
OPINION

Proposing a 1.0 °C climate target for a safer future

Christian Breyer^{1*}, Dominik Keiner¹, Benjamin W. Abbott², Jonathan L. Bamber^{3,4}, Felix Creutzig^{5,6}, Christoph Gerhards¹, Andreas Mühlbauer^{1,7}, Gregory F. Nemet⁸, Özden Terli⁹

1 School of Energy Systems, LUT University, Lappeenranta, Finland, **2** Brigham Young University, Environmental Science & Sustainability, Provo, Utah, United States of America, **3** School of Geographical Sciences, University of Bristol, Bristol, United Kingdom, **4** Department of Aerospace and Geodesy, Technical University of Munich, Munich, Germany, **5** Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany, **6** Technische Universität Berlin, Berlin, Germany, **7** Faculty of Electrical Engineering and Information Technology, OTH Regensburg, Regensburg, Germany, **8** La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, **9** Scientists for Future, Berlin, Germany

* christian.breyer@lut.fi

OPEN ACCESS

Citation: Breyer C, Keiner D, Abbott BW, Bamber JL, Creutzig F, Gerhards C, et al. (2023) Proposing a 1.0°C climate target for a safer future. PLOS Clim 2(6): e0000234. <https://doi.org/10.1371/journal.pclm.0000234>

Editor: Jamie Males, PLOS Climate, UNITED KINGDOM

Published: June 12, 2023

Copyright: © 2023 Breyer et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Academy of Finland (Grant Ref: 343053) for the project Industrial Emissions & CDR to CB and DK and (Grant Ref: 329313) for the project 'DAC 2.0' to CB and DK, by LUT University for the GreenRenew project to CB, and by Antti Wihuri Foundation for the research grant to DK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

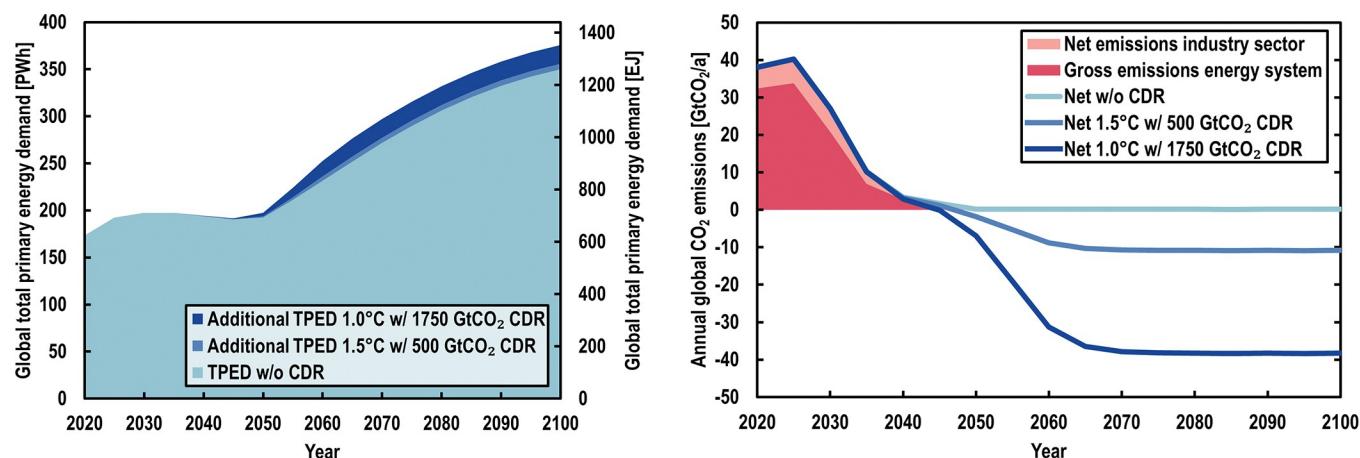
Abstract

The Intergovernmental Panel on Climate Change concludes that climate change has already caused substantial damages at the current 1.2°C of global warming and that warming of 1.5°C would elevate risks of a wide-range of climate tipping points. For example, wet-bulb temperatures are already exceeding safe levels, and the melting of the Greenland and West Antarctic ice sheets would lead to over ten metres of sea level rise, representing an existential threat to coastal cities, low-lying nation states, and human wellbeing worldwide. We call for a broad scientific discussion about a stricter and more ambitious climate target of 1.0°C by the end of this century. Comprehensive electrification and highly renewable energy systems offer a pathway to sub-1.5°C futures through rapid defossilisation and large-scale, electricity-based carbon dioxide removal. Independent scenarios show that restoring a stable and safe climate is attainable with coordinated policy and economic support.

