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Abstract

Surface meltwater production impacts the mass balance of the Greenland and Antarctic ice

sheets in several ways, both directly (e.g., through runoff in Greenland) and indirectly (e.g.,

through cryo-hydrologic warming and frontal melt of marine-terminating glaciers in Green-

land and hydrofracturing of ice shelves in Antarctica). Despite its importance, the spatial and

temporal patterns in melt rates on both ice sheets are still relatively poorly understood. In

this contribution we review and contrast surface melt ‘weather ‘(i.e., short term, intra- and

interdiurnal variability) and surface melt ‘climate’ (i.e., longer term, interannual variability

and future melt) of both ice sheets. We find that in situ observations using suitably equipped

(automatic or staffed) weather stations are invaluable for a complete understanding of the

melt process, which represents the complex transport of energy by radiation, turbulence,

and molecular conduction between the lower atmosphere, the ice/snow surface, and the

subsurface ice/snow layers. We provide example time series of ice sheet melt ‘weather’ for

the marginal Greenland ice sheet, where warm and humid air masses tend to increase sur-

face melt rate, and for coastal East Antarctica, where the opposite happens. Apart from pro-

cess understanding, these in situ observations, which especially in Antarctica are scarce in

space and time, are also invaluable to validate, evaluate and calibrate satellite- and model-

based estimates of ice sheet surface melt rate. We provide examples of modelled melt

maps for both ice sheets, and melt projections for a high-warming, fossil-fuelled develop-

ment scenario. Although important milestones in melt observations (both in-situ and

remotely sensed) and melt models (both global and regional) have recently been reached,

we identify multiple outstanding research questions pertaining to current and future ice

sheet surface melt rates.

1. Introduction

Satellite and in situ observations show that the ice sheets of Greenland (GrIS) and Antarctica

(AIS) are losing mass at increasing rates [1, 2], contributing to the recent acceleration in sea
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level rise [3, 4]. Ice sheet mass loss broadly consists of i) surface processes, ii) basal melt of

grounded and iii) floating ice, and iv) iceberg calving. However, quantifying each of these

components individually is challenging and requires information from climate models,

because many processes are involved, and each ice sheet has its own climatic setting. The dom-

inant process responsible for contemporary GrIS mass loss is increased melt at the ice sheet

surface and subsequent supraglacial/subglacial meltwater runoff, especially since the mid

1990s [5]. Recent observations confirm an expansion of the area from which runoff occurs

[6, 7]. Along its margins, the GrIS has a well-defined ablation zone, where relatively dark,

semi-impermeable bare ice is exposed at the surface in summer, strongly enhancing melt and

runoff [8, 9]. Fig 1A shows the typical ablation zone icescape along the K-transect in the south-

western ice sheet, a region with one of the highest annual melt rates on the GrIS [10]. Apart

from directly leading to mass loss through runoff, meltwater produced at the ice sheet surface

also has the potential to influence ice flow. Meltwater that reaches the ice sheet–bedrock inter-

face through moulins (vertical meltwater channels) and crevasses, can temporarily accelerate

ice flow through basal lubrication [11–13] and/or soften the ice through cryo-hydrologic

warming [14]. When fresh meltwater subsequently enters the saline fjords at the grounding

line of marine terminating glaciers, it rises to the surface, enhancing turbulent mixing and

frontal melting [15, 16]. As a result, outlet glaciers have accelerated and solid ice discharge has

increased, especially since ~2000, further adding to GrIS mass loss [17, 18].

Contemporary AIS mass loss occurs in the Antarctic Peninsula (AP) and coastal East and

West Antarctica but is concentrated in the Amundsen and Bellingshausen Sea sectors of West

Antarctica. Here, warm ocean waters melt and thin ice shelves from below, leading to damage

and weakening [21], reduced buttressing and increased ice discharge, notably since the mid

1990s [22]. In the cold Antarctic climate, surface melt is mostly intermittent, except in the AP

with its relatively mild summers [23, 24]. A well-defined ablation zone is absent on the contig-

uous AIS, apart from scattered blue ice areas formed by wind-driven snow erosion and subli-

mation, which cover 1–2% of the ice sheet surface [25]. Owing to their lower albedo (0.55 vs.

