeoTIFF images that represent

each satellite band, the quality assessment (QA) band, and a metadata (MTL) file containing

satellite thermal constants, rescaling factors, and corrections. Miami-Dade County falls within

Path 15, Row 42 of the Worldwide Reference System (WRS-2) [76]. Images were captured at

approximately 11 AM ET/12 PM EST during the satellite overpass. 260 total image scenes exist

in the USGS Landsat 8 database for this region during 2013–2022. Miami-Dade County was

obscured by cloud cover or intense moisture in 159 of these 260 images. Of the 101 non-

obscured images downloaded across the ten-year study period (2013–2022), 98 were utilized

Fig 2. Monthly SAT (˚C), surface solar irradiance (W/m2), and rainfall (mm) for Miami-Dade County. Box and whiskers display the 1st, 25th, 75th, and 99th

percentiles of each variable for each month. The box line represents the median. (a) Plotted values represent hourly SAT observations averaged by month for

seven weather stations (6 WeatherSTEM [70] and Miami International Airport) during 2015–2022 (n = 56 values per month). (b) Plotted values represent

hourly solar irradiance observations (daytime, 7 am to 7 PM ET/EST) averaged by month for six WeatherSTEM stations during 2015–2022 (n = 48 values per

month). (c) Plotted values represent monthly model estimates from PRISM [71, 72] of local rainfall totals within a 4-km grid centered at Miami International

Airport (KMIA) for each month during 2000–2020 (n = 21 values per month).

https://doi.org/10.1371/journal.pclm.0000278.g002
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for analysis after an additional 3 were discarded due to missing data. The dates of utilized

scenes are shown in S1 Table.

SATs were gathered for spatiotemporal analysis during 2015–2022 across seven different

weather stations within the bounds of Miami-Dade County (Fig 3). Six of the seven stations

Fig 3. Seven weather stations utilized for SAT observations. Miami-Dade County shapefile: Miami-Dade County

[65]. Basemap: ESRI [78, 79].

https://doi.org/10.1371/journal.pclm.0000278.g003
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are WeatherSTEM stations: Frost Science Museum; Rockaway Middle School; Rosenstiel

School of Marine, Atmospheric, and Earth Science (RSMAES); University of Miami Gables

campus; University of Miami Medical campus; and University of Miami Hecht Athletic Cen-

ter. Solar irradiance data (Fig 2) were also gathered at WeatherSTEM stations. Each Weather-

STEM station collects various atmospheric data continuously at one-minute intervals [70].

SAT data from the seventh station, Miami International Airport (KMIA), were retrieved from

the Iowa State University ASOS Network [77]. Monthly rainfall total estimates (2000–2020)

for Miami-Dade County (Fig 2) were retrieved from the Parameter-elevation Relationships on

Independent Slopes Model (PRISM) [71, 72].

Census block group data for Miami-Dade County (n = 1842) were retrieved from the U.

S. Census Bureau [64]. Impervious surface and tree canopy data were retrieved from the

National Land Cover Database (NLCD) at 30-meter resolution [80]. The value of each

30-by-30-meter pixel represents the percentage of developed surface or tree canopy for that

area (0–100%).

2.3. Methodology

To first determine seasonal trends in LST, an annual climatology of mean LST was developed

over a ten-year period (2013–2022) [81]. Spatial assessment of LST then involved the identifi-

cation of the Miami-Dade SUHI phenomenon and its intensity (SUHII) across seasons, as well

as drivers of intraurban heterogeneity. Lastly, the seasonal and annual patterns of LST were

compared with SAT to determine whether the two measures of temperature remain highly

spatiotemporally correlated in a seasonally wet climate. Fig 4 briefly highlights these three pri-

mary research objectives.

