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Abstract

As climate change accelerates extreme weather disasters, the mental health of the

impacted communities is a rising concern. In a recent study of 725 Californians we showed

that individuals that were directly exposed to California’s deadliest wildfire, the Camp Fire of

2018, had significantly greater chronic symptoms of post-traumatic stress disorder, anxiety

and depression than control individuals not exposed to the fires. Here, we study a subsam-

ple of these individuals: directly exposed (n = 27), indirectly exposed (who witnessed the fire

but were not directly impacted, n = 21), versus age and gender-matched non-exposed con-

trols (n = 27). All participants underwent cognitive testing with synchronized electroencepha-

lography (EEG) brain recordings. In our sample, 67% of the individuals directly exposed to

the fire reported having experienced recent trauma, while 14% of the indirectly exposed indi-

viduals and 0% of the non-exposed controls reported recent trauma exposure. Fire-exposed

individuals showed significant cognitive deficits, particularly on the interference processing

task and greater stimulus-evoked fronto-parietal activity as measured on this task. Across

all subjects, we found that stimulus-evoked activity in left frontal cortex was associated with

overall improved interference processing efficiency, suggesting the increased activity

observed in fire exposed individuals may reflect a compensatory increase in cortical pro-

cesses associated with cognitive control. To the best of our knowledge this is the first study

to examine the cognitive and underlying neural impacts of recent climate trauma.

Introduction

As the temperature of the planet warms as a result of unchecked emissions, weather extremes

and environmental disasters such as the wildfires are becoming increasingly more common-

place [1,2]. The annual western forest-fire area in the US has increased by ~1000% from 1984

to 2017, so much so that California now has a designated annual fire season [3,4].
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Climate change accelerated weather extremes and disasters such as the California wildfires

are taking a huge toll on human health [5,6]. More recently, we have shown notable mental

health sequelae of the wildfires, including significantly greater traumatic experience reports,

and symptoms of anxiety and depression in communities impacted by California’s deadliest

wildfire, the Camp Fire of 2018 [7]. These findings dovetail with significant psychological

impacts noted after extreme climate events [8–14]. Warming temperatures have been further

linked to greater suicide rates [15].

In this context, while mental health self-reports provide one dimension of insight, it is not

understood how objective cognitive performance and underlying brain function is impacted

in climate-stressed communities. Cognitive performance assays measure the ability to pay

selective attention to goal-relevant information as well as process and ignore irrelevant distrac-

tions [16–18]. Working memory builds upon these basic cognitive abilities, wherein attended

information can be maintained and manipulated for brief periods of time [19]. Crucial to

these cognitive abilities is brain activity in frontal and parietal brain regions that enables

moment-to-moment cognitive control [20–23]. Investigation of post-climate disaster neuro-

cognitive impacts can provide important mechanistic insights into rehabilitation priorities, yet

has not been studied to-date.

Here, we use a standardized, validated, and rapidly deployable neuro-cognitive platform,

the BrainE platform [24,25], to investigate several dimensions of cognitive performance in a

community sample of individuals impacted by the 2018 Camp Fire. This neuro-cognitive plat-

form was designed for user-friendly and feasible community-deployment and includes core

cognitive tasks that can be sensitive to changes in mental health observed in a climate change

affected community sample. Per our prior research, symptoms of post-traumatic stress disor-

der (PTSD), anxiety and depression are observed in the Camp Fire affected community [7].

Much cognitive research shows that these mental health problems can be associated with

changes in selective attention [26,27], response inhibition [28,29], working memory [30–32],

as well as processing of interference from either sensory [33,34] or emotional distractions [35–

38]. Hence, the BrainE platform implements an assessment suite of these specific tasks, while

also limiting the total number of tasks to this set to keep the overall participation burden low.

All BrainE platform cognitive tasks are synchronized with simultaneous electroencephalogra-

phy (EEG) readily allowing measurement of underlying neural function. Here, we hypothe-

sized that chronic cognitive impacts would be observed in the wildfire exposed, potentially

trauma-enriched individuals, i.e. impacts notable in assays 6–12 months after the fire experi-

ence. We further hypothesized that these cognitive impacts may be associated with underlying

differences in brain function particularly in notable fronto-parietal brain regions that dictate

cognitive control.

