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Abstract

The increasing frequency of mass coral bleaching and associated coral mortality threaten

the future of warmwater coral reefs. Although thermal stress is widely recognized as the

main driver of coral bleaching, exposure to light also plays a central role. Future projections

of the impacts of climate change on coral reefs have to date focused on temperature change

and not considered the role of clouds in attenuating the bleaching response of corals. In this

study, we develop temperature- and light-based bleaching prediction algorithms using his-

torical sea surface temperature, cloud cover fraction and downwelling shortwave radiation

data together with a global-scale observational bleaching dataset observations. The model

is applied to CMIP6 output from the GFDL-ESM4 Earth System Model under four different

future scenarios to estimate the effect of incorporating cloudiness on future bleaching fre-

quency, with and without thermal adