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Abstract

Ocean warming (OW) and marine heatwaves (MHWs) rapidly transform marine ecosys-

tems, especially when they impact keystone or foundation species. Foundation species

such as kelps, fucoids and corals are highly sensitive to heat stress, which threatens the

future of temperate seaweed forests and tropical reefs. However, functioning and resilience

of these systems also relies on the less conspicuous coralline algae, whose thermal toler-

ances have gone largely untested. Here, we examined the sensitivity of four temperate cor-

alline algal morphotypes from three different species to four realistic present day and future

OW and MHW scenarios (ambient [16˚C constant]; ambient+MHW [16˚C baseline + a sym-

metric two-week heatwave with a peak intensity of 18.7˚C]; future [18.7˚C constant]; future

+MHW [18.7˚C baseline + a symmetric two-week heatwave with a peak intensity of

21.4˚C]). Photo-physiology (e.g., Fv/Fm) and calcification physiology (e.g., proxies for calci-

fying fluid saturation stateΩCF) were generally unaffected by the treatments, implying a high

thermo-tolerance of our study species compared to other important marine foundation spe-

cies. We ascribe this mainly to their photosynthetic apparatus that, unlike in other photoau-

totrophs, continued to function under heat stress. Experimental evidence presented here

and elsewhere implies that coralline algae are likely to continue to play their crucial ecologi-

cal roles in a warming ocean. Yet, such predictions are fraught with uncertainty due to the

substantial gaps in our knowledge. We attempt to highlight some of these gaps and aim to

present potential physiological underpinnings of their thermo-tolerance.

1 Introduction

Coralline algae are important engineers of biogenic reefs and other benthic ecosystems across

all latitudes and throughout the photic zone [1, 2]. In temperate and subpolar regions, coralline

algae monopolise the understory below the canopy formed by larger brown algae [3–5]. The

positive interactions between the two functional guilds promote their coexistence and are key

for the functioning of these seaweed forests [5, 6]. In the tropics, coralline algae are crucial for
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the construction of coral reefs, acting as consolidators and binders of the reef framework [7–

11]. However, coralline algae not only support coral reefs but also construct extensive reef sys-

tems of their own [12–15]. In addition to being important foundation taxa, coralline algae act

as settlement substrate for many invertebrates, including corals, abalone and sea urchins [16–

19]. The ability of coralline algae to play these important ecological roles is threatened by

global change, especially ocean acidification [20]. Yet, how coralline algae will respond to

ocean warming is relatively uncertain given the comparably low number of studies and the

contrasting results. For example, reported impacts of ocean warming on coralline algal photo-

synthesis and calcification range from negative [21, 22] over neutral [23, 24] to positive [25,

26]. In addition, responses of coralline algae to marine heatwaves are virtually unknown [27].

Given their high ecological importance, it is crucial that we gain a better understanding

regarding the effects of ocean warming, marine heatwaves, and their interactive effects on cor-

alline algae. Increasing this understanding is the aim of this study.

Rising anthropogenic greenhouse gas forcing is progressively heating the world’s oceans

[28–30]. Over the last 170 years, the average temperatures of the surface ocean (SST) have

increased by 0.88˚C and will continue to rise over the 21st Century [31]. It is projected that by

2100, mean SST will have increased further by at least 0.86˚C (SSP1-2.6) and up to 2.89˚C

(SSP5-8.5) [31]. Concurrent with ocean warming (OW), local extreme temperature events

(marine heatwave, MHWs) have also increased in duration, frequency, and intensity [32]. This

is a trend that will accelerate with further ocean warming [33, 34].

Ocean warming and marine heatwaves negatively impact many marine biota, including

sensitive foundation species such as coral and kelp [35, 36] but whether coralline algae are

equally susceptible is unclear. Many habitat-forming kelps and fucoids exposed to acute or

chronic thermal stress exhibit heat-related decreases in chlorophyll content, and photosyn-

thetic efficiency and output, indicating thermally-induced damage of the photosynthetic appa-

ratus [37–40]. As a result, growth often declines and mortality tends to increase [37, 41]. For

coralline algae, such observations are, in comparison, sparse. However, there have been reports

of reduced calcification and increased mortality in coralline algae due to heat-induced bleach-

ing [21, 42]. Yet, the occurrence of thermally-induced bleaching is inconsistent and in some

cases elevated temperatures have had either no or positive impacts on coralline algal physiol-

ogy [24–26]. Additionally, the link between temperature dependent bleaching and reduced cal-

cification can be weak [22, 42, 43]. Further, many other causes such as light and handling

stress have been linked with bleaching in coralline algae (e.g., [44]) which could have influ-

enced earlier observations of bleaching in laboratory settings. Coralline algal bleaching is dif-

ferent to coral bleaching as it refers to the degradation of photosynthetic pigments [45],

commonly followed by necrosis and death, and not the expulsion of endosymbionts that

occurs in corals. Also, limited data suggests that coralline algal communities in the field do not

seem to respond, like coral, with mass bleaching in response to MHWs [15, 27, 46]. For exam-

ple, during the 2016 mass coral bleaching event in Western Australia, coral communities

underwent between 29 and 80.6% mortality, whereas coralline algae in the same regions were

seemingly unaffected [15]. Thus, there is the potential that coralline algae could buffer [8, 9,

18] some of the ecological impacts associated with the global decline in live coral cover [47–

49] caused by more frequent and intense mass coral bleaching and mortality events [50, 51].

Tropical coral reefs and temperate kelp forests are extremely diverse and productive ecosys-

tems that are threatened by OW and MHWs due to sensitivity of the dominant foundation

species (coral and kelps/fucoids) to thermal stress. However, resilience and future functioning

of these systems also depends on the much less conspicuous coralline algae. Yet, information

regarding their thermal sensitivity is severely lacking. Thus, we investigated the impact of

ocean warming and marine heatwaves and their interaction on photo-physiology and
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calcification of four temperate coralline algal morpho-types. We hypothesised that: (1) the

chronic thermal stress associated with ocean warming will cause decreases in photosynthetic

efficiency (Fv/Fm), pigment content (i.e., bleaching) and photosynthetic rates (approximated

using electron transport rates), as well as decreased calcification rates and altered calcification

physiology (mineralogy and crystal formation); (2) the expected negative impacts will be more

pronounced under the acute heat stress of a marine heatwave; and (3) the interaction between

acute and chronic heat stress will have the greatest negative impact on coralline algal calcifica-

tion and photo-physiology.