Materials and methods

Participants

This study included 75 participants (mean age: 24.57 ± 6.20 years, range: 18–47 years, 63

females), who provided cognitive and neural data and were a subset of participants sampled in

our previous wildfire study [39]. All participants were sampled within 6–12 months after the

2018 Camp Fire in Northern California, i.e. all study data was collected prior to the COVID-19

pandemic period. This sample included three groups of participants: directly exposed to the

wildfire (n = 27), indirectly exposed to the wildfire (n = 21), and non-exposed controls who

were age and gender-matched to the directly exposed group (n = 27). The groups were classi-

fied based on self-reports on the Life Events Checklist 5 [39], i.e., in the context of the fire, the

three groups responded as ‘happened to me personally’ for the directly exposed group,
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‘witnessed it happen to someone else’ for the indirectly exposed group, and ‘learned about it or

not applicable’ for non-exposed controls, respectively.

All participants provided written informed consent for the study approved by the local uni-

versity Institutional Review Board (IRB). Specifically, the directly and indirectly exposed par-

ticipants were located at California State University (CSU) at Chico, within 10–15 miles of the

Camp Fire, and were approved by the CSU Chico IRB#22838, while non-exposed controls

were located in the San Diego region, 600 miles away from the Camp Fire, and were approved

by the University of California, San Diego IRB#180140.

The majority of participants (95%) were right-handed. All participants had normal/cor-

rected-to-normal vision and hearing and no participant reported color blindness. All partici-

pants had at least a high-school education.

Sample size and power

Our sample size was adequately powered to detect medium effect size group differences

(Cohen’s d>0.5) at beta of 0.8 and alpha significance level of 0.05 as calculated using the

G�Power software [40].

Demographics

All participants provided demographic information by self-report including age, gender, and

ethnicity. Socio-economic status was measured on the Family Affluence Scale [41]; this scale

measures individual wealth based on ownership of objects of value (e.g., car/computer) and

produces a composite score ranging from 0 (low affluence) to 9 (high affluence).

Mental health

All participants self-reported whether they had experienced recent trauma as per the standard

PTSD checklist screen (“were you recently bothered by a past experience that caused you to

believe you would be injured or killed?” 1: Not bothered at all, 2: Bothered a little, 3: Bothered

a lot) [42]. Participants rated anxiety symptoms on the Generalized Anxiety Disorder: GAD7

scale [43] and depression symptoms on the Patient Health Questionnaire: PHQ9 scale [44].

Cognitive assessments

Study participants completed cognitive assessments in a single in-person visit; these data were

available for all but one participant in the directly exposed group that had missing data. Cogni-

tive assessments were deployed on the Unity-based BrainE platform administered on a Win-

dows-10 laptop at a comfortable viewing distance [24]. The Lab Streaming Layer (LSL)

protocol was used to timestamp all stimuli and response events in all cognitive assessments

[45]. Each cognitive assessment session lasted ~40 minutes and consisted of cognitive assess-

ments for selective attention, response inhibition, interference processing, working memory

and emotion interference processing. Fig 1 shows the stimulus sequence in each task. All cog-

nitive tasks had a standard trial structure of 500 ms central fixation “+” cue followed by task-

specific stimulus presented for task-specific duration and with a task-specific response win-

dow. All stimuli were presented in a shuffled order across trials. Response in every task trial

was followed by standard response feedback for accuracy as a smiley or sad face emoticon, pre-

sented 200 ms post-response for 200 ms duration, followed by a 500 ms inter-trial interval

(ITI). At the end of each task block, participants received a percent block accuracy score with a

series of happy face emoticons (up to 10) to promote engagement.
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1. Selective attention & response inhibition. Participants accessed the game-like task,

“Go Green” modeled after the standard test of variables of attention [46]. In this simple two-

block task, colored rockets were presented either in the upper/lower central visual field. Partic-

ipants were instructed to respond to green colored rocket targets and ignore, i.e., withhold

their response to distracting rockets of five other iso-luminant colors (shades of cyan, blue,

purple, pink, orange). Post-fixation cue, a target/non-target stimulus appeared for 100 ms

duration, followed by up to a 1 sec response window followed by emoticon feedback. To fur-

ther reinforce fast and accurate responding within 100–400 ms, two happy face emoticons

were simultaneously presented during the feedback period [47]. Both task blocks had 90 trials

lasting 5 min each, and a brief practice period of 4 trials preceded the main task blocks. In the

first task block, green rocket targets were sparse (33% of trials), hence, selective attention was

engaged as in a typical continuous performance attention task. In the second block, green

rocket targets were frequent (67% of trials), hence, participants developed a prepotent impulse

to respond. As individuals must intermittently suppress a motor response to sparse non-tar-

gets (33% of trials), this block provided a metric of response inhibition [48,49].