The 1.5°C climate target implies carbon dioxide removal at a high probability

The carbon budget for a high probability of attaining a 1.5°C climate target was depleted in the year 2022, decades before the climate neutrality target of the Paris Agreement set for the second half of this century. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [1], a carbon dioxide (CO₂) budget of 300 GtCO₂ from 2020 until 2100 provides an 83% probability of staying at or below the 1.5°C target. Accounting for uncertainties of 220 GtCO₂, the carbon budget could have been exceeded in the first few months of 2022 given total emissions of 39 GtCO₂/a. The latest energy system transition research identifies committed energy and industry-related CO₂ emissions of about 680 GtCO₂ that will be emitted from 2020–2100 even in a highly ambitious energy-industry transition scenario [2, 3]. About 580 GtCO₂ come from energy-industry segments with established

defossilisation technologies, while 100 GtCO₂ are related to hard-to-abate industrial processes such as the cement industry, which may be managed with on-site carbon capture and storage (CCS). Thus, a 1.5°C climate target very likely requires carbon dioxide removal (CDR) with negative CO₂ emission technologies [4] removing about 500 GtCO₂ within the 21st century [2].


Extreme weather and tipping points in a 1.5°C world call for maximum climate safety of about 1.0°C/350 ppm

As hard as meeting a 1.5°C climate target seems, that level of warming would not be safe for our civilisation and environment. The present 1.2°C climate reveals increasing vulnerability of major planetary systems, in particular ice sheets and oceans, and an increasing frequency and intensity of extreme heat, heavy precipitation, droughts, and intensification of major hurricanes [1]. With increasing temperature over land masses the humidity in the air and, thus, latent heat increases, resulting in extreme events. Changes in the jet stream can be observed, which not only cause local weather extremes but also can have global effects, thereby posing risks to global food security [5]. In addition, ice mass loss from Greenland is accelerating [6] and the West Antarctic Ice Sheet is close to, or may have already passed, a critical threshold [7]. These two ice sheets represent tipping elements that possess enough frozen water to raise global sea level by an amount that poses an existential threat to coastal settlements and entire nation states, including New York, Rio de Janeiro, London, Amsterdam, the Netherlands, Lagos, the Nile River Delta, Dubai, Mumbai, Bangladesh, Vietnam, Jakarta, Shanghai, Tokyo, and Sydney. Ice melt is already disrupting global thermohaline circulation, with potential implications for climate and marine food web stability around the world by 2040 [8]. 1.5°C global warming may trigger additional tipping points with potentially disastrous consequences [9]. It follows that a safe climate for civilisation is below 1.0°C above pre-industrial levels [10]. This likely requires limiting overshoot beyond the 1.5°C climate target as strictly as possible, a return to the late 1980s CO₂ concentration of around 350 ppm by the end of this century, and may require a climate restoration in the longer term.

Low-cost renewable energy as the basis for possible pathways to reach a 1.0°C target

Despite rising emissions, which is incompatible with a 1.0°C climate target, a paradigm shift of historic dimensions is occurring. Solar photovoltaics (PV) and wind power have emerged as the least cost sources of electricity and these renewable energy sources constituted more than 75% of the global power capacity installed in 2022. In combination with demand-side innovations such as heat pumps, electric vehicles, and batteries, rapid electrification of the entire energy-industry system is now projected as a least cost solution [2, 3, 11–13]. All energy and feedstock demand could be provisioned by solar PV and wind power with direct and indirect electrification, while other sustainable energy sources would enhance resilience of the system [2, 3].