>0.8 for clean snow), blue ice areas show locally enhanced surface melt rates [26–30]. The

remainder of the ice sheet surface, including its floating ice shelves, is covered by a layer of

compressed snow, called firn, that is up to 120 m thick [31]. Fig 1B shows the surface of

Fig 1. A: Automatic weather station S5 along the K-transect in the lower ablation zone of the south-western GrIS in September 2014 (67˚06’N, 50˚07’W, ~500

m asl, credit Christian Steger, IMAU) [19] and B: meteorological measurement site of Neumayer base in austral summer 2004/05, situated on the Ekström ice

shelf in East Antarctica (70˚39’S, 8˚15’W, ~50 m asl, credit Bernd Loose, Alfred-Wegener-Institut für Polar- und Meeresforschung) [20]. Both stations are

situated near the ice sheet margin, which for the GrIS in this sector is land-terminating, whereas it is marine terminating at Neumayer.

https://doi.org/10.1371/journal.pclm.0000203.g001
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Ekström ice shelf in East Antarctica, on which the German research base Neumayer is situated.

Neumayer is one of the few Baseline Surface Radiation Network (BSRN) stations in Antarctica

and the station with the longest high-quality observational surface radiation record on the AIS

[20, 32]. Integrated over the AIS, almost all surface meltwater is refrozen in the cold firn, limit-

ing runoff [33]. As a result, surface melt mostly plays an indirect role in AIS mass loss. When

the firn layer is saturated, additional meltwater can form melt ponds which act as precursors

to ice shelf disintegration through hydrofracturing [34–37] in combination with plate bending

and ocean swell often caused by atmospheric river activity [38–40]. Once the buttressing effect

of ice shelves is removed, their tributary glaciers flow faster into the ocean, leading to grounded

ice sheet mass loss and sea level rise [41–43]. This process is currently ongoing in the AP,

where in recent decades a significant fraction of ice shelves has (partly) disintegrated, such as

the Larsen A and Larsen B ice shelves in 1995 and 2002, respectively [44–46]. There are con-

cerns that future warming will cause more ice shelves to disintegrate in the AP, but also else-

where in Antarctica, leading to accelerations in AIS mass loss and sea level rise [47, 48]. From

that perspective, the final break-up of Conger ice shelf in East Antarctica in 2022 is regarded a

worrisome development.

An alternative way for surface meltwater to be stored in ice sheets is in subsurface firn aqui-

fers, which have been observed and modelled in the south-eastern, southern and north-west-

ern GrIS [49, 50], and on the AIS in the north-western AP [51–53] and on Wilkins ice shelf

[54]. Observations show an increasing firn aquifer extent in the south-eastern GrIS [55], but

time series are currently too short to confirm similar trends elsewhere on the GrIS or on the

AIS. It is presently unknown whether firn aquifers impact AIS ice shelf viability, but their pres-

ence at the grounding line appears to be mutually exclusive with the presence of ice shelves,

which implies that aquifers could also induce hydrofracturing, e.g., by year-round slowly

releasing water to ice shelves or glaciers that feed them [56].

In summary, surface meltwater production is important for contemporary and future ice

sheet mass balance. The main purpose of this review is to highlight and contrast the surface

melt ‘weather’ and ‘climate’ of the GrIS and AIS. In Section 2 we discuss surface melt in the

context of ice sheet mass balance and methods to quantify it. In Section 3 we discuss contem-

porary and projected future melt on the GrIS and AIS, followed by conclusions and an outlook

in Section 4.