2 Material and methods

2.1 Sample collection and field sites

Coralline algae were collected (Special Permit 711 issued to Victoria University of Wellington by

the New Zealand Ministry of Primary Industries) by snorkellers around two months prior (4th

March 2020) to the experiment from one field site located in Te Moana-o-Raukawa Cook Strait,

Te Whanganui a Tara Wellington, Aotearoa New Zealand (41˚ 20’ 55.7”S, 174˚ 47’ 25.8”E; also

see Site A/Sharks Tooth in Fig 1 in [52]). Since morphological identification of coralline algae is

notoriously difficult, snorkellers were instructed to collect four morphologically distinct groups

that a priori we considered most likely to be species or species complexes (for details regarding

taxonomy see Section 2.2). These included one species of non-geniculate (Phymatolithopsis com-

plex, N = 63), as well as three groups of geniculate coralline algae including two Corallina mor-

pho-types from different depths (Corallina complex 1 sampled in the subtidal between 1–2 m

deep, N = 70; Corallina/Arthrocardia “robust”, N = 70; Corallina complex 2 sampled in the subti-

dal<1 m deep, N = 48). Mean dry weight of geniculate samples ranged between 0.36 and 0.46 g

while crust covered rocks/cobbles were around 6 x 6 cm big with a mean dry weight of 38 g. For

collection, geniculate coralline algae were chiselled from the rock with the attaching crust to avoid

damaging them. Cobbles or rocks covered with crusts were collected directly from the seafloor.

All samples were placed in separate resealable plastic bags filled with seawater while underwater,

that were then placed in black plastic bags to reduce light stress and prevent physical damage

before bringing them to the surface. After collection, organisms were transported to the laboratory

facilities within 20 min in cooler bins filled with ice and cool packs, to further minimise thermal

and light stress. At the laboratory, organisms were kept under low light (~8 μmol photons m-2 s-1

photosynthetically active radiation [PAR]) for two days to allow for slow acclimation to laboratory

conditions. Light was then gradually increased to 80 μmol photons m-2 s-1 PAR over the course of

fourteen days, during which organisms were also carefully cleaned of epibionts and labelled

according to the morpho-anatomic classification. Epoxy (Z-Spar A-788 Splash Zone) was used to

form a base for geniculate coralline algae. Specimens were then distributed into the experimental

tanks. Each tank contained one or two specimens of at least three, but up to four, different species

(for more details see S1 Table). After this initial sixteen-day period, organisms were kept for six

weeks at around 16˚C which reflects the average temperatures in the field around the time of col-

lection in late summer/early autumn temperatures. For most of this time, access to the laboratory

facilities was not permitted due to COVID restrictions, with limited access only possible after

week five. After this period, we started the experiment by beginning to increase the temperatures

in the ‘future’ treatments over the course of one month (~0.1˚C d-1). The experiment ran from

the 11/05/2020 to the 28/07/2020 (79 days).

2.2 Species identification

To verify the taxonomic consistency of the species groups recognised using morph-anatomical

characters (S1 Fig), five to seven specimens of each species (~10% of total samples) were

PLOS CLIMATE Tolerance of coralline algae to ocean warming and marine heatwaves

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000092 January 4, 2023 3 / 26

https://doi.org/10.1371/journal.pclm.0000092


randomly selected for DNA-based identification (for further details regarding DNA extraction

and sequencing please see [52]). The sequences obtained were compared to the findings of

Twist et al. [53] and showed that none of the four groups was consistently identified to the spe-

cies level using morpho-anatomic characteristics, reflecting the well-known difficulties of this

approach [53, 54]. (Species codes below follow Twist et al. [53] and are based on sequence data

and herbarium voucher material. Representative material has been deposited in the herbarium

of the Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand [WELT].) The

crustose samples grouped under Phymatolithopsis complex contained two species of Hapali-

diales (Phymatolithopsis repanda (= Hapalidiales ZT ~85% and Hapalidiales sp. D ~15%). The

geniculate group Corallina/Arthrocardia “robust” was revealed to consist of Corallina spp.

(~60%) and Arthrocardia sp. C (~40%). The samples grouped as Corallina complex 1 included

at least three closely related Corallina species (~20% C. berteroi, ~20% C. chamberlainiae and

~60% C. sp.) while the samples grouped as Corallina complex 2 also consisted solely of species

from the genus Corallina (~20% C. chamberlainiae and ~80% C. sp.).

2.3 Experimental treatments and design

The study was conducted at the Wellington University Coastal Ecology Laboratory located on

Wellington’s Cook Strait coastline. The experiment consisted of four treatments each repre-

senting a different temperature regime (ambient; amb.+MHW; future; and fut.+MHW; see Fig

1). Ambient temperature was set to a constant 16˚C to reflect average temperatures encoun-

tered by the organisms at the time of collection in late summer/early autumn (S2 and S3 Figs).