2.3.1. LST mapping through time. Through a series of calculations based on equations

provided by USGS [42, 74, 82], downloaded Landsat 8 imagery data were converted to LST uti-

lizing ArcGIS Pro’s raster calculator [83]. Band 10 captured by the TIRS was used for mapping

surface temperature, as it is less contaminated with stray light than Band 11 [84]. The steps for

calculating LST include (1) determination of top-of-atmosphere (TOA) spectral radiance (Lλ),

(2) conversion to TOA brightness temperature (BT), (3) calculation of land surface emissivity

(ελ), and (4) the final calculation of LST. TOA spectral radiance is calculated in W/(m2 × sr ×
μm) via:

Ll ¼ ML � Qcal þ AL � Oi ð1Þ

where ML is the band-specific multiplicative rescaling factor, Qcal is the quantized and cali-

brated standard product pixel value measured in DNs, AL is the band-specific additive rescal-

ing factor, and Oi is the band-specific correction constant (Table 1). Next is the calculation of

TOA BT, in degrees Celsius (˚C):

BT ¼
K2

ln½ðK1=LlÞ þ 1�
� 273:15; ð2Þ

Where K1 and K2 are band-specific thermal conversion constants in W/(m2 × sr × μm) and

Kelvin (K), respectively. The absolute zero (-273.15˚C) is added to convert from Kelvin to

degrees Celsius. To calculate land surface emissivity (ελ), the proportion of vegetation (Pν) is

first required. Pν is calculated with the Normalized Difference Vegetation Index (NDVI) [85],

utilizing Bands 4 and 5 captured by the Landsat 8 OLI:

NDVI ¼
Band 5 � Band 4

Band 5þ Band 4
; Pv ¼

NDVI � NDVImin

NDVImax � NDVImin

� �2

:
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ελ can now be calculated via:

εl ¼ 0:004� Pv þ 0:986; ð3Þ

a key component of the final LST equation:

LST ¼
BT

1þ lBT
r

� �
ln ðεlÞ

h i ; ð4Þ

Fig 4. A flowchart of the study’s three primary steps: (1) develop LST climatology, (2) spatially analyze the LST record, and (3) examine the relationship

between LST and SAT.

https://doi.org/10.1371/journal.pclm.0000278.g004

Table 1. Landsat 8 metadata.

Thermal Conversion Constants

K1 774.89 W/(m2 × sr × μm)

K2 1321.08 K

Rescaling Factors

ML 0.000342

AL 0.1

Correction Constant

Oi 0.29

https://doi.org/10.1371/journal.pclm.0000278.t001
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with

r ¼ h
c
s
;

where λ is the wavelength of the emitted radiance (λ = 10.895 μm), h is Planck’s constant

(6.626 × 10−34 J s), c is the speed of light (2.998 × 108 m s-1), and σ is Boltzmann’s constant

(1.38 × 10−23 J K-1). ρ is converted to μm ×˚C to obtain LST in˚C.

All images were cloud and water masked using the Landsat Quality Assessment

(QA_PIXEL) band. Pixel values within the QA_PIXEL band that did not possess a value of

21824, indicative of land [86], were removed (masked) from imagery.

2.3.2. Spatial analysis of LST. SUHI intensity (SUHII), or the difference between urban

and rural LSTs [19, 29, 45, 54, 87, 88], was calculated for the overall daytime LST climatology

(annual mean SUHII for 2013–2022) and seasonally (mean winter, spring, summer, and fall

SUHII). Mean imperviousness was aggregated to the census block group level to determine

urban or rural status. Census block groups were deemed urban (n = 1826) if mean impervious-

ness was greater than or equal to 5%. This definition aligns with the Census Bureau urban-

rural criteria (if a census block or block group falls within census tracts with a population

greater than 2500) [89] and with the county’s urban development boundary [90] (if a census

block group falls east of the boundary, Fig 1). Remaining census block groups were considered

rural (n = 16) (Fig 5). Spatial analysis was conducted in ArcGIS Pro software [83].