2. Interference processing. Participants accessed the game-like task, “Middle Fish”,

which was an adaptation of the Flanker assessment [50,51]. Post-fixation on each trial, partici-

pants viewed an array of fish presented either in the upper or lower central visual field for 100

ms. On each trial, participants had a 1 sec response window to detect the direction of the mid-

dle fish in the set (left or right) while ignoring the flanking distractor fish that were either con-

gruent or incongruent to the middle fish, i.e., faced the same or opposite direction to the

middle fish. 50% of task trials had congruent distractors and 50% were incongruent. A brief

Fig 1. Cognitive assessments delivered on the BrainE platform. (A) BrainE assessment dashboard with the wireless

EEG recording setup. (B) The selective attention and response inhibition tasks differ only in the frequency of targets;

sparse 33% targets needing a response appear in the Selective Attention task block, while frequent 67% targets appear

in the Response Inhibition task block. (C) In the Flanker interference processing task flanking fish may either face the

same direction as the middle fish on congruent trials, or the opposite direction on incongruent trials. (D) The working

memory task is presented with perceptually thresholded stimuli. (E) The emotion interference processing task presents

neutral, happy, sad, or angry faces superimposed on the arrow, whose direction is discriminated by participants.

https://doi.org/10.1371/journal.pclm.0000125.g001
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practice of 4-trials preceded the main task of 96 trials presented over two blocks for a total task

time of 8 min.

3. Working memory. Participants accessed a game-like task, “Lost Star”, which was based

on the visuo-spatial Sternberg task [52]. Post-fixation cue on each trial, participants viewed a

spatially distributed test array of objects (i.e., a set of blue stars) for 1 sec. Participants were

required to maintain the locations of these stars for a 3 sec delay period, utilizing their working

memory. A probe object (a single green star of 1 sec duration) was then presented in either the

same spot as one of the original test stars, or in a different spot than any of the original test

stars. The participant was instructed to respond whether the probe star had the same or differ-

ent location as one of the test stars. We implemented this task at the threshold perceptual span

for each participant, which was defined by the number of test star objects that the individual

could correctly encode without any working memory delay. For this, a brief perceptual thresh-

olding period preceded the main working memory task, allowing for equivalent perceptual

load to be investigated across participants [51]. During thresholding, the set size of test stars

increased progressively from 1–8 stars based on accurate performance where 100% accuracy

led to an increment in set size;<100% performance led to one 4-trial repeat of the same set

size and any further inaccurate performance aborted the thresholding phase. The final set size

at which 100% accuracy was obtained was designated as the individual’s perceptual threshold.

Post-thresholding, the working memory task consisted of 48 trials presented over 2 blocks [53]

with total task duration of 6 min.

4. Emotion interference processing. Participants accessed the game-like assessment,

“Face Off”, adapted from studies of attentional bias in emotional contexts [54,55]. The task

integrated a standardized set of culturally diverse faces from the NimStim database [56]. We

used an equivalent number of male and female faces, each face with four sets of emotions,

either neutral, positive (happy), negative (sad) or threatening (angry), presented on an equiva-

lent number of trials in each task block. Post-fixation cue on each trial, participants viewed an

emotional face with a superimposed arrow of 300 ms duration. The arrow occurred in either

the upper or lower central visual field on equal number of trials, and participants responded to

the direction of the arrow (left/right) within an ensuing 1 sec response window. Participants

completed 144 trials presented over three equipartitioned blocks; a practice set of 4-trials pre-

ceded the main task. The total task duration was 10 min.

Electroencephalography (EEG). EEG data were collected in conjunction with all cogni-

tive tasks using a 24-channel system with saline-soaked electrodes and electrode locations as

per the 10–20 system attached to a wireless SMARTINGTM amplifier. Signals were acquired at

500 Hz sampling frequency at 24-bit resolution. The LSL protocol was used to time-stamp

EEG markers and integrate cognitive markers [45], and files were stored in xdf format. Neural

data were obtained from 18 of 27 participants in the directly exposed group, 14 of 21 partici-

pants in the indirectly exposed group, and all 27 participants in the control group.