2. Methods to determine ice sheet surface melt rate

2.1 Definitions

Via the surface energy balance, liquid water balance and the surface mass balance, surface

melting plays an intricate role in the ice sheet mass balance (Fig 2) [57]. The melt rate of ice

and snow is determined by the melt energy flux (M, W m-2), which becomes positive when the

ice/snow surface reaches the melting point. Its magnitude is determined by the other compo-

nents of the surface energy balance (SEB), the sum of all energy fluxes directed towards

(defined positive) and away (negative) from the surface. Quantifying M thus requires knowl-

edge of the surface fluxes of net shortwave radiation (SWnet), net longwave radiation (LWnet),

turbulent sensible heat (SHF), turbulent latent heat (LHF) and conductive subsurface heat

(Gs). This definition treats the surface as an infinitesimally thin layer without heat capacity; it

also neglects the heat added to/extracted from the surface by precipitation as well as the pene-

tration of shortwave radiation, which adds heat below the surface. In the near-absence of direct

precipitation observations over the ice sheets, the former is difficult to quantify but assumed to

be small in the current climate, even in regions with significant rainfall on ice, e.g., the south

and north-west margins of the GrIS [58–60] and the north of the AP [61]. Penetration of
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shortwave radiation below the snow/ice surface is important for a correct prediction of subsur-

face snow/ice temperatures [62] and subsurface melt, but does not strongly affect total melt

rate [63]. These assumptions are therefore maintained here.

2.2 In situ observations

To assess in-situ melt rate from near-surface meteorological data, the SEB equation is rewritten

in terms of, and iteratively solved for, surface temperature Ts. Doing this in a physically consis-

tent way requires near-surface observations of short- and longwave radiation, air temperature,

humidity, wind speed and air pressure. Especially on the GrIS, substantial efforts have been

made in setting up and maintaining long-term networks of ‘SEB enabled’ automatic weather

stations (AWS); these AWS are equipped with radiation and other meteorological sensors that

enable SEB closure and melt rate calculation, e.g. the K-transect, GC-Net and PROMICE [19,

66, 67]. The K-transect has been maintained by Utrecht University since 1990, the latter two

networks have been merged in 2021 by the Geological Survey of Denmark and Greenland

(GEUS). On the AIS, although the absolute number of AWS with ~150 is substantial [68], the

number of such SEB-enabled AWS in melt regions remains small (< 20) and is only slowly

increasing [24, 69]. When available, near-surface meteorological observations are subjected to

correction and homogenization to reduce first-order measurement errors, for instance associ-

ated with riming and/or station tilt affecting the measurement of shortwave radiation [19, 66,

70, 71]. Validity of surface layer similarity is usually assumed in combination with a bulk gra-

dient approach to quantify the turbulent fluxes, SHF and LHF, which requires assumptions

about the surface aerodynamic roughness length [72]. Although over both ice sheets the sur-

face aerodynamic roughness length can differ by several orders of magnitude in space and

time [73–75], its value is usually prescribed as constant or used as tuning parameter [32]. Sub-

surface snow/ice density is prescribed or allowed to evolve to calculate Gs. If Ts exceeds the

melting point of ice, it is reset to that value and the excess energy is assigned to melt energy M.

Fig 2. Definitions of ice sheet mass balance (MB), surface mass balance (SMB) and liquid water balance, all ice-sheet integrated mass fluxes expressed in

gigatonnes per year (Gt yr-1). ‘Basal mass balance’ refers to ablation at the ice-bedrock interface. ‘Erosion’ refers to removal of snow by wind, ‘Retention’ to the

irreducible water content of porous snow. Note that the definition of SMB used here includes processes in the firn layer, and is formally referred to as ‘climatic

mass balance’ [64]. Surface Energy Balance (SEB) is defined locally and expressed in watts per square metre (W m-2). SEB symbols are explained in the main

text. Adapted from [65].

https://doi.org/10.1371/journal.pclm.0000203.g002
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Evaluation of the calculated in-situ melt rate is essential. When the density of the melting

material is known to a good approximation (e.g., glacier ice with a density of app. 917 kg m-3),

surface melt rate is directly observable as a surface height change, which can be used to evalu-

ate modelled melt rate [76]. For all other cases, calculated Ts should be evaluated. Conve-

niently, down- and upward radiation fluxes are usually measured separately, so that LWdown

can be used to close the SEB, while LWup is used to estimate observed Ts (usually assuming

unit surface emissivity). The root-mean-square-error between observed and modelled hourly

Ts typically ranges between 0.6 and 2.0 K on the AIS [32, 77] and 1.0 to 1.5 K on the GrIS [10,

76]. Recently, the validity of the SEB closure assumption to calculate melt has been questioned

for the GrIS percolation zone [78] where the skin layer formulation led to an apparent system-

atic overestimation of snowmelt by up to a factor of three. Other sources of uncertainty are

processes that are neglected in most studies, e.g., the subsurface penetration of solar radiation

and heat added by rain (see Section 2.1). Finally, it remains an interesting analytical problem

to assign contributions from individual (positive and negative) SEB components to the melt

energy, as only their sum counts for the melt rate.