2.3.3. Statistical analysis. Linear regression was performed in RStudio [91] to compare

annual mean LST to common drivers of urban heat: NDVI, impervious surface, and tree can-

opy cover. All variables were aggregated to their mean value within census block groups. Due

to the likelihood of correlation across independent variables, single linear regressions were

performed. Water and clouds were masked across all imagery prior to analysis. However,

Landsat’s accuracy in the recognition of all water pixels across imagery is less than 100% [92,

93]. To account for this and limit statistical analysis to land surfaces as best possible, census

block groups with mean NDVI values of less than 0.1, a threshold most indicative of water-

based pixels (e.g., clouds, shoreline or coastline) [94], were removed, leaving 1748 census

block groups available for annual analysis (2013–2022). This process was repeated for seasonal

analysis of NDVI.

To determine seasonal correlations with SAT (2015–2022), derived LST was compared to

SAT observations in RStudio (Fig 3) [91]. On days where a Landsat image scene was captured,

LST pixels were aggregated to their mean values within a 100-meter buffer around a weather

station. Since Landsat imagery is captured at 11 AM ET/12 PM EST local time, LST was com-

pared to 11 AM ET/12 PM EST SAT observations.

3. Results

3.1. LST climatology

Miami-Dade County’s LST climatology reveals a unique annual pattern. During winter

months (December to February), LST values are the lowest of the year on average (mean of

Miami-Dade County’s mean winter LST pixels = 18.51˚C) (Fig 6). Entering spring (March to

May), mean LSTs increase as the northern hemisphere nears its June summer solstice (mean

spring LST = 24.46˚C). Mean monthly LSTs peak in May before the peak in top of atmosphere

solar insolation (June). This observed trend coincides with surface solar insolation (Fig 2B).

April/May have the largest variability in monthly mean LST pixels across the county, as indi-

cated by the box and whisker distributions in Fig 6 (difference between minimum and maxi-

mum mean monthly LST values). Summer (June to August) is characterized by a decrease in
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mean LST (mean summer LST = 24.20˚C). The fall months (September to November) depict a

gradual decrease in average LSTs for the annual cycle as the year nears winter (mean

LST = 21.94˚C). No significant trend exists in yearly mean LST over the study period. Yearly

mean LST for Miami-Dade varies—2013 is the warmest year on average (23.69˚C), while 2021

is the coolest (20.76˚C).

A similar annual pattern is also present across mean census block group LST values in

which utilized weather stations are located (Fig 7). Although there is variation across weather

station mean LST values, mean LST peaks at each weather station in either April, May, or

June, following the general mean Miami-Dade County LST trend (Fig 6). In addition, mean

SAT values (at 11 AM ET/12 PM EST) at each weather station generally remain higher than

mean LST values (at 11 AM ET/12 PM EST) annually, but the largest mean difference in the

two measures of temperature exists during July, August, and September (summer and early

fall) during the rainy season (Fig 2C).

3.2. Spatial analysis of LST

A prominent SUHI effect is visible within Miami-Dade County across the ten-year study

period (Fig 8A). High levels of intraurban LST heterogeneity are visible throughout the

Fig 5. Urban and rural Miami-Dade County census block groups (CBGs). Urban CBGs (left) have greater than or equal to 5% mean imperviousness, while

rural CBGs (right) have less than 5% mean imperviousness. Census block group shapefiles: U.S. Census Bureau [64]. Basemaps: ESRI [78, 79].

https://doi.org/10.1371/journal.pclm.0000278.g005
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county’s urban corridor, with areas of elevated LST that remain greater than 27˚C on average

over 2013–2022. Such regions of elevated LST are over 2˚C warmer than the average urban

LST and over 5˚C warmer than the entire county’s average LST. These warm regions are most

notably located along major roadways and other parts of the extensively developed landscape

with low levels of greenness (Fig 8B). LSTs of 25˚C and higher, associated with extensive urban

development, can be found as far south as 10–12 kilometers from the County’s southern bor-

der, before transitioning into cooler LSTs as a result of wetlands and decreased urban surface.

The county’s urban development boundary (Fig 1) to the west separates significantly

warmer, urban development from the cooler, unchanged Everglades landscape (which

accounts for most of the County’s total land area at present). Urban Miami-Dade County

exhibits an annual mean LST of 25.04˚C across the study period, considerably warmer than

the rural region’s annual mean LST (21.61˚C). This urban–rural difference in mean LSTs

results in an annual mean SUHII of 3.43˚C across the study period. Mean SUHII varies expect-

edly with the seasons and is at its greatest during spring months (4.09˚C) when surface solar

radiation is most intense (Fig 2B) and at its lowest during winter (2.95˚C) (Fig 9). Fall and

summer mean SUHII remain near the average value, although fall’s mean SUHII is greater

than in the summer.

Biophysical drivers of spatial LST heterogeneity in Miami-Dade are shown in Fig 10.

Results from regression analysis between LST and these variables are shown in Table 2. Mean

NDVI values across the county are within ~0 to ~0.5 across the study period and have an

inverse spatial relationship with LST values (Fig 8). As expected, annual mean NDVI per cen-

sus block group across Miami-Dade has a negative relationship with annual mean LST per

census block group (-8˚C per unit increase in NDVI, p< 0.001). The strength of this coeffi-

cient varies by season, at its strongest during spring (-10.5˚C per unit increase in NDVI,

Fig 6. Monthly LST (red) for Miami-Dade County and SAT (black) at KMIA. For each monthly boxplot, LST pixels were averaged by month (2013–

2022). Box and whiskers display the 1st, 25th, 75th, and 99th percentiles of monthly mean LST pixels, and the box line represents the median value. Each

black dot represents monthly mean SAT at KMIA (2013–2022).

https://doi.org/10.1371/journal.pclm.0000278.g006
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p< 0.001) and weakest during fall (-6.37˚C per unit increase in NDVI, p< 0.001) (Table 2).

During April-June, when LST values are warmest, NDVI is also at peak values across the

county. LSTs during these months in census block groups with the highest NDVI (upper dec-

ile) are upwards of 3˚C cooler than census block groups with the lowest NDVI (lower decile)

(Fig 11). Similarly, percent tree canopy has a negative relationship with LST (-0.07˚C,

p< 0.001). Tree canopy is also extremely heterogenous across the county. Across all county

census block groups, percent tree canopy is on average 12.8%, with the majority of census

block groups in Miami-Dade possessing 0–20%. Opposite of NDVI and tree canopy, mean

impervious surface has a positive relationship with LST (0.05˚C per unit increase in impervi-

ous surface, p< 0.001), also seen in Fig 10. Miami-Dade County’s urban corridor is character-

ized by extensive impervious surface: sprawling roadways, highways, and buildings (e.g.,

single-family residential, low to high rise, commercial, industrial) that are responsible for

much of the elevated LSTs seen in Fig 8.

3.3. LST compared with SAT observations

Fig 12 shows the degree of agreement in LSTs and SATs across seasons by comparing mean

census block group LST with available weather station SAT observations within that block

Fig 7. Monthly LST for each weather station census block group (box plots) and SAT (diamonds) at weather stations (Fig 3). For each monthly

boxplot, LST pixels in each census block group in which there is a weather station were averaged across all monthly images (2013–2022). Box and whiskers

display the 1st, 25th, 75th, and 99th percentiles of monthly mean LST pixels for each weather station census block group, and the box line represents the

median value. Colored diamond shapes represent the average monthly SAT observed for the WeatherSTEM station within the respective census block

group.

https://doi.org/10.1371/journal.pclm.0000278.g007
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group (11 AM ET/12 PM EST, on the day of satellite image capture). During the winter

months, LST and SAT exhibit a strong, positive correlation (R = 0.91, p< 0.001). In spring

months there still exists a positive relationship, but a weaker, moderate correlation (R = 0.59,

p< 0.001) as compared to winter. The relationship between LST and SAT during summer

months is statistically insignificant (p> 0.001); however, subsequent fall months display a

weaker relationship than both winter and spring (R = 0.40, p< 0.001). It is important to note,

that unlike SAT in Fig 2A, mean monthly LSTs slightly decrease rather than increase in sum-

mer months July and August (Figs 6 and 7). The differences between daytime LST and SAT

reach near 3˚C at their largest.