Future temperatures were set to a constant 18.7˚C to account for the projected increase of

2.73˚C in the global mean SST at the end of this century under the relative concentration path-

way 8.5 [55]. The baseline temperatures in the two marine heatwave treatments were set to

16˚C and 18.7˚C respectively, but on top of this a symmetric two-week-long MHW was simu-

lated after an exposure period of three weeks (t2–t4). The peak temperature (t5) of the MHW

was set to 18.7˚C (amb.+MHW) and 21.4˚C (fut.+MHW), which reflects the strength of past

Fig 1. Temperature profile over the course of the experiment in the four treatments (dark grey = ambient; light grey = ambient

+MHW; coral = future; dark red = future+MHW). Dots indicate the different timepoints (t) where various measurements were

conducted (for further details see specific sections). Horizontal bars indicate different experimental phases (pre-impact t0–t4, impact t4–

t6 and recovery period t6–t8).

https://doi.org/10.1371/journal.pclm.0000092.g001
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MHWs in the region (S3 Fig). Each treatment was replicated at the tank level twelve times for

a total of 48 experimental tanks (S4 Fig). Six experimental tanks from one treatment (~4 L

each; 17.5 cm W x 23 cm L x 12 cm H) were organised together in one 60 L water bath (56 cm

W x 76 cm L x 18.5 cm H). Thus, a total of eight water baths (two per treatment) were used to

accommodate all the experimental tanks. The water baths themselves were distributed over

two shelf levels due to logistical constraints. These were later treated in our analysis as random

factors (see further below).

2.4 Experimental conditions

2.4.1 Seawater supply. The seawater used for the experiment was pumped directly from

the shore in front of the laboratory facilities, sand-filtered (mesh size 10 μm) and then fed into

our flow-through setup. Seawater was first passed through aquarium chillers to decrease tem-

perature variability. Chilled water was collected in two intermediate tanks (one per shelf level

with ~60 L in each; 56 cm W x 76 cm L x 18.5 cm H) and pumped from there into the header

tanks (~20 L in each; 30 cm W x 25 cm L x 38 cm H) using submersible pumps (Jeboa DC-650,

200 L h-1). There were a total of eight header tanks, and one header tank supplied each of six

experimental tanks with 80 mL seawater per minute. These were equally distributed over two

neighbouring water baths (three per water bath). Header tanks contained one pump (Jeboa

DC-650, 650 L h-1) for strong water mixing.

2.4.2 Temperature control. Intermediate tanks that collected chilled seawater (see Sec-

tion 2.4.1) also contained three submersible 300 W heaters that, together with the aquarium

chiller, allowed a reduction of the natural temperature variability and the creation of a baseline

temperature (14.5–15˚C). Temperature in the individual water baths was controlled using two

submersible 300 W titanium heaters. All chillers and heaters were connected to an aquarium

control system (AquaController, Neptune systems, USA) that turned the individual units on

or off at set points when required. Temperature was measured using temperature probes that

were connected to the control systems and placed in each water bath. Pumps (Jeboa DC-650,

650 L h-1) placed in each water bath ensured good mixing of water within the water bath to

enhance temperature control. Smaller jet pumps placed in each experimental tank were used

to create sufficient horizontal water motion (Hailea BT100, 150 L h-1) and to aid pH and tem-

perature control in the tanks. Temperature in the experimental tanks was checked at regular

intervals (results see S2 Table) and daily variability in the treatments did not exceed ±0.3˚C

(see S5 Fig), keeping in mind that some level of daily and day-to-day variability occurs at our

field sites (see S7 Fig).

2.4.3 Seawater carbonate chemistry. Seawater pH and total alkalinity (AT) were mea-

sured in each header tank and in randomly selected experimental tanks of each water bath

every two weeks to assess long- and short-term variability (for results see S3 Table and S6 Fig).

The pH was measured using a pH meter (HQ40D equipped with IntelliCal PHC101 probe,

Hach Company, Loveland, USA) calibrated on the total scale using Tris/HCl buffers (following

[56]). AT was calculated with a modified Gran function [56]. Regular titrations (AS-ALK2,

Apollo SciTech, USA) of certified reference material (CRM, Batch 176 provided by A.G. Dick-

son lab) yielded AT values within ± 6 μmol kg-1. Seawater carbonate chemistry was calculated

with the “seacarb” package running in R [57].

2.4.4 Light. Light was provided by 72 W light emitting diode (LED) panels (Zeus 70,

Shenzhen Ledzeal Green Lighting Co., Ltd, Shenzhen, China) mounted over each water bath.

The LEDs were designed to mimic a natural coastal underwater light spectrum (for details see

[52]) and followed a natural diel cycle. Irradiance increased gradually in two steps (6:30–9:30

and 9:30–12:30) to reach maximum levels in the afternoon (12:30–16:30 h) and decreased
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again in two steps (16:30–18:30 h and 18:30–20:30 h). Light levels were set to a peak irradiance

of 80 μmol photons m-2 s-1 PAR (daily dose 2.3 mol photons m-2 d-1 PAR) in all tanks, as these

organisms encounter this frequently in their natural environment (see [52]). Maintenance of

the light level in the individual tanks was achieved by covering them with coated metal mesh

and shade cloth. Light levels were checked regularly using an underwater PAR meter (Apogee

MQ-510, Apogee Instruments, Inc., North Logan, USA).

2.5 Physiological measurements

2.5.1 Photosynthetic efficiency. The Fv/Fm of each individual was measured at all time-

points (t0–t8) (Fig 1) using a Pulse Amplitude Modulated chlorophyll fluorometer (Diving

PAM/R, Heinz Walz GmbH, Effeltrich, Germany) [58, 59]. Settings were adjusted for each

species to ensure reliable results (saturation light intensity = 8 for Corallina complex. 1, Coral-
lina complex. 2 and Corallina/Arthrocardia “robust” and 7 for Phymtolithopsis complex;

gain = 1; damping = 2; measuring light intensity = 1; saturation pulse width = 0.8). Individuals

were dark-adapted prior to each measurement for at least 30 min. Thus, measurements were

only taken after 9 pm and if Fo>120. The distance between the PAM fibre optic and the sam-

ples was standardised to 2 mm using pre-set PAM clips.

Individual measurements taken at t0, t2 and t4 were averaged to obtain a single value for Fv/

Fm for the pre-impact/baseline period. This value was subtracted from the respective value

obtained during the impact phase (t5 only) and the recovery period (average of Fv/Fm from t6

and t8), thus anchoring them to a baseline. Fv/Fm standardised in this way will be reported here.