2.3 Satellite remote sensing

Significant progress has recently been made in quantifying GrIS melt rate from space at (sub-)

seasonal temporal resolution. Combining brightness temperature from the Special Sensor

Microwave Imager/Sounder (SSMIS) with neural networks, trained by the excellent availability

of in situ observations from AWS, resulted in a daily melt product with a horizontal resolution

of ~3–6 km and 9 mm per day RMSE [79]. After applying a correction for the emergence

velocity of the ice in the GrIS ablation zone, where upward ice flow compensates for the sur-

face ablation, [80] could estimate 2011–2020 annual GrIS runoff using satellite altimetry from

CryoSat-2 by quantifying the residual volume loss over summer. Using brightness tempera-

tures from the ESA SMOS satellite [81] developed an L-band passive microwave algorithm to

retrieve total snow liquid water and snow and firn density over the GrIS. The results qualita-

tively agree with model estimates of meltwater production. Previously for the AIS, [23, 82]

used seasonally accumulated melting ‘decibel days’ from QuikSCAT, again calibrated using

AWS-derived melt rates, to retrieve 1999–2009 seasonal total melt fluxes for the AIS. In a

recent review, [83] discusses opportunities and problems in using a wide range of satellite

products to assess AIS surface melt from space. Using liquid water detected by two active

microwave sensors, a passive microwave sensor and an optical sensor, they found large differ-

ences between the various products, notably in blue ice areas, in aquifer regions in the AP, and

during wintertime surface melt events.

2.4 Global and regional climate models

Until recently, most global climate (or earth system) models were run at too low spatial resolu-

tion (~100 km) and included too simplified snow cover/firn parametrizations to robustly

quantify ice sheet surface melt rates. These shortcomings are gradually being addressed. For

example, in the case of the Community Earth System Model version 2 (CESM2) [84], several

improvements were made: a regional grid refinement over the GrIS was implemented [85], the

representation of the firn layer was improved [86], a statistical downscaling was implemented

based on elevation classes, and state of the art spectral snow albedo and snow microphysical

schemes were included in the land model [87, 88]. These changes much improved the mod-

elled GrIS melt fluxes [89]. Some problems remained for the AIS [90], but similar model

upgrades, specifically new cloud microphysical parameterizations and an improved snow

model, also have led to improvements there [91].
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Given the large computational expense involved in running global coupled climate models,

it is not expected that within the next decade these global models will operate over the ice

sheets at resolutions required to resolve the large observed melt gradients. Until they do, reso-

lution and physical parametrization issues can be addressed by using dedicated polar regional

atmospheric climate models (RCMs, e.g., MAR, HIRHAM and RACMO), that run at higher

(2.5–25 km) horizontal resolution over the ice sheets and their immediate surroundings. Polar

RCMs also have improved representation of snow and ice processes and are forced at the lat-

eral and top boundaries by atmospheric reanalysis products and/or earth system models,

enabling the study of contemporary and future ice sheet surface melt weather and climate. For

the GrIS, these models generally produce acceptable agreement with in-situ and spaceborne

surface mass balance observations and each other, although regional differences remain and a

detailed comparison of melt rates among models must still be made [57, 92]. For the AIS,

uncertainties remain larger, with considerable model biases when compared to scarce in situ

melt observations [24] and up to one order of magnitude melt differences (100–1000 Gt yr-1)

between RCMs. These differences can be traced back to differences in the treatment of snow

accumulation (e.g., clouds, drifting snow sublimation) and meltwater (e.g., albedo, percolation,

refreezing) [93–96]. Further model selection and development is hampered by a general scar-

city of independent, in-situ and remotely sensed surface melt rate estimates over the AIS.