4. Discussion

LST plays a key role in lower atmosphere processes, including strongly influencing SAT, a key

component of heat exposure [4, 5, 7, 26–34]. As such, LST’s potential in serving as an accurate

proxy for SAT can allow it to be a highly useful measure in identifying increased heat expo-

sures across heterogenous urban regions [5, 6, 26, 36–44]. This accuracy, however, can depend

Fig 8. Mean LST (˚C) and NDVI for Miami-Dade County (2013–2022). (a) Each 30-by-30m pixel represents the mean LST value for all imagery (98 images) across

the study period. The Miami-Dade SUHI is represented by yellow-to-red colors along the eastern portion of the county, as compared to more natural, preserved

landscape where greener colors are observed. (b) Each 30-by-30m pixel represents the mean NDVI value for all imagery across the study period. Imagery data: USGS

[75].

https://doi.org/10.1371/journal.pclm.0000278.g008
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on local mean climate. Here, we demonstrate this for a subtropical region that experiences a

seasonally wet climate, using the case of Miami-Dade County, Florida. The results of this

research show that, in this seasonally wet climate, daytime LST effectively characterizes spatial

heterogeneity of the urban thermal landscape, including where heat exposures may be

increased. Such intraurban heterogeneity is strongly linked to biophysical factors such as

greenness and surface imperviousness. However, the strength of the relationship between day-

time LST and SAT varies by season, indicating seasonal limitations in LST’s use as a proxy for

SAT and associated heat exposures. Although LST and SAT remain positively correlated annu-

ally, LST is limited in explaining SAT values during wet season months when SATs are highest,

as it is not able to quantitatively capture SAT’s magnitude.

The relationships found between LST and biophysical variables (NDVI, tree canopy, and

impervious surface) in Miami-Dade County are consistent with the literature: we also find

negative relationships with greenness and positive relationships with impervious surface [57,

95–98]. In this subtropical region with a seasonally wet climate, NDVI’s negative relationship

with LST changes by season and is most negative during spring (-10.5˚C per unit increase in

NDVI, p< 0.001). Throughout spring months (March, April, May), NDVI values are at their

highest alongside increased surface solar irradiance (Fig 2). This trend contrasts that of regions

with arid climates, where the impact of minimal vegetation is frequently negligible or near

zero [99]. In regions with more temperate climates, LST’s relationship with NDVI fluctuates

between positive in winter months and negative in summer months [100]. LST’s relationship

Fig 9. Seasonal LST for the rural (green) and urban (red) region of Miami-Dade County (2013–2022). For each boxplot, LST pixels were averaged by

season within rural and urban regions of the county. Box and whiskers display the 1st, 25th, 75th, and 99th percentiles of seasonal rural and urban LST pixels.

The box line represents the median.

https://doi.org/10.1371/journal.pclm.0000278.g009
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with NDVI remains negative through all seasons in Miami-Dade County, highlighting the

annual cooling impact of vegetation in a subtropical region that is warm year-round. Although

negligible during certain seasons in temperate or arid climate types, such vegetation can be

important in heat mitigation response in chronically warm subtropical-to-tropical regions,

reducing the amount of radiation reaching the surface that can subsequently heat the lower

atmosphere and increase local heat exposures [60, 61].

Fig 10. Miami-Dade County mean LST per census block group (n = 1748) by mean biophysical variable percentile. For each box plot, annual mean LST

pixels (2013–2022) were aggregated to the mean census block group value and binned (n� 175 census block groups) by mean census block group percent

impervious surface, NDVI, and percent tree canopy percentiles. Box and whiskers display the 1st, 25th, 75th, and 99th percentiles across annual mean

census block group LST. The box line represents the median value.

https://doi.org/10.1371/journal.pclm.0000278.g010

Table 2. LST vs biophysical variables in Miami-Dade County. The relationships between mean census block group (CBG) LST and mean CBG NDVI (including by sea-

son), mean CBG percent tree canopy, and mean CBG percent impervious surface are given for 1748 CBGs across the county. The coefficient can be interpreted as degree

Celsius change per unit increase for a variable coefficient (e.g., a unit increase in mean impervious surface indicates a mean ~0.05 degree increase in LST).