Low-cost renewable electricity, in particular solar PV [14], has accelerated the defossilisation of energy and industry, which could be complete around 2050. The rise of low-cost renewable electricity could also enable large-scale CDR starting in the 2030s and scaling up through the 2060s. CDR options have been increasingly discussed in recent years [4]. While natural carbon sinks such as reforestation are likely limited to a maximum of 16 GtCO₂/a [4], direct air carbon capture and storage (DACCs) becomes more feasible as the cost of electricity and direct air capture technology drops [15]. Renewable-powered desalination could also allow afforestation in arid regions [15], which could minimise land-use conflicts or even create

Fig 1. Global primary energy demand for a medium growth scenario with additional demand for CDR using DACCS only (left) and related CO₂ emissions in the underlying energy-industry-CDR scenario for a 1.0°C climate target (right). For the industry sector, a full phase-in of direct CCS is assumed for process-related emissions in cement production by 2050. Data adapted from [2].

<https://doi.org/10.1371/journal.pclm.0000234.g001>

co-benefits. The rise of low-cost renewable electricity strongly increases the attractiveness of energy-intensive though scalable novel options, such as DACCS and desalination-based afforestation, while land-use and water supply issues diminish the sustainable potential for rainfall-based afforestation and bioenergy CCS. CO₂ sequestered by DACCS may be converted to minerals for increasing the storage security and thus further enhancing the overall sustainability of the CDR endeavour.

To attain a 1.0°C climate target within acceptable certainty, about 40 GtCO₂/a of CDR would be needed from the early 2060s onwards [2]. While enormous, in that it would approximate current CO₂ emissions, this amount of CDR using DACCS would require only 5–10% of global primary energy demand [2] under two conditions: continued very rapid scaling of PV [14] and strong energy efficiency gains of low-temperature DACCS by utilising heat pumps, while low-cost heat for DACCS may be also supplied by geothermal or solar thermal heat. Under these conditions, a 1.0°C world would become plausible in industrial, financial, and societal terms (cf. Fig 1). Diverse CDR portfolios combining different natural climate solutions and sustainable technological solutions [4] can enable the massive CDR needed for achieving a 1.0°C climate target by end-century facilitating safe climate conditions for civilisation.

Energy requirements of CDR depend most directly on energy demand growth overall. For example, if global primary energy demand grows marginally from 173 PWh in 2021 to 207 PWh by end of this century, instead of the assumed 384 PWh [2], then CDR, assuming all is DACCS, would require about 10% of primary energy supply. More pessimistic assumptions on the energy requirements of DACCS would increase this percentage further. This larger percentage may imply higher competition with other end-use and might make realising any pathway to 1.0°C more challenging, while supply capacity for solar PV as the main source of energy in this century could grow faster than demand [14].

Call for a new discourse on climate safety

In light of the need for a revised climate target and the unprecedented opportunities arising from low-cost renewable electricity, we call for a new discourse on a 1.0°C climate target, which involves climatic, societal, technical, and political dimensions. Recall that analysis of 1.5°C targets following adoption of the Paris Agreement generated new insights, e.g., about net-zero energy systems. Rather than limiting ourselves to analysis of 1.5°C and 1.5°C

+ scenarios which will not provide acceptable planetary security, we need to comprehensively estimate the combinations of defossilisation and CDR needed to restore Earth's climate.

Individual studies have demonstrated the technological and industrial feasibility of creating a truly sustainable global society [2, 3, 11, 12], and we now need to take the next steps to update our socio-economic scenarios with the new reality of low-cost renewable electricity [3, 13] and the potential for much more aggressive CDR. Renewable energy and demand-side solutions such as efficiency and conservation must be prioritised over the next decade, laying the groundwork for renewables-based CDR and climate restoration later this century. As the cost and rate of progress depend largely on financing, we need clarity in national and international priorities to support this two-pronged approach: First, rapid, deep defossilisation and electrification of the entire energy-industry system, and, second, large-scale deployment of CDR. Raising our ambitions to include the kind of world our descendants will want to live in is our responsibility to enable a prosperous humankind and resilient biosphere.

Author Contributions

Conceptualization: Christian Breyer, Dominik Keiner.

Formal analysis: Christian Breyer, Dominik Keiner, Christoph Gerhards.

Funding acquisition: Christian Breyer.