Behavioral analysis. Behavioral data for all cognitive tasks were analyzed for signal detec-

tion sensitivity, d’, computed as z(Hits)-z(False Alarms) [57]; all d’ values were divided by max

theoretical d’ of 4.65 to obtain scaled d’ in the 0–1 range. Cognitive task speeds were calculated

as log(1/RT), where RT is response time in seconds; longer RTs have less speed while shorter

RTs have higher speed. For the working memory task, perceptual span was also calculated. All

metrics were checked for >5sd outliers (null found), and verified for normal distributions

prior to statistical analyses.

Neural analysis. A uniform processing pipeline was applied to EEG data based on the

cognitive event markers. The pipeline included data pre-processing and computation of event

related potentials (ERPs) at scalp channels.
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Data pre-processing utilized the EEG processing software EEGLAB toolbox in MATLAB

[58]. EEG data were first resampled at 250 Hz and filtered in the 1-45Hz range to exclude

ultraslow DC drifts at<1Hz and high-frequency noise produced by muscle movements and

external electrical sources at>45Hz. EEG data were average electrode referenced and epoch to

cognitive task-relevant stimuli based on the LSL timestamps, within the -1.0 to +1.0 sec event

time window. The epoch data were then cleaned using the autorej function of EEGLAB, which

automatically removes noisy trials (>5sd outliers rejected over max 8 iterations). EEG data

were further cleaned by excluding signals estimated to be originating from non-brain sources,

such as electro-oculographic, electromyographic or unknown sources, using the Sparse Bayes-

ian learning (SBL) algorithm (https://github.com/aojeda/PEB) explained below [59,60]. We

verified that for cleaned data, channel peak activity in individual participant data did not

exceed 5 standard deviations from average channel activity across all subjects. ERPs were then

computed as trial averaged activity at each scalp channel using the -750 ms to -550 ms time

window prior to stimulus presentation as the baseline. Scalp topographies were plotted in the

peak post-stimulus time window.

Statistical analyses. Demographic characteristics and mental health data were compared

between groups using χ2 (Chi-Square) statistics derived from non-parametric group

comparisons.

Cognitive performance metrics of d’ and speed were compared across tasks using repeated

measures analyses of variance (rm-ANOVA) with within-subject factor of task-type and

between-subjects factor of group. An omnibus rm-ANOVA including task-type as within-sub-

ject factor was used instead of separate comparisons for each task because all tasks together

can be regarded as part of global cognitive functioning. The Greenhouse-Geisser correction

was applied to adjust for lack of sphericity. Effect sizes were calculated and reported for all

group ANOVA comparisons as partial eta squared in SPSS: η2< 0.06 small, 0.06–0.14

medium, and�0.14 large [61]. Post-hoc ttests were conducted to compare individual group

differences with FDR (False Discovery Rate) corrections applied for multiple comparisons

across tasks and groups. Effect sizes for all ttest results were reported using the Cohen’s d mea-

sure, 0.2: small; 0.5: medium; 0.8: large [61]. The working memory span measure was com-

pared across groups using the non-parametric Kruskal-Wallis test.

ERP neural responses were selectively analyzed on tasks that showed cognitive performance

differences between groups, specifically the interference processing task (see Results). Activity

in the peak post-stimulus time window was compared between groups using unpaired ttests

with permutation testing applied to correct for multiple comparisons across time. For this, 100

iterations of random permutations were performed across the time vector; only continuous

time segments that survived significance at p< .05 using permutation testing (>97.5%le of the

right tail of the random vector permutation distribution) were reported [62]. Neural activity

ttest effect sizes were reported using Cohen’s d.

Peak ERP activity was related to behavior using partial correlations accounting for fire-

exposure group or other variable of interest such as recent trauma. The partial correlation

coefficient (rho) follows standard effect sizes, 0.1: small; 0.3: medium; 0.5 large.

Results

Demographics and mental health

Comparisons between the three subject groups are shown in Table 1. Age, gender and SES

scores did not differ between the three groups. Only self-reported ethnicity differences

emerged as significant, given the larger percentage of Asian participants in the unexposed con-

trol group, consistent with the local demographic distribution of the groups.
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For mental health reports, there were significantly more individuals who reported experi-

ence of recent trauma in the directly exposed group (directly exposed: 66.7%, indirectly

exposed: 14.3%, not exposed: 0%, p< .001). Anxiety and depression symptom scores were sig-

nificantly greater in the directly and indirectly exposed groups, in the range of mild to moder-

ate symptom levels, relative to no symptoms in the control group; in post-hoc tests the directly

and indirectly exposed groups did not differ in anxiety (p>0.8) or depression symptoms

(p>0.1). These results were overall consistent with our larger 725 person study of mental

health reports in this population [7].