Variable (per CBG) Coefficient (slope) Std. Error p-value (99% CI) R2

Mean NDVI -8.01 0.48 p < 0.001 0.14
Winter -6.42 0.44 p < 0.001 0.11

Spring -10.5 0.62 p < 0.001 0.14

Summer -8.06 0.45 p < 0.001 0.15

Fall -6.37 0.46 p < 0.001 0.10

Mean Percent Tree Canopy (%) -0.07 0.003 p < 0.001 0.19

Mean Percent Impervious Surface (%) 0.05 0.001 p < 0.001 0.45

https://doi.org/10.1371/journal.pclm.0000278.t002
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During winter, when monthly precipitation is at its minimum (Fig 2), LST and SAT exhibit

a strong correlation with one another (R = 0.91) (Fig 12), generally agreeing in magnitude. In

contrast, during summer and fall months, the two measures exhibit a statistically insignificant

relationship (summer, p> 0.001) and a weaker correlation (fall, R = 0.40) respectively, as LST

values were considerably lower than SAT values (up to 3˚C). Such a difference in LST and

SAT, however, is smaller than that of a more temperate climate, in which the absolute differ-

ence in the two metrics during late morning was found to be upwards of 5˚C [101]. Time of

day likely plays a role in LST being lower than SAT during summer months, as well as the

magnitude of the LST/SAT difference, as the 11 AM ET/12 PM EST observations for LST do

not capture surface heating near its peak [33, 49, 52]. Nonetheless, such a large disparity

between LST and SAT during wet season months as compared to drier months at this time of

day challenges the notion that the two heat metrics are spatiotemporally well correlated across

all climate types [4, 5, 26–32]. This includes other subtropical regions with similar climates, in

which strong correlations were found annually [58, 102, 103]. Although not comparing LST

and SAT at the same time of day, other research has found similar fluctuations in the strength

of the relationship between LST and SAT across seasons [48, 55]. Increased homogenization of

surface conditions such as greenness during the winter (e.g., snow or ice in colder climates),

likely shape LST’s improved ability to capture SAT quantitatively outside of summer and fall

months. In arid climates, such homogenous conditions (e.g., decreased greenness due to desert

Fig 11. Monthly mean LST by monthly tenth (red, low greenness) and monthly ninetieth (green, high greenness) NDVI percentiles. LST and NDVI

pixels were aggregated to their mean values within census block groups (n = 1748) for each month (2013–2022). Data points represent the monthly mean

LST values of Miami-Dade County census block groups at the monthly tenth NDVI percentile (red) and the monthly ninetieth NDVI percentile (green).

https://doi.org/10.1371/journal.pclm.0000278.g011
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biomes, etc.) persist for much of the year with minimal precipitation, allowing for a continu-

ous, annual strong relationship between LST and SAT [104, 105]. Temperate and continental

climate types at higher latitudes experience more moderate temperatures and considerably less

solar radiation, allowing for smaller variation in LST and increased correlations with SAT [19,

33, 55, 56]. Thus, LST data can serve as a more accurate and effective, annual measure of heat

exposures in these regions. However, in seasonally wet, tropical climates such as Miami-

Dade’s, where LST and SAT may not agree well across all seasons, LST cannot always serve as

an accurate indicator of increased heat exposures. During summer and fall, if LST is used as a

tool in decision-making around heat exposure, it must be recognized that the hazard could be

significantly misrepresented. For example, as compared to winter months where LST can bet-

ter capture SAT values, these findings suggest that LST may underestimate SAT by up to 3˚C

during wet season months. During these times of year, additional data will be needed to fully

understand the intensity of spatial heat risks to inform appropriate heat responses and adapta-

tion strategies.