2.5.2 Light curves. Effective photosynthetic capacity and light acclimation state were

assessed at t4, t6 and t8 (Fig 1) using the PAM’s rapid light curve (RLC) function. Relative electron

transport rates (rETR) were obtained at noon from five individuals of each species in each treat-

ment. Individuals were exposed for 20 s to nine increasing light steps ranging from 0 to 213 μmol

photons m-2 s-1 PAR. Here too, distance between samples and the PAM fibre optic was set to 2

mm using pre-set PAM clips. Non-linear models were then fitted to the data based on least-square

error calculations, to determine maximum relative electron transport rate (rETRmax), light use

efficiency (α or initial curve slope) and minimum saturation intensity (Ek) [58, 59].

2.5.3 Pigment content. Pigment content was determined from samples taken at t5 and t8

(Fig 1). Therefore, five individuals of each species in each treatment were taken out of the

experiment at each timepoint to obtain fresh tissue samples. An additional 10 individuals were

removed at t6 (MHW treatments only), but these were not analysed (for more details regard-

ing sample removal see S1 Table). Red pigments (phycocyanin and phycoerythrin) were

extracted using phosphate buffer (after [60]). Chlorophyll a (Chl a) content was extracted

using ethanol (after [61]). Pigment absorbance was measured with a spectrophotometer (Evo-

lution 300, Thermo-Fisher Scientific, Loughborough, UK) and pigment content was calculated

after [60] for red pigments and [61] for chlorophyll pigments.

2.5.4 Mean-net calcification. Mean-net calcification rates were quantified using the

buoyant weight technique [62]. Organisms were weighed at the start of the experiment (t0),

the end of the acclimation phase (t4), the end of the impact phase (t6) and the end of the recov-

ery phase (t8). The difference in weight between individual timepoints was converted into dry

weight of calcite and used to calculate net calcification for the different experimental periods

(t0 and t4 = pre-impact/baseline period; t4 and t6 = impact period; t6 and t8 = recovery

period). Net weight changes were transformed into calcification rates (mg CaCO3 cm-2 d-1) by

normalising for time (in days) and surface area (in cm2, for details see Section 2.6). To ensure

the correct calculation of calcification rate for the geniculate coralline algae, the weight of the

epoxy bases had to be subtracted. Therefore, bases were weighed after the experiment
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following the complete removal of the algae, and the obtained weight was subtracted from the

individual sample weight from each timepoint.

Individual calcification rates for the pre-impact/baseline period (t0–t4) were subtracted from

the respective rates obtained during the impact (t4–t6) and the recovery period (t6–t8), thus

anchoring them to a baseline. Calcification rates standardised in this way will be reported here.

2.5.5 Raman spectroscopy. Confocal Raman spectroscopy was used to determine sample

minerology and proxies that follow calcifying fluid saturation state (OCF) in coral and likely do

so in coralline algae also [63, 64]. Measurements were conducted with a Horiba Jobin-Yvon

Labram HR Raman spectroscope (Horiba France SAS, Longjumeau, France) using a green 514

nm Ar-ion laser following DeCarlo et al. [65] (further details regarding the configuration see

[52]). Therefore, a total of 20 individuals per species (five per treatment) were taken out of the

experiment, bleached, and analysed at the timepoints t5 (peak of impact phase) and t8 (end of

recovery period). An additional 10 individuals were removed at t6 (MHW treatments only),

but these were not analysed (for more details regarding sample removal see S1 Table). For

each individual, three spectra (integration 4x3s) were obtained (one spectrum each from sur-

face cells located on three different growth margins). Low quality or contaminated spectra

were excluded from the analysis. The minerology of the sample was determined by the pres-

ence and shape of two peaks. The ν1 peak (1,085–1,090 cm-1) which is indicative for CaCO3

and the shape of the ν4 peak (700–720 cm-1) which indicates presence of aragonite (double

peak) or calcite (single peak) [66]. Full width at half maximum intensity (FWHM) and position

of the ν1 peak were used to determine Mg content and to approximate calcifying fluid O [65].

Abiogenic calibrations of Perrin et al. [67] were used to estimate mol% Mg after correcting for

the divergence of the Si wavenumber obtained in this study and that reported by Perrin et al.

[67]. The calculated Mg content was also used to account for the effects of high Mg content on

FWHM. Residual v1 FWHM was considered a proxy for calcifying fluid O of high-Mg calcite.

2.6 Determination of surface area

Surface area of crustose species (Phymatolithopsis complex) was determined using the alumin-

ium foil method [68]. The surface area of geniculate coralline algae (Corallina complex 1, Cor-
allina complex 2, Corallina/Arthrocardia “robust”) was determined by establishment of a

relationship between dry weight and surface area (for details see [52]).

2.7 Statistical analysis

The effect of temperature and the heatwave on all measured parameters was examined using

linear mixed effect models (R package “lme4”) whenever possible. Temperature, MHW and

their interaction was used as a fixed, water bath and header tank as random effects. The

assumptions of normality and equality of variance were evaluated through graphical analyses

of residuals using the R software package “sjPlot”. Treatment effects were determined using

one-way ANOVAs with p-values calculated using “lmerTest”. Proportions of the variation

(R2) explained by the full models were calculated using the package “MuMin”. The data under-

lying this study are available at Dryad [69].

3 Results

3.1 Photosynthetic efficiency

Standardised photosynthetic efficiency (Fv/Fm) in the different treatments during the impact

(Fig 2A) and the recovery phase (Fig 2B) were not significantly affected by OW, the MHW or

their interaction in any of the species (S4 and S5 Tables; for pre-impact Fv/Fm see S8 Fig).
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3.2 Rapid light curves

Maximum relative electron transport (rETRmax; Fig 3 and S6–S8 Tables), light-use efficiency

(initial slope of the curve or α; S9–S11 Tables and S9 Fig) and maximum saturation intensity

(Ek; S12–S14 Tables and S10 Fig) were not significantly affected by the different temperature

regimes for any species at any timepoint (pre-impact (t4); immediately after the impact phase

(t6) and the end of the recovery phase (t8)).