Cognitive performance

Performance metrics are reported in Table 2. Signal detection sensitivity (scaled d’) and speed

measures are reported for each of the five cognitive assessments: selective attention, response

inhibition, interference processing, working memory and emotion interference processing.

Repeated measures ANOVAs were conducted on the d’ and speed measures. In the d’ rm-

ANOVA, we observed a significant effect of group (F2,71 = 4.29, p = 0.017, η2 = 0.11), a significant

effect of task (F4,284 = 64.91, p< 0.001, η2 = 0.48), but the group by task interaction was not signif-

icant (F8,284 = 1.62, p = 0.152, η2 = 0.04). For speed, we only observed a significant effect of task

(F4,284 = 22.16, p< 0.001, η2 = 0.24); the group effect for speed as well as the group by task interac-

tions were non-significant (p>0.6). For the working memory task, we additionally compared

item span across groups but there were no significant differences in span (p>0.5).

We conducted post-hoc ttests on the scaled-d’ measure, which showed a significant group

effect in the rm-ANOVA, and fdr-corrected these for multiple comparisons across five tasks

and three group comparisons. We wanted to explore these outcomes despite no group x task

interaction in the rm-ANOVA, given the observations were made in this first of its kind cli-

mate trauma study. Results showed that only interference processing d’ measures significantly

differed across the fire-exposed versus control groups (directly exposed vs. controls: t(51) =

-3.27, p = 0.002, Cohen’s d = 0.91; indirectly exposed vs. controls: t(46) = -2.76, p = 0.01,

Cohen’s d = 0.87) but that there was no significant difference between the two fire-exposed

groups on this measure (directly vs. indirectly exposed: p = 0.48). All other task d’ measures

Table 1. Demographic characteristics & self-reported mental health for participants by group.

Demographics & Mental Health

Directly exposed (n = 27) Indirectly exposed (n = 21) Not

exposed

(n = 27)

p-value

Mean ± Std Mean ± Std Mean ± Std

Age 24.4 ± 5.9 25.7 ± 7.0 23.9 ± 5.9 0.59

Gender n (%)

Male

Female

4 (14.8)

23 (85.2)

4 (19.0)

17 (81.0)

4 (14.8)

23 (85.2)

0.90

Ethnicity n (%)

Caucasian 21 (77.8) 12 (57.1) 8 (29.6) 0.004

Black/African American 1 (3.7) 0 (0) 0 (0)

Asian 0 (0) 2 (9.5) 11 (40.7)

More than one ethnicity 4 (14.8) 5 (23.8) 6 (22.2)

Other 1 (3.7) 2 (9.5) 2 (7.4)

SES 4.0 ± 1.7 4.0 ± 1.7 4.9 ± 2.0 0.59

Recent Trauma 18 (66.7) 3 (14.3) 0 (0) < .001

Anxiety (GAD7) 10.1 ± 6.6 9.7 ± 5.2 3.2 ± 2.1 0.004

Depression (PHQ9) 8.9 ± 6.5 11.8 ± 6.1 2.6 ± 2.1 0.012

https://doi.org/10.1371/journal.pclm.0000125.t001
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did not reach significance across group comparisons. All task scaled-d’ and speed measures

are illustrated in Fig 2.

Given the processing efficiency theory for anxiety-related disorders, i.e. performance impacts

in the context of such disorders should be considered in terms of quality of performance divided

by effort put in [63], we also looked at performance efficiency, specifically for the interference

processing task that showed d’ differences. Performance efficiency can be calculated as the prod-

uct of d’ sensitivity (that represents quality of performance) and processing speed (that is the log

inverse of response time and a measure of the effort put in) [24,64,65]. For the interference pro-

cessing task, differences in performance efficiency mimicked d’ sensitivity, i.e. directly/indi-

rectly exposed individuals showed significantly lower efficiency than controls (directly exposed

efficiency 0.19 ± 0.09 mean ± std units vs. controls 0.25 ± 0.05 units: t(51) = -3.20, p = 0.003,

Cohen’s d = 0.89; indirectly exposed efficiency 0.19 ± 0.09 units vs. controls 0.25 ± 0.05 units: t

(46) = -2.69, p = 0.012, Cohen’s d = 0.84) but there was no significant difference between the

two fire-exposed groups on this measure (directly vs. indirectly exposed: p = 0.74).