3. Ice sheet surface melt weather and climate

3.1 Intra- and interdiurnal variability

Fig 3 shows time series of hourly (near-)surface meteorological variables: 10 m wind speed

(V10m), 2 m air temperature (T2m), surface temperature (Ts) and SEB components at AWS S5

(GrIS) and Neumayer base (AIS) (see Figs 1 and 4 for site specifics). The time series cover two

months that mark the end of an arbitrary melt season (10 August– 9 October 2006 at S5 and

15 December 2004–14 February 2005 at Neumayer) and demonstrate the complex ‘melt

weather’ arising from large intra- and interdiurnal variability in SEB. The two sites are broadly

representative for the melt climates of the two ice sheet margins. The most conspicuous differ-

ence in the time series is that atmospheric temperature is mostly positive and surface melt is

quasi-continuous at S5 (Ts = 0–˚C and M> 0 in Fig 3A), whereas the air temperature remains

close to or below the melting point at Neumayer, where melt is intermittent and ceases during

the brief polar night (Fig 3B). This has important implications for the magnitude of peak melt

events. Once the surface reaches the melting point, it cannot further increase its temperature/

specific humidity (being saturated at 0˚C), resulting in strong surface-to-air gradients in tem-

perature and moisture when warm and moist air masses are advected over the ice sheet sur-

face. If near-surface wind speeds are sufficiently high, the static stability of the atmospheric

surface layer is overcome by wind shear, enabling strong turbulence despite the strong stratifi-

cation. In the marginal western GrIS, this happens during so-called barrier wind events, dur-

ing which high wind speed, temperature and cloud cover lead to large positive values of SHF

and LHF [97]. At the same time, the clouds and high temperature and humidity of the air mas-

ses limit longwave heat loss, and in some cases LWnet even turns positive. These increases in

surface energy more than offset the reduction in SWnet owing to clouds, resulting in very high

melt rates. In Fig 3A, such a high-melt episode occurs between 14 and 20 August 2006 (grey

band), resulting in hourly peak values of M > 500 W m-2 during the highest wind speed and

temperatures. Under anticyclonic, clear sky conditions, wind speed, temperatures and melt

flux are all significantly lower. This confirms that at the GrIS margin, interdiurnal melt vari-

ability (melt ‘weather’) is mostly explained by synoptic systems and the associated increases in

SHF, LHF and LWnet [76]. The relative importance of solar radiation absorption for melting
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increases in dark ice regions with significant glacier ice algae blooms, driven by nutrients from

mineral dust [98].

The response of the SEB to clouds and strong winds is very different at Neumayer (Fig 3B).

Here, the surface temperature for most of the time remains below freezing and as a result can

freely adjust to changes in the energy input. Under windy, cloudy conditions (e.g., 24–28 Janu-

ary 2005, grey band) this results in small surface-to-air temperature and moisture gradients,

limiting SHF and LHF. Clouds also limit incoming solar radiation and moreover increase dry

snow albedo [99], further reducing SWnet. The available energy for melt during cloudy and

windy conditions is therefore typically < 50 W m-2, i.e., an order of magnitude smaller than

peak melt values reported from the GrIS under similar synoptic conditions. Under clear sky

conditions, despite the high surface albedo, the solar energy input is large at daytime (SWnet >

200 W m-2). In response, Ts rapidly increases without directly reaching the melting point. As a

Fig 3. Time series of hourly average near-surface air temperature (T2m), surface temperature (Ts) and 10 m wind speed (V10m) (left axis) and SEB components

(right axis) at (a) S5 along the K-transect in the south-western GrIS and (b) at Neumayer station on the Ekström ice shelf, East Antarctic ice sheet. Negative/

positive SEB values indicate surface energy losses/gains. Station locations are indicated in Fig 4, images of the measurement sites in Fig 1.

https://doi.org/10.1371/journal.pclm.0000203.g003
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result, the surface initially becomes warmer and moister than the near-surface air, leading to

weak convection (SHF < 0), sublimation (LHF < 0), a more strongly negative LWnet that -in

contrast to S5- exhibits a pronounced diurnal cycle, and negative Gs. All these energy sinks

efficiently transport the absorbed solar radiation energy away from the surface, limiting melt

energy to typically M< 100 W m-2. This still represents a doubling compared to cloudy and

windy conditions, and we conclude that in contrast to the GrIS, melt variability in the marginal

AIS is mainly driven by variations in absorbed solar radiation, peaking at noon during clear

sky conditions.