Fig 2. Standardised photosynthetic efficiency (Fv/Fm) of Corallina/Arthrocardia “robust”, Corallina complex 1, Corallina complex 2

and Phymatolithopsis complex during the impact (a) and the recovery (b) phase in the different treatments. Points show individual

values. Solid line indicates the median, box shows the interquartile range (IQR) and the whiskers are 1.5×IQR. Colours indicate

treatments (dark-grey = ambient [16˚C]; light-grey = amb.+MHW [16˚C+2.7˚C at t5], coral = future [18.7˚C], dark-red = fut.+MHW

[18.7˚C+2.7˚C at t5]). “Pre”, “imp” and “rec” denotes the three experimental phases (pre-impact, impact and recovery). Note:

standardisation was achieved by subtraction of the respective Fv/Fm values from the pre-impact phase. Thus, 0 = no change,<0 = lower

efficiency and>0 = higher efficiency.

https://doi.org/10.1371/journal.pclm.0000092.g002
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3.3 Photosynthetic pigment content

3.3.1 Chlorophyll a. Chlorophyll a (Chl a) content was significantly affected during the

impact phase (t5; Fig 4A and S15 Table) by OW, the MHW and their interaction only in Coral-
lina complex 2. In this species, Chl a content decreased as a result of OW (p< 0.001) and the

Fig 3. Maximum relative electron transport (rETRmax) in Corallina/Arthrocardia “robust”, Corallina complex 1,

Corallina complex 2 and Phymatolithopsis complex before the impact phase (t4) (a), immediately after the impact

phase (t6) (b) and at the end of the recovery phase at t8 (c). Points show individual values. Solid line indicates the

median, box shows the interquartile range (IQR) and the whiskers are 1.5×IQR. Colours indicate treatments (dark-

grey = ambient [16˚C]; light-grey = amb.+MHW [16˚C+2.7˚C at t5], coral = future [18.7˚C], dark-red = fut.+MHW

[18.7˚C+2.7˚C at t5]). “Pre”, “imp” and “rec” denotes the three experimental phases (pre-impact, impact and

recovery).

https://doi.org/10.1371/journal.pclm.0000092.g003
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MHW (p = 0.007), while the interaction between the two factors had a positive impact

(p = 0.008).

At the end of the recovery period (t8; S16 Table), Chl a content was significantly affected by

the treatments only in Corallina/Arthrocardia “robust”. In this species, Chl a content was sig-

nificantly lower under OW (p = 0.008).

Fig 4. Chlorophyll a (a), phycocyanin (b) and phycoerythrin (c) content in Corallina/Arthrocardia “robust”, Corallina
complex 1, Corallina complex 2 and Phymatolithopsis complex during the impact phase (t5). Points show individual

values. Solid line indicates the median, box shows the interquartile range (IQR) and the whiskers are 1.5×IQR. Colours

indicate treatments (dark-grey = ambient [16˚C]; light-grey = amb.+MHW [16˚C+2.7˚C at t5], coral = future [18.7˚C],

dark-red = fut.+MHW [18.7˚C+2.7˚C at t5]). “Pre”, “imp” and “rec” denotes the three experimental phases (pre-

impact, impact and recovery).

https://doi.org/10.1371/journal.pclm.0000092.g004
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3.3.2 Phycocyanin. Phycocyanin content was not affected by OW, MHW or their interac-

tion during the impact phase (t5; Fig 4B) in any of the species (S17 Table).

At the end of the recovery phase (t8; S18 Table), phycocyanin levels were significantly

higher under OW in Corallina complex 2 (p = 0.045).

3.3.3 Phycoerythrin. Phycoerythrin content was not significantly affected by OW, MHW

or their interaction during the impact phase (t5; Fig 4C) in any of the species (S19 Table).

Similarly, there was no significant difference in phycoerythrin content in any of the species

at the end of the recovery period (t8; S20 Table).

3.4 Mean-net calcification

Standardised calcification rates during the impact phase (t4–t6) (Fig 5A) were significantly

affected by OW, MHW and their interaction, but only in Corallina/Arthrocardia “robust” (S21

Table). In this species, the decline in calcification rate was significantly greater in the ambient

temperature treatments (ambient and amb.+MHW) compared to the future temperature treat-

ments (future and fut.+MHW) (p = 0.039).

Respective calcification rate during the recovery phase (t6–t8) (Fig 5B and S22 Table) was

not significantly affected by OW, MHW and their interaction in any species.

3.5 Geochemistry

3.5.1 Magnesium content. Skeletal magnesium content (% Mg) was significantly affected

by OW, the MHW and their interaction during the impact phase (t5; Fig 6A) in Phymato-
lithopsis complex only (S23 Table). In Phymatolithopsis complex, % Mg increased significantly

due to OW (p<0.001), the MHW (p<0.001) and the interaction of the two factors (p< 0.001).

At the end of the recovery phase (t8; S24 Table), % Mg was not affected by any treatment in

any of the species.

3.5.2 Residual FWHM. FWHM was significantly affected by the treatments during the

impact phase (t5; Fig 6B) only in Phymatolithopsis complex (S25 Table). In this species,

FWHM was significantly lower at higher temperatures (p = 0.033). FWHM at the end of the

recovery phase (t8; S26 Table) was not affected by any of the treatments in any of the species.