Finally, as the three study groups differed in the demographic ethnicity variable and the

mental health self-reports of recent trauma, anxiety and depression, we also checked whether

the interference processing d’ and efficiency measures were influenced by these covariates. In

an ANOVA for d’ sensitivity that included between-subjects effect of group and covariates of

ethnicity, recent trauma, anxiety and depression, we found that the group effect was still signif-

icant (F2,67 = 5.19, p = 0.008, η2 = 0.13) but no covariate showed a significant effect on d’

(p>0.2). Similar results were obtained for interference processing efficiency, the effect of fire-

exposure group was significant (F2,67 = 3.17, p = 0.048, η2 = 0.09) but neither ethnicity nor

mental health covariates showed a significant effect on efficiency (p>0.1).

Neural activity

We next examined electrophysiological activity, specifically event-related responses on the

Flanker interference processing task that showed cognitive differences between groups. Fig 3A

Table 2. Cognitive performance across tasks for the three groups. Scaled d’ on the interference processing task significantly differed across groups with lower perfor-

mance in the directly and indirectly exposed groups relative to the control group.

Cognitive Task Directly exposed (n = 26)

Mean ± Std

Indirectly exposed (n = 21)

Mean ± Std

Not exposed (n = 27)

Mean ± Std

Selective Attention
scaled-d’ 0.86 ± 0.27 0.93 ± 0.18 0.97 ± 0.06

speed 0.36 ± 0.10 0.36 ± 0.11 0.35 ± 0.05

Response Inhibition
scaled-d’ 0.84 ± 0.24 0.92 ± 0.13 0.93 ± 0.10

speed 0.40 ± 0.10 0.40 ± 0.11 0.40 ± 0.07

Interference Processing
scaled-d’ 0.64 ± 0.25 0.65 ± 0.27 0.83 ± 0.13

speed 0.29 ± 0.09 0.33 ± 0.11 0.31 ± 0.05

Working Memory
scaled-d’ 0.47 ± 0.24 0.51 ± 0.24 0.50 ± 0.21

speed 0.34 ± 0.14 0.36 ± 0.14 0.33 ± 0.10

span 4.35 ± 2.71 3.81 ± 2.73 4.59 ± 2.83

Emotion Interference Processing
scaled-d’ 0.73 ± 0.13 0.69 ± 0.15 0.74 ± 0.16

speed 0.30 ± 0.08 0.31 ± 0.07 0.32 ± 0.05

https://doi.org/10.1371/journal.pclm.0000125.t002
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shows ERPs plotted at frontal (F3, F4) and parietal (P3, P4) channels for the three groups. Peak

post-stimulus ERPs were observed in the 100–200 ms time window with corresponding topog-

raphy plots in Fig 3B. Peak ERP latencies did not show any group differences (p>0.6). Yet

peak amplitudes, especially at left frontal and right parietal sites, showed significant group dif-

ferences between the directly exposed and not exposed control group, as well as between the

directly and indirectly exposed groups, with largest ERP amplitudes in the directly exposed

group (Fig 3C, between-group peak amplitude ttest comparisons were conducted at all elec-

trodes, and scalp topography maps are shown with p< .05 threshold applied at each elec-

trode). ERP amplitude differences between the indirectly exposed vs. control group were not

significant. Group ERP comparisons were corrected for multiple comparisons across time

using permutation testing.

Left frontal activity is typically related to cognitive control, hence we investigated correla-

tions between this activity (mean of peak activity F3, FC3 channels) and behavioral perfor-

mance on the interference processing task. As participants belonged to three separate fire-

exposure groups, we conducted a partial correlation analysis between neural activity and

behavior while accounting for fire-exposure group. In this analysis, the relationship between d’

sensitivity and left frontal activity did not reach significance (p = 0.06). Given the processing

efficiency theory for anxiety-related disorders [63], we also looked at the neurobehavioral rela-

tionship for left frontal activity and performance efficiency. We found that the partial correla-

tion between performance efficiency and left frontal activity, accounting for exposure group

was significant (Fig 3D, rho(56) = 0.28, p = 0.036). Thus, participants showing greater left

frontal activity, indicative of greater cognitive control, were also more efficient at the interfer-

ence processing task.