Miami-Dade’s LST climatology reveals a unique annual pattern where on average, LST

peaks in mid-to-late spring and early summer (April, May, June) (Fig 6). This early peak con-

trasts other urban regions across the northern hemisphere, where LST typically peaks in July/

August alongside SAT [27, 36]. There are few comparable studies to understand whether this

Fig 12. Daily mean LST (within a 100-meter buffer) versus daily weather station SAT (˚C) (2013–2022). LST imagery was captured at 11 AM ET/12 PM

EST and was compared to 11 AM/12 PM EST SAT observations collected across seven weather stations (Fig 3) within Miami-Dade County [70, 77]. Each dot

represents a single day and location.

https://doi.org/10.1371/journal.pclm.0000278.g012
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pattern is characteristic of wet climates. In one example, Bechtel [36] noted a similar annual

peak in Mexico City, where LST peaks in May prior to the onset of the wet season. However,

unlike Miami-Dade, SAT in Mexico City annually peaks concurrent with local mean LST. This

suggests that the later SAT peak in Miami-Dade County (as compared to LST) may be a feature

that is unique locally, implying the existence of factors other than atmospheric conditions con-

trolling the seasonality of the two heat metrics (e.g., geography, elevation, latitude, proximity

to coastlines) [32, 34, 48, 106]. In addition, the intensity of the SUHI phenomenon in Miami-

Dade County follows the trend of annual LST. SUHII is greatest in spring months, rather than

summer months, also contrasting SUHIIs of most urban regions across the northern hemi-

sphere [16, 17, 25, 107].

Geography also appears to play a key role in SUHII, which was of smaller magnitude in

Miami-Dade County as compared to other urban regions globally, including subtropical and

tropical urban regions. Urban Miami-Dade exhibited a mean SUHII of 3.43˚C warmer than

rural Miami-Dade across the study period. Miami-Dade’s rural areas are composed of mostly

water and small vegetation (e.g., grasses, mangroves, shrubs) in wetlands or marshes of the

Everglades. Such an urban–rural geography reduces SUHII, as compared to other wet, urban

regions including Medellı́n, Colombia, and São Paulo, Brazil, that are surrounded more dense

vegetation or forest and exhibit mean annual daytime SUHIIs above 5˚C [17, 88]. All types of

rural areas with increased greenness (as compared to urban areas) evaporatively cool faster

and more effectively than adjacent urban surfaces. However, forests and dense canopied

regions are more capable of converting incoming solar radiation to latent heat through tran-

spiration, resulting in a more prominent SUHI phenomenon [47, 58, 59, 108]. Miami-Dade’s

limited canopy in rural areas results in a smaller difference between urban and rural LSTs,

compared to other urban-rural regions of the subtropics and tropics (e.g., Medellı́n, Colombia;

São Paulo, Brazil; etc.), as well as more continental and temperate regions with extensive forest

biomes [47, 54, 88]. Because rural areas with less canopy cover (such as Miami-Dade’s Ever-

glades) exhibit higher LSTs, these rural areas provide less heat relief from urban LSTs. For

regions across the subtropics and tropics with consistent heat hazards and minimal rural tree

canopy, urban tree canopy remains an important consideration for heat mitigation, as rural

areas may not provide significant heat relief.

Several limitations exist for this study. First, cloud cover significantly limited the number of

scenes captured by satellite imagery. The average number of pixels across Miami-Dade

monthly average LST imagery was 5,704,452—while the average number of pixels across sum-

mer months that were most likely to be affected by increased cloud cover was 5,453,231. Ana-

lyzed LST imagery also does not account for cloud shadows that cast over regions and

potentially decrease observed LST values [109]. Although improving, the Landsat QA_PIXEL

band, utilized for the recognition of clouds and land cover types, remains limited its accuracy

in identifying pixels associated with certain land cover types (e.g., water, clouds, mixed land/

water such as shorelines) [92, 93]. Thus, the masking of all water and cloud pixels for analysis

is not fully accurate. Second, impervious surface and tree canopy are static observations that

were captured at a specific time during the study period. Thus, impervious surface and tree

canopy from 2013 and 2014, respectively, may not accurately represent LST values from differ-

ent times throughout the study period, as land use and land cover have changed over time. To

account for this as best as possible, impervious surface and tree canopy data were averaged

across available datasets (impervious surface, 2013–2021; tree canopy, 2013–2021). Third,

weather stations that collect unofficial SAT observations are not registered with the National