4 Discussion

4.1 Impact of heat-stress on coralline algal photo-physiology

This study revealed the tolerance of temperate coralline algae to low and moderate heat stress

that corresponds to realistic present day and future temperature scenarios. This is contrary to

our initial expectations, but generally supported by the findings of three single-species studies

from the Mediterranean and the Atlantic [70–72]. The displayed thermo-tolerance is likely

linked to the photosynthetic apparatus, which continued to function under heat stress. Photo-

synthesis is a fundamental yet complex physiological process that is highly sensitive to envi-

ronmental stress [73]. Upon exposure to adverse abiotic conditions, photosynthetic

performance declines rapidly and often well before other physiological processes are impaired

[74]. This is readily observable in more intensively studied taxa, including many species of

kelp [38, 39], corals [75–77], and higher plants [78, 79], when temperatures approach and

exceed (upper) thermal tolerance thresholds. Therefore, we initially expected to see similar

patterns in coralline algae, since they were grown far above their maximum summer tempera-

tures, a threshold that has been found to be significant and associated with adverse impacts in

many taxa, such as corals [80]. However, photosynthetic efficiency (Fv/Fm) and all other fluo-

rescence parameters (rETRmax, α, Ek) were not significantly affected by acute or chronic heat
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stress in any of the four morpho-types, indicating tolerance to these changes in temperature.

The changes we observed in these parameters and in pigment content appeared to be largely

driven by biological and/or technical variability and (if at all) only weakly by temperature,

since (statistically significant) variations appeared to be rather sporadic and contradictory at

times. In Corallina complex 2 for example, chlorophyll a content during the impact phase

decreased due to OW and the MHW but increased in the treatment where the interactive

effects of both were assessed. Moreover, phycocyanin content, generally unaffected, increased

Fig 5. Standardised calcification rates (mgCaCO3 cm-2 d-1) of Corallina/Arthrocardia “robust”, Corallina complex 1, Corallina complex

2 and Phymatolithopsis complex during the impact (a) and the recovery (b) phase in the different treatments. Points show individual

values. Solid line indicates the median, box shows the interquartile range (IQR) and the whiskers are 1.5×IQR. Colours indicate

treatments (dark-grey = ambient [16˚C]; light-grey = amb.+MHW [16˚C+2.7˚C at t5], coral = future [18.7˚C], dark-red = fut.+MHW

[18.7˚C+2.7˚C at t5]). “Pre”, “imp” and “rec” denotes the three experimental phases (pre-impact, impact and recovery). Note:

standardisation was achieved by subtraction of the respective calcification rates from the pre-impact phase. Thus, 0 = no change,

<0 = slower calcification and>0 = faster calcification.

https://doi.org/10.1371/journal.pclm.0000092.g005
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during the same period in this species in the OW treatment. Furthermore, the magnitude of

variation in the physiological parameters was extremely small compared to thermosensitive

taxa [81] and thus of seemingly limited physiological significance. Collectively, these results

suggest a high thermo-tolerance.

4.2 Impacts of elevated temperatures on calcification and minerology

Calcification physiology was largely unaffected by heat stress. We hypothesised that calcifica-

tion rates would decline due to heat stress, reflecting knock-on impacts from heat-induced

photoinhibition. However, the hypothesized heat-induced photoinhibition did not occur here.

Fig 6. Skeletal magnesium content (a) and residual FWHM (proxy for ΩCF) (b) of Corallina/Arthrocardia “robust”, Corallina complex 1,

Corallina complex 2 and Phymatolithopsis complex during the impact phase at t5. Points show individual values. Solid line indicates the

median, box shows the interquartile range (IQR) and the whiskers are 1.5×IQR. Colours indicate treatments (dark-grey = ambient

[16˚C]; light-grey = amb.+MHW [16˚C+2.7˚C at t5], coral = future [18.7˚C], dark-red = fut.+MHW [18.7˚C+2.7˚C at t5]). “Pre”, “imp”

and “rec” denotes the three experimental phases (pre-impact, impact and recovery).

https://doi.org/10.1371/journal.pclm.0000092.g006

PLOS CLIMATE Tolerance of coralline algae to ocean warming and marine heatwaves

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000092 January 4, 2023 13 / 26

https://doi.org/10.1371/journal.pclm.0000092.g006
https://doi.org/10.1371/journal.pclm.0000092


A significant effect of temperature on standardised calcification rates was only detected once,

in Corallina/Arthrocardia “robust” during the impact phase. This effect was positive, however.

Our results are thus generally consistent with the findings of a recent meta-analysis [27] that

assessed the effects of temperature on coralline algal calcification. The analysis concluded that

a mean negative impact on coralline algal calcification only manifests itself at temperatures of

about 5.2˚C above ambient conditions. The relative robustness of this process could be attrib-

uted to the fact that calcium carbonate (CaCO3) precipitation is thermodynamically favoured

at higher temperatures [82–84]. Additionally, until upper thermal thresholds are reached,

increasing temperatures tend to enhance metabolic processes [85]. Based on our results, we

suggest that this is also linked to the thermostability of coralline algal photosynthesis that

allows continued calcification and enhances overall tolerance. This is supported and comple-

mented by the findings of three other studies that also report limited to no effect of OW or

MHWs on coralline algal physiology [70–72, 86]. Together, this implies the resilience of most

coralline algae to short- and long-term heat stress.

Magnesium incorporation (Mg) and the internal calcium carbonate saturation state (ΩCF,

approximated using FWHM) were also principally unaffected by elevated temperature. In

hindsight, stability is logical for FWHM, given the lack of impacts on photo-physiology. This

lack of an effect on photo-physiology likely allowed the maintenance of a stable internal car-

bonate chemistry which in turn underpinned steady calcification rates [87]. However, we note

that, while stable FWHM could indicate the maintenance of a favourable internal carbonate

chemistry (i.e., OCF), further calibrations are required for the correct correlation of the two

parameters [63]. The lack of a detectable temperature signal in the Mg content was somewhat

surprising. The incorporation of Mg into the calcite lattice is favoured at higher temperatures

[88]. In field samples, Mg content is thus generally highest in summer and lowest in winter

with a relationship of ~1 mol% per ˚C [88–90]. In our study species, this relationship was

much lower (0.1 to 0.4 mol% per ˚C) which reemphasises the need for species- and location-

specific proxy calibrations [91]. Here, this is likely related to the rate of calcification. Faster cal-

cification is known to increase Mg% irrespective of temperature [52, 92]. Exposure to more

favourable light conditions, for example, triggers faster calcification and the increased incorpo-

ration of Mg, likely due to the depletion of the internal calcium pool [52]. Thus, it is known

that Mg bands in field samples also represent periods of fast (summer) and slow (winter) calci-

fication, with other complex drivers of Mg content usually playing lesser roles [93]. This

means that Mg bands incorporate both biology (e.g., more favourable growth conditions in

summer) and chemistry (e.g., endothermic substitution of Mg in calcite). In our experiment,

calcification rates were stable and seemingly unaffected by temperature. Thus, we only

observed a weak “chemical temperature” effect. However, there were exceptions, such as the

pronounced increase of Mg in Phymatolithopsis complex in the OW and MHW treatments.