3.2 Spatial distribution of average melt rate

In situ-derived melt rates from weather stations such as depicted in Fig 3 are far and apart,

especially on the AIS, and on both ice sheets the time series are often relatively short and

incomplete [24]. As explained in Section 2.3, satellite-derived melt maps are highly valuable to

fill in the gaps in space and time. Satellite time series are relatively short, as they often depend

on the lifetime of individual satellite missions (typically < 10 years). Moreover, they do not

provide information on partitioning of melt energy over the SEB components like models and

in situ observations do. Regional climate models are useful to further advance the interpreta-

tion, as they produce ice sheet wide melt maps including SEB and surface mass balance com-

ponents at high temporal (<hourly) and reasonable spatial (2.5–25 km) resolution, enabling

the partitioning of mass and energy fluxes [100]. They provide this information for epochs

where reliable boundary forcing is available in the form of atmospheric re-analyses, i.e., from

1958 onwards for the GrIS and 1979 onwards for the AIS [33, 101], but they also enable future

melt projections. Although considerable uncertainties in model melt products remain (see

Fig 4. Modelled average (1991–2020) annual melt on the GrIS (left, 0,05 latitudinal degree or ~5.5 km resolution) and the AIS (right, 0.25 latitudinal degree or

~27 km resolution) from the polar regional climate model RACMO2.3p2. Continuous black lines indicate grounded ice sheet margin or coastlines. Yellow dots

indicate locations of AWS S5 (Greenland) and Neumayer base (Antarctica). Note the nonlinear melt scale. Made with Natural Earth (Public Domain, https://

www.naturalearthdata.com/about/terms-of-use/).

https://doi.org/10.1371/journal.pclm.0000203.g004
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Section 2.4), direct comparisons between modelled melt rate from dedicated ‘polar’ regional

models over ice sheets, in-situ observations and satellite data usually show reasonable agree-

ment [33, 92, 94, 101].

As an example, Fig 4 shows GrIS and AIS annual melt maps from the polar regional climate

model RACMO2.3p2, forced at the boundaries by European Centre for Medium-range

Weather Forecasts (ECMWF) Re-Analysis (ERA5) and averaged for the climatological period

1991–2020 [33, 101]. On the AIS (Fig 4B), modelled melt mainly occurs at lower elevations

away from the cold interior. The deepest melt incursions occur up to 1500 m asl in West Ant-

arctica, a result of large scale föhn effects in response to atmospheric river activity and El Niño

[102, 103]. On the grounded ice sheet, annual melt is small, typically below 50 kg m-2 yr-1. Melt

is larger over the low-lying, floating, and northward extending ice shelves, but generally remains

below 500 kg m-2 yr-1. Over the GrIS, in contrast, melt occasionally occurs even over the highest

parts of the interior ice sheet, if large-scale as well as boundary-layer atmospheric conditions are

favourable, e.g. during the summer of 2012 [104]. Closer to the margin in the ablation area, for

part of the year the surface consists of dark, bare ice, enhancing the absorption of solar radia-

tion. In combination with the peak melt events during strong wind episodes described in Sec-

tion 3.1, annual melt fluxes can reach up to 5000 kg m-2 yr-1, i.e., an order of magnitude larger

than the highest values found on the AIS. The positive melt values over ice-free tundra represent

the melting of seasonal snow, which is small here owing to the relatively dry regional climate.