Fig 2. Comparisons of cognitive task performance across the three groups. d’ signal detection sensitivity is shown on top and processing speed

measures are on bottom for the five tasks (1) selective attention, (2) response inhibition, (3) interference processing, (4) working memory and (5)

emotion interference processing. Individual data points are shown as scatterplot with bar length showing mean and error bars showing standard

deviation. d’ performance measures are scaled to 1, and speed is measured as the log of the inverse of response time. The asterisks indicate

significant group difference in interference processing across groups, with the two fire-exposed groups showing lower d’ than the fire-unexposed

controls. �: p< .05, ��: p< .005.

https://doi.org/10.1371/journal.pclm.0000125.g002
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Finally, we investigated the influence of ethnicity and mental health variables of recent

trauma, anxiety and depression on the left frontal activity, while accounting for between-sub-

jects effect of exposure group. This ANOVA showed a significant effect of recent trauma (F1,52

= 5.60, p = 0.02, η2 = 0.10), while other variables were not significant (p>0.2). Individuals

reporting recent trauma had significantly greater left frontal activity than those not reporting

recent trauma (t(57) = 3.11, p = 0.006, Cohen’s d effect size = 1.14, Fig 3E). The neurobeha-

vioral relationship between left frontal activity and interference processing efficiency, account-

ing for recent trauma (instead of fire-exposure group) in partial correlations remained

significant (rho(56) = 0.25, p = 0.05).

Discussion

This study aimed to understand the chronic impacts on cognitive and brain function in the

aftermath of California’s deadliest wildfire, the Camp Fire of 2018. Studying cognitive abilities

is important because they are core to all daily life functioning and can be key to understanding

individual needs as they rebuild and rehabilitate in disaster affected communities. From a

basic science perspective, neuro-cognitive effects can reveal the mechanisms of overt mental

health symptoms [66]. Yet, there are significant gaps in the understanding of neuro-cognition

within climate change impacted communities, with no known studies to-date to the best of

our knowledge conducted in this context, i.e. addressing both cognitive and underlying neural

sequelae.

Hence, in this study, we used a comprehensive and validated cognitive assessment platform,

the BrainE platform to assess several aspects of cognition along with synchronized EEG

Fig 3. Event-related potential responses (ERPs) elicited on the interference processing task and their relationship to behavior. (A) Group

averaged ERPs ± standard error are shown at frontal (F3, F4) and parietal (P3, P4) channels corresponding to the directly exposed (red),

indirectly exposed (blue) and unexposed control (green) groups. Red and orange bars depict significant peak amplitude differences between the

directly exposed vs. control group, and the directly exposed vs. indirectly exposed group (p<0.05, permutation tested across time). (B) Group

averaged ERP scalp topographies are plotted in the peak 125–175 ms latency window. (C) Peak ERP scalp topographies of the directly exposed

group masked by group ttest comparisons show significant left frontal and right parietal activity differences; group comparisons at all electrodes

are thresholded at p<0.05. (D) Significant partial correlations are observed between peak left frontal activity (average of F3, FC3 channels) and

interference processing efficiency, accounting for exposure group. (E) Peak left frontal activity is significantly greater in individuals reporting

recent trauma (p = 0.006).

https://doi.org/10.1371/journal.pclm.0000125.g003
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recordings to measure brain function [24]. We evaluated cognition on a set of standard mea-

sures that included tests of selective attention, response inhibition, working memory and both

non-emotional and emotional interference processing. These specific measures were selected

for testing as they are core to human cognitive abilities and have been shown to be meaningful

in the context of trauma, anxiety and depression related mental health problems [26,27,28–

38], which are relevant in climate change-impacted communities. We measured response

accuracy in terms of d’ signal detection sensitivity, which accounts for both correct responses

and false alarms, and also measured response processing speed. We found significant group

differences specifically in interference processing d’ sensitivity. Concomitant to this finding,

we also found significant group differences in interference processing efficiency, calculated as

the product of d’ and speed, but no group differences were found for processing speed alone.

Relative to controls, the interference processing d’ accuracy and efficiency measures were sig-

nificantly impacted in individuals exposed to the wildfire, in both directly exposed individuals

who personally experienced the fire in terms of impacts on personal family/property and indi-

rectly exposed individuals who witnessed the fire but were not personally affected by it. Nota-

bly, all data were recorded 6 months– 1 year after the Camp Fire, such that interference

processing group differences suggest specific chronic effects. While the groups also differed in

ethnicity (more Caucasians and less Asians in the fire-exposed relative to non-exposed group)

and in mental health variables (greater recent trauma, anxiety and depression in the fire-

exposed relative to non-exposed group), these variables were not found to further impact

interference processing performance differences. In other words, being a member of the fire-

exposed groups, which suffered greater mental health impacts, was the main significant factor

determining interference processing functioning. Indeed, cognitive impacts on interference