Yet, in these treatments, calcification rates increased after the impact phase, supporting the

hypothesis that Mg is controlled by calcification rate and temperature.

4.3 Ecology of coralline algae in a warming ocean and indirect effects

The tolerance of coralline algae to OW and MHWs displayed here and elsewhere [27, 70–72]

suggests that coralline algae are likely to play their ecological roles in a warming ocean (other

outcomes of climate change notwithstanding, e.g. ocean acidification or altered biotic interac-

tions). In the tropics, this could mean that coralline algae take up space formerly occupied by

corals and thus play a larger role in supporting existing reef structures [11]. Conversely, tropi-

cal coralline algae tend to have narrow thermal tolerances which may increase their suscepti-

bility to OW and MHWs [19, 70] and thus diminish their ability to support reef frameworks in
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the future. However, the thermal sensitivity of taxa with narrow thermal windows has not

been examined experimentally. Additionally, such algal dominated reefs would suffer from a

decline in structural complexity and the profound alteration of ecosystem functioning [94].

Coralline algae from temperate regions tend to have broader thermal windows and are

therefore arguably more robust to heat stress than tropical ones. However, the impacts of OW

and MHWs could be more strongly felt in temperate kelp forest communities. Kelps and

fucoids are highly susceptible to OW and MHWs and the loss of canopy-forming brown algae

has a strong impact on the understory coralline algal community. In particular, while coralline

cover tends to increase, community diversity decreases [95]. Thus, taxa that rely on (heat-sen-

sitive) canopy species are likely to be strongly impacted by OW and MHW irrespective of their

own thermo-sensitivity. On the other hand, coralline taxa that do not depend on kelp species,

or those that rely on canopy species expanding their range, might profit. Yet, there are many

unknowns. Manifestation of heat stress ultimately depends on duration, intensity and rate of

the temperature increase [96], but the individual and interactive impact of these factors is

unknown. This also applies to impacts of OW and MHWs on early life-stages of coralline

algae. In addition, the oceans are not only warming but also pH is decreasing, which is likely

the greatest threat to coralline algae [20]. The interactions of ocean warming and acidification

seem mostly additive [20], but interactions of OA with heatwaves have not been examined so

far. Thus, large uncertainties remain about the fate of coralline algae in a future ocean.

4.4 Potential physiological underpinnings for the thermo-tolerance of

coralline algae

The carbon-fixing enzyme (ribulose 1,5-bisphosphate carboxylase/oxygenase or Rubisco) of

coralline algae has a high specificity towards CO2 which could provide thermo-tolerance. The

(re-)activation of Rubisco is considered the primary site of thermal damage in photoauto-

trophs due to the heat-induced inactivation of Rubisco activase [97–99]. It is tempting to spec-

ulate that coralline algal activases are more thermostable than those found in corals and kelp.

While certainly possible, there is no information available about activase systems and the ther-

mostability of these enzymes in marine macroalgae, which represents a crucial knowledge gap.

However, the thermo-tolerance displayed by coralline algae could be related to their possession

of type ID Rubisco [100]. The red-algal Rubisco (Type ID) is widely reported to have a very

high substrate specificity (use of CO2 over O2 or Sc/o) [100–103]. Type ID specificity can be

twice as high as in Type IB (land plants) and over four times higher than Type II (dinoflagel-

lates such as Symbiodiniaceae) [101, 102, 104]. High Sc/o Rubiscos increase photosynthetic effi-

ciency by reducing energetically wasteful pathways (photorespiration) [105]. These properties

seem to have been selected for in plants and algae from more extreme and hot environments,

and are likely to bolster resilience to global warming in terrestrial photoautotrophs [103, 106].

However, we lack the information about the kinetics of Rubisco in coralline algae and other

micro- and macroalgae from different habitats and phylogenetic groups to credibly link

Rubisco properties with thermo-tolerance. Closing this knowledge gap might help to under-

stand and predict thermal sensitivities in marine algae.

Coralline algal thermo-tolerance might also be related to the ultrastructure of their chloro-

plast and their light harvesting complexes (LHC). The main LHC of red algae (Rhodophyta)

and cyanobacteria are the so-called phycobilisomes (PBS), which are located on the stroma

side of the thylakoid membrane [107]. In all other photoautotrophs, LHCs are embedded in

the thylakoid membrane, where they form tight stacks (threefold in dinoflagellates and brown

algae; true grana in higher plants and some green algae) [108, 109]. These stacks are intercon-

nected by unstacked membranes which contain mostly photosystem I (PSI) and associated
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LHCs (LHCI), while PSII (and LHCII) is located mainly in stacked regions [110]. This organi-

sation prevents excitation transfer between the photosystems (spillover) and likely provides

several other benefits (see reviews by Chow et al. [111] and Anderson et al. [110]). Yet, it also

creates problems. Macromolecular crowding in the grana regions impedes processes that

require a high degree of molecular mobility [112]. This includes crucial processes such as state

transitions, the PSII repair cycle and other photoprotective mechanisms [113]. The molecular

mobility required for these processes is achieved by lumenal swelling and the partial or com-

plete destacking of membranes [113–116]. Membrane destacking is indeed observable in

higher plants [78, 117, 118] and Symbiodiniaceae [76, 77] as a response to heat and other envi-

ronmental stresses. However, the loss of membrane structure causes strong and abrupt reduc-

tions or even complete cessation of linear electron transport and thus photosynthetic yield

(i.e., Fv/Fm) [76, 77], likely due to spillover and increased non-photochemical quenching.