3.3 Interannual variability and long-term trends

Fig 5 shows time series of hindcast (i.e., constrained by observations) annual melt (solid lines)

integrated over the contiguous GrIS (1958–2021, red squares, 5.5 km resolution) and AIS

(including ice shelves, 1979–2021, blue squares, 27 km resolution), using the regional climate

model RACMO2.3p2. Melt estimates from satellite data (orange triangles) are from QuikSCAT

for the AIS [23] and SSMIS for the GrIS [79]. The agreement with satellite estimates of annual

melt is good (r2 = 0.92 for the GrIS and r2 = 0.78 for the AIS), with the average bias suggesting a

typical uncertainty in the modelled and observed melt flux of ~20%. During the hindcast period,

a significant positive trend is found since the mid-1990s for melt on the GrIS, but not for the

AIS. The 1991–2020 relative variability (standard deviation divided by the mean) in annual melt

is similar for both ice sheets: 0.24 (AIS) and 0.27 (GrIS). For the GrIS, 2012 stands out as an

extreme melt year, exceeding the average by more than three standard deviations [104].

The dashed lines in Fig 5 represent RACMO2.3p2 modelled annual melt when forced at the

lateral boundaries using the earth system model CESM2. Earth system models are typically not

constrained by observations, apart from prescribed greenhouse gas and stratospheric ozone

concentrations. Nonetheless, average melt as well as interannual variability over both ice sheets

is well simulated for the historical period (up to 2014), as well as the delayed emergence of an

increase in AIS melt. This provides confidence in the combination of forcing and dynamical

downscaling models for use in future melt projections. After 2015, for the fossil-fuelled devel-

opment emission scenario SSP5-8.5, a five- (GrIS) to ten-fold (AIS) increase in surface melt is

projected towards the end of the century, accompanied by an increase in variability following

the rapidly increasing surface area of the melt zone, which more and more often extends to the

flat interior ice sheets. In this pessimistic climate scenario, 2012-like melt years are projected

to become the norm on the GrIS from 2050 onwards.

4. Conclusions and outlook

The main temporal and spatial characteristics of the surface melt weather and climate of the

ice sheets of Greenland (GrIS) and Antarctica (AIS) are presented and contrasted. Essential for
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our understanding of the processes driving temporal and spatial variations in ice sheet surface

melt are in situ observations from manned and automatic weather stations. When equipped

with the proper set of sensors (‘SEB-enabled’), these can be used to calculate melt energy. The

results reveal important intra- and interdiurnal surface melt variability (‘melt weather’) as well

as different sensitivities of melt rate to synoptic weather systems for both ice sheets.

Because these in-situ observations are scarce, hindcasts using satellites and regional climate

models must be used to fill the gaps in space and time and assess the melt ‘climate’. These

show that melt has increased by ~30% on the GrIS since the mid-1990s, while no obvious melt

trend is found for the AIS since 1979, in line with [94]. A recently reached milestone is that his-

torical melt rate, trends and variability on both ice sheets can be well reconstructed using a

combination of an unconstrained earth system model with a polar regional climate model.

This clears the way for credible projections of future ice sheet surface melt. We present an

example for a fossil-fuelled development scenario, which results in a five- (GrIS) to tenfold

(AIS) increase in surface melt towards 2100.

In situ SEB observations are invaluable to validate, evaluate, develop, improve, and calibrate

satellite- and model-based estimates of ice sheet surface melt. Efforts to expand this observa-

tional capability should be prioritised. For the GrIS, the merging in 2021 of the PROMICE

(ablation zone) and GC-Net (accumulation zone) AWS networks by the Geological Survey of

Denmark and Greenland (GEUS) was an important milestone. A similar effort is needed for

the AIS, despite the logistical challenges this presents. An advantage is that in the comparably

homogenous surface environment of the ice sheets, these in situ observations are representa-

tive for relatively large areas, which makes them compatible with the typical footprint of satel-

lite melt products and grid cells of (regional) climate models. Another important emerging

Fig 5. Timeseries of RACMO2.3p2 annual melt totals over the contiguous GrIS (red) and AIS including ice shelves (blue). Solid lines represent hindcast

using ERA forcing, dashed lines represent forcing from the earth system model CESM2 for the historical period (up to 2014) and for a high-warming, fossil-

fuelled development scenario SSP5-8.5 (until 2100). Orange triangles are satellite-based melt estimates, coloured bands indicate 1961–1990 (GrIS) and 1979–

1990 (AIS) range (average +/- one standard deviation).

https://doi.org/10.1371/journal.pclm.0000203.g005
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application is the observation of surface ice sheet melt rate from space, trained by these in situ

observations.