Investigation: Christian Breyer, Dominik Keiner, Benjamin W. Abbott, Jonathan L. Bamber, Felix Creutzig, Christoph Gerhards, Andreas Mühlbauer, Gregory F. Nemet, Özden Terli.

Methodology: Christian Breyer, Dominik Keiner, Benjamin W. Abbott, Jonathan L. Bamber, Felix Creutzig, Christoph Gerhards, Andreas Mühlbauer, Gregory F. Nemet, Özden Terli.

Resources: Christian Breyer, Dominik Keiner.

Validation: Christian Breyer.

Visualization: Dominik Keiner.

Writing – original draft: Christian Breyer.

Writing – review & editing: Dominik Keiner, Benjamin W. Abbott, Jonathan L. Bamber, Felix Creutzig, Christoph Gerhards, Andreas Mühlbauer, Gregory F. Nemet, Özden Terli.

References

1. [IPCC]—Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: 2021. <https://www.ipcc.ch/report/ar6/wg1/>
2. Keiner D, Gulagi A, Breyer C. Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses. Energy; 272:127199. <https://doi.org/10.1016/j.energy.2023.127199>
3. Breyer C, Khalili S, Bogdanov D, Ram M, Oyewo AS, Aghahosseini A, et al. On the History and Future of 100% Renewable Energy Systems Research. IEEE Access 2022; 10:78176–218. <https://doi.org/10.1109/ACCESS.2022.3193402>
4. Smith SM, Geden O, Nemet GF, Gidden MJ, Lamb WF, Powis C, et al. The State of Carbon Dioxide Removal - 1st Edition. The State of Carbon Dioxide Removal. 2023. <https://www.stateofcdr.org/resources>
5. Kornhuber K, Coumou D, Vogel E, Lesk C, Donges JF, et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nature Climate Change 2020; 10:48–53. <https://doi.org/10.1038/s41558-019-0637-z>
6. Sasgen I, Wouters B, Gardner AS, King MD, Tedesco M, Landerer FW, et al. Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites, Communications Earth & Environment 2020; 1(1):8. <https://doi.org/10.1038/s43247-020-0010-1>

7. Joughin I, Smith BE, Medley B. Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica, Science 2014; 344(6185):735–738. <https://doi.org/10.1126/science.1249055> PMID: 24821948
8. Li Q, England MH, Hogg AM, Rintoul SR, Morrison AK. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 2023; 615:841–847. <https://doi.org/10.1038/s41586-023-05762-w> PMID: 36991191
9. Armstrong McKay DI, Staal A, Abrams JF, Winkelmann R, Sakschewski B, Loriani S, et al. Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science 2022; 377:eabn7950. <https://doi.org/10.1126/science.abn7950>
10. Hansen J, Sato M, Kharecha P, von Schuckmann K, Beerling DJ, Cao J, et al. Young people's burden: requirement of negative CO₂ emissions. Earth System Dynamics 2017; 8:577–616. <https://doi.org/10.5194/esd-8-577-2017>
11. Bogdanov D, Ram M, Aghahosseini A, Gulagi A, Oyewo AS, Child M, et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021; 227:120467. <https://doi.org/10.1016/j.energy.2021.120467>
12. Luderer G, Madeddu S, Merfort L, Ueckerdt F, Pehl M, Pietzcker R, et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat Energy 2022; 7:32–42. <https://doi.org/10.1038/s41560-021-00937-z>
13. Creutzig F, Hilaire J, Nemet G, Müller-Hansen F, Minx JC. Climate change mitigation easier than suggested by models. 2022. preprint. <https://www.authorea.com/doi/pdf/10.1002/essoar.10506825.1>
14. Haegel NM, Verlinden P, Victoria M, Atermatt P, Atwater H, Barnes T, et al. Photovoltaics at Multi-Tera-watt Scale: Waiting is Not an Option. Science 2023; 380(6640):39–42. <https://doi.org/10.1126/science.adf6957> PMID: 37023188
15. Caldera U, Breyer C. Afforesting arid land with renewable electricity and desalination to mitigate climate change. Nat Sustain 2023; 6:526–538. <https://doi.org/10.1038/s41893-022-01056-7>