processing are important from a trauma and anxiety perspective. Prior studies have shown

that interference processing such as Stroop interference is impacted in PTSD [29,34] and oth-

ers have found emotional interference processing to also be impacted [67]. These studies have

suggested that the intrusive internal re-experiencing of traumatic recollections may weaken

cognitive performance and amplify hypervigilance and anxiety, along with the inability to

inhibit irrelevant stimuli, especially on cognitively demanding tasks that require speeded

responses [29,68]. In this regard, the processing efficiency theory for anxiety-impacted perfor-

mance may also apply, that anxious individuals may use compensatory strategies such as

enhanced effort and increased processing resources to accomplish cognitively demanding

tasks [63]. Indeed we find interference processing efficiency is impacted in the fire-exposed

individuals, who report greater trauma, anxiety and depression relative to controls. Overall,

these cognitive impacts may contribute to the daily-life functional and social impairments and

reduced wellbeing in the context of PTSD symptoms [69,70].

That we did not observe other domains of cognition, other than interference processing, to

be affected could be due to those being susceptible to acute but not chronic impacts. Indeed in

one natural disaster study of a major earthquake in New Zealand, significant errors on a

response inhibition task were detected only in impacted individuals but during the acute

phase, within one month of the disaster [71].

With regards to neural data, task-evoked EEG recordings analyzed for the interference pro-

cessing task showed differential evoked activity in the fire-exposed groups relative to controls.

Specifically, these data showed significant peak neural activity differences, most prominently

for the directly exposed group at left frontal and right parietal brain sites relative to the age and

gender-matched non-exposed control group. Left frontal peak brain activity in the 100–200

ms post-stimulus period was most heightened in the directly exposed group, and this group

also showed a significantly greater neural response relative to the indirectly exposed group.

Frontal neural activity is a signature of cognitive effort [72], and left frontal dysfunction and
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dysconnectivity in particular has been observed in relevant neuropsychiatric conditions such

as depression [73,74] and PTSD [75,76]. Indeed in partial correlations that accounted for fire-

exposure group, we found that left frontal activity correlated with interference processing effi-

ciency, i.e. greater cognitive effort represented by this neural signature was associated with bet-

ter performance. Yet, left prefrontal activity was also significantly associated with subjective

trauma reports, i.e. individuals who reported experiencing recent trauma had greater task-

evoked left frontal activity than those who did not report having a traumatic experience. This

finding may align with evidence in PTSD showing frontal hyperarousal and cortical hyperex-

citability [77,78]. Notably, this observation may also reflect a compensatory mechanism of an

increased need for cognitive effort during the interference processing task in individuals with

recent climate trauma exposure in line with the processing efficiency theory for anxious per-

formance [63]. Overall these results suggest neuro-cognitive mechanisms in play during cli-

mate trauma that resemble PTSD-like frontal hyperarousal and processing efficiency deficits.

Limitations of this study include the possibility that the group differences observed are trait

effects, i.e. were present even before the traumatic wildfire event. Notably, this limitation is

shared with all disaster studies; all have investigated outcomes post-disaster. In one disaster

survey study, subjective recall was used to find out how subjects may have responded pre vs.

post disaster, yet the survey itself was disseminated one year post-disaster [79]. To the best of

our knowledge there is no study with objective neuro-cognitive measurement made pre vs.

post-disaster. Another limitation is that we used a moderate channel density EEG system for

neural recordings, and the results could be confirmed in future by using a high density EEG

system or other neuroimaging methods such as functional magnetic resonance imaging. Yet,

we note that we used the moderate channel density EEG system because it is low-cost and

highly scalable to community settings, and community studies need to balance scalable feasi-

bility, cost and data resolution [80].

Overall, our findings provide first evidence of the chronic effects of climate trauma driven

by wildfire exposure. Cognitively, we observed diminished interference processing alongside

heightened frontal ERP responses, which parallel findings in individuals with PTSD

[29,33,34]. Interestingly, interference control training has been shown to alleviate PTSD symp-

toms [81]. Also, we have shown that scalable intervention approaches such as digital medita-

tion can ameliorate interference processing deficits in the context of trauma [82]. Such

promising approaches may also be adapted as potential intervention strategies for climate

trauma. As the planet warms, more and more individuals face extreme climate exposures and

hence, novel resiliency tools need to be investigated from multiple perspectives. Here, we pro-

vide an important neuro-cognitive mechanistic target for future intervention, which may serve

as a complement to other socio-behavioral intervention targets [7].
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