Weather Service (apart from KMIA) and lack official quality control. The quantity of stations

across Miami-Dade County with regular surface observations is also limited. Because SAT is

greatly influenced by hyperlocal conditions, additional weather stations and improved station
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networks with more recorded observations can help to increase accuracy in the assessment of

LST and SAT relationships [110]. Lastly, for the purposes of this study, to access more abun-

dant imagery and maintain higher resolution LST data, images from 11 AM ET/12 PM EST

were used. Thus, LST values are not indicative of the daily maximum, as daytime surface heat-

ing from solar radiation is not yet at its peak. Additional LST imagery captured over time, and

at different times of day, will also aid in analyzing the relationship between LST and SAT

throughout the course of the day, as well as the continued assessment of the Miami-Dade

County SUHI phenomenon.

5. Conclusions

Using the case of Miami-Dade County, Florida, this study evaluated the accuracy of LST as a

proxy for SAT in a subtropical urban region with a seasonally wet, tropical climate. Impor-

tantly, we find that LST has a different temporal relationship with SAT as compared to better

studied temperate regions. These results raise important considerations for urban heat adapta-

tion and planning: in subtropical-to-tropical regions with seasonally wet climates, LST remains

a proxy for the spatial patterns of SAT, however, its accuracy in capturing the magnitude of

SAT is limited annually. LST may mispresent the heat exposures people experience across the

urban region during the wet season, as in this case study, LST underestimated SAT during wet

season months at this time of observation (11 AM ET/12 PM EST). Heat exposure within

chronically hot humid climates is an increasing public health emergency, both within the

study area and across subtropical-to-tropical regions of the globe. Urban adaptation planning

to date has largely drawn upon LST to inform heat responses across neighborhoods, but use of

LST alone may mischaracterize the most acute heat exposures, underestimating their magni-

tudes both across neighborhoods and during the peak of the heat season, especially in climates

with tropical characteristics. Our results therefore have immediate relevance to ongoing heat-

adaptation decision-making. They simultaneously establish key areas that are important for

future research inquiries, including understanding the role of localized processes that may

affect surface energy balances and resulting LST values.
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66. GloH2O. Köppen-Geiger Global 1-km climate classification maps. 2 Mar 2021 [cited 21 Jun 2024].

Available: https://www.gloh2o.org/koppen/

67. Florida Climate Center. Miami Weather Planner. In: Florida State University Florida Climate Center

[Internet]. 2023 [cited 6 Apr 2022]. Available: https://climatecenter.fsu.edu/products-services/data/

weather-planner/miami

68. National Oceanic and Atmospheric Administration. U.S. Climate Normals. In: National Centers for

Environmental Information (NCEI) [Internet]. 2023 [cited 6 Apr 2023]. Available: https://www.ncei.

noaa.gov/products/land-based-station/us-climate-normals

69. Winsberg MD. Climate of Florida. In: Florida Climate Center [Internet]. 2011. Available: https://

climatecenter.fsu.edu/images/fcc/climateofflorida.pdf

70. WeatherSTEM. WeatherSTEM Portal for Miami Dade County, Florida. In: Miami-Dade WeatherSTEM

[Internet]. 2023 [cited 15 May 2023]. Available: https://miamidade.weatherstem.com/

71. PRISM Climate Group. Time Series Values for Individual Locations. In: Northwest Alliance for Compu-

tational Science and Engineering [Internet]. 2023 [cited 1 May 2018]. Available: http://www.prism.

oregonstate.edu/explorer/

72. Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, et al. Physiographically sensitive

mapping of climatological temperature and precipitation across the conterminous United States. Int J

Climatol. 2008; 28: 2031–2064. https://doi.org/10.1002/joc.1688

73. Sánchez-Aparicio M, Andrés-Anaya P, Del Pozo S, Lagüela S. Retrieving land surface temperature
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103. Gusso A, Fontana DC, Gonçalves GA. Mapeamento da temperatura da superfı́cie terrestre com uso
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