For (regional) climate models, the improved availability of in-situ and remotely sensed eval-

uation data will improve the accuracy of modelled surface melt. For the GrIS, improved agree-

ment with in situ observations is found after statistical downscaling the RCM output to 1 km

resolution, better resolving the strong ablation on marginal, low-lying and narrow glacier ton-

gues [105]. A similar improvement with enhanced spatial resolution through dynamical/statis-

tical downscaling is expected for the steeper parts of the AIS, notably the AP [106, 107].

Alternatively, observations can be directly assimilated in (regional) climate models to enable

high-resolution, high fidelity re-analysis products specifically targeting the surface mass bal-

ance of ice sheets. A recent example is the 2.5 km resolution Copernicus Arctic Regional

Reanalysis (CARRA) over Greenland.

In addition to automatic measurements, shorter, dedicated experimental efforts on both ice

sheets should address in more detail (near-) surface processes such as the role of ice sheet sur-

face roughness [72], the snowmelt-albedo feedback [108], the impact of bio-albedo [109, 110],

drifting snow processes [111] and the role of refreezing and capillary retention in firn to con-

vert melt to runoff [112]. The latter process is important in the upper ice layers, where subsur-

face melt increases porosity [9, 113], and in the firn layer, which slowly saturates when melt

rates increase, potentially leading to an abrupt acceleration of mass loss for both ice sheets

[114, 115].
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Reijmer, Paul Smeets, Willem Jan van de Berg, J. Melchior van Wessem.

Project administration: Michiel R. van den Broeke.

Resources: Michiel R. van den Broeke.

Software: Michiel R. van den Broeke, Peter Kuipers Munneke, Brice Noël, Carleen
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115. Noël B, Lenaerts JTM, Lipscomb WH, Thayer-Calder K, van den Broeke MR. Peak refreezing in the

Greenland firn layer under future warming scenarios. Nat Commun. 2022; 13(1):6870. Epub

20221111. https://doi.org/10.1038/s41467-022-34524-x PMID: 36369265; PubMed Central PMCID:

PMC9652464.

PLOS CLIMATE Surface melt rates on the ice sheets of Greenland and Antarctica

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000203 May 10, 2023 17 / 17

https://doi.org/10.1256/smsqj.53406
https://doi.org/10.1038/s41467-020-20627-w
http://www.ncbi.nlm.nih.gov/pubmed/33495440
https://doi.org/10.1175/1520-0469
https://doi.org/10.1126/science.1178176
https://doi.org/10.1126/science.1178176
http://www.ncbi.nlm.nih.gov/pubmed/19965509
https://doi.org/10.5194/tc-12-811-2018
https://doi.org/10.1038/s41561-019-0460-1
https://doi.org/10.1038/s41561-019-0460-1
https://doi.org/10.1038/ncomms15799
http://www.ncbi.nlm.nih.gov/pubmed/28643801
https://doi.org/10.1038/nature12002
https://doi.org/10.1038/nature12002
http://www.ncbi.nlm.nih.gov/pubmed/23552947
https://doi.org/10.5194/tc-10-2361-2016
https://doi.org/10.5194/tc-10-271-2016
https://doi.org/10.3189/2012JoG12J020
https://doi.org/10.1029/2020jf005696
https://doi.org/10.1002/2017gl075958
https://doi.org/10.5194/tc-14-309-2020
https://doi.org/10.5194/tc-14-1713-2020
https://doi.org/10.1038/nclimate2899
https://doi.org/10.1038/nclimate2899
https://doi.org/10.5194/tc-7-1433-2013
https://doi.org/10.5194/tc-7-1433-2013
https://doi.org/10.1038/s41558-022-01577-1
https://doi.org/10.1038/s41558-022-01577-1
https://doi.org/10.1038/s41467-022-34524-x
http://www.ncbi.nlm.nih.gov/pubmed/36369265
https://doi.org/10.1371/journal.pclm.0000203