Thylakoids of coralline algae are never stacked. Processes requiring molecular mobility can

thus be expected to occur faster. Indeed, it appears that repair of PSII in cyanobacteria is faster

than in plants [119], as are state transitions, since PBSomes can move on the outside of the thy-

lakoid membrane [120]. Depending on the model [121], the latter might also occur much

more gradually and subtly. In addition, modification of proteins (e.g., antenna proteins) and

insertion of new proteins could occur faster, since ribosomes can access membranes, so facili-

tating responses to environmental change. Furthermore, the structural integrity of thylakoids

is continuously preserved, which appears to be tightly linked with the ability to tolerate heat

and other stresses in corals and plants [76–78, 117, 118].

5 Conclusion

Our results demonstrate the tolerance of four coralline algal morphotypes to ocean warming

and marine heatwaves. We attribute this to their photosynthetic apparatus, which was seem-

ingly unaffected by the applied heat stress. Stable photosynthetic efficiency (Fv/Fm) and elec-

tron transport rates indicate neither photodamage nor increased non-photochemical

quenching from photoprotective mechanisms. Calcification thus also remained quite stable

and insensitive to the treatments. Experimental evidence presented here and elsewhere there-

fore implies that coralline algae are likely to be able to continue to play their important ecologi-

cal roles in a warming ocean. However, crucial information is lacking. For example, the

impact of OW and MHWs on early life stages is not known as is the interaction of these stress-

ors with ocean acidification and changes in light intensity. Little understood is also the role of

temperature variability in shaping responses to OW and MHWs. In addition, the scientific

community should begin to explore how the duration, intensity, and rate of temperature

increase impact the responses to marine heatwaves. Unexplored are also the underlying mech-

anisms that determine sensitivity to heat stress in coralline algae and other seaweed. Future

research should provide this information, to reduce uncertainty regarding the fate of coralline

algae and other marine micro- and macrophytes in a warming ocean. Notwithstanding, our

results support the emerging picture that coralline algae are more robust to these anthropo-

genic drivers than other photoautotrophs and foundation species.
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S1 Text. Data underlying this study are available at Dryad: https://doi.org/10.5061/dryad.
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S1 Fig. Pictures showing the morphology of the four study species/species complexes.

Please note the morphological differences between the two Corallina morpho-types. Corallina
complex 2 from the shallow subtidal (<50cm) was smaller and more stunted/compact than

Corallina complex 1 which was collected slightly deeper (1-2m) (Photos: Erik C. Krieger).

(DOCX)

S2 Fig. Long-term (1st Jan. 1982–31st Dec. 2020) mean sea surface temperature around

New Zealand in March. Blue dot indicates position for which local climatology was calculated

(see S3 Fig). Plot was created using satellite derived data. Shoreline data was downloaded from

http://www.soest.hawaii.edu/pwessel/gshhg/.

(DOCX)

S3 Fig. a) “Lollipop” plot showing marine heat waves (represented by maximum intensities)

for Wellington (see S2 Fig). Dashed line indicates the MHW intensity chosen for this experi-

ment (2.7˚C). b) Local climatology for Wellington for the period between 1st Jan. 2017 and 1st

Jan. 2019. Solid grey line indicates the long-term mean. Temperatures above the 90% climato-

logical average (solid green line) that persisted for over 5 days (= MHW) are highlighted in

red. Dashed grey lines indicate the ambient temperature selected (~16˚C) for this experiment

that usually occurs at the time of collection in March (NZ late summer/early autumn). Both

plots were created using satellite derived daily sea surface temperatures from 1st Jan. 1982 to

31st Dec. 2020 and the R package “heatwaveR”.

(DOCX)

S4 Fig. Schematic of the experimental setup. Colour code for treatments will be used in other

figures in the remainder of the text.

(DOCX)

S5 Fig. Diel temperature variation in the four treatments (dark-grey = ambient; light-

grey = amb.+MHW, coral = future, dark-red = fut.+MHW) measured using temperature

loggers. Points indicate individual values (logging interval 5 minutes). Please note: logger data

was randomly selected from different days after the impact phase (t6–t8). Drop in temperature

in the future treatment due to cleaning activities. During these 25 minutes organisms were

kept in a different tank containing warmer water.

(DOCX)

S6 Fig. Diel pHT variation in the four treatments (dark-grey = ambient; light-grey = amb.

+MHW, coral = future, dark-red = fut.+MHW). Points show mean pHT (±SE) measured

over the course of the experiment at different times of the day (n = 88 for each treatment).

(DOCX)

S7 Fig. Temperature variability at the collection site. Dots indicate daily mean temperature.

Upper and lower grey bars represent daily temperature maxima and minima.

(DOCX)

S8 Fig. Mean photosynthetic efficiency (Fv/Fm) of Corallina/Arthrocardia “robust”, Coral-
lina complex 1, Corallina complex 2 and Phymatolithopsis complex during the pre-impact

phase in the different treatments. Points show individual values. Solid line indicates the

median, box shows the interquartile range (IQR) and the whiskers are 1.5×IQR. Colours indi-

cate treatments (dark-grey = ambient [16˚C]; light-grey = amb.+MHW [16˚C+2.7˚C at t5],

coral = future [18.7˚C], dark-red = fut.+MHW [18.7˚C+2.7˚C at t5]).

(DOCX)
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S9 Fig. Light use efficiency (α) in Corallina/Arthrocardia “robust”, Corallina complex 1, Cor-
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vidual values. Solid line indicates the median, box shows the interquartile range (IQR) and the

whiskers are 1.5×IQR. Colours indicate treatments (dark grey = ambient [16˚C]; light-

grey = amb.+MHW [16˚C+2.7˚C at t5], coral = future [18.7˚C], dark-red = fut.+MHW

[18.7˚C+2.7˚C at t5]). “Pre”, “imp” and “rec” denotes the three experimental phases (pre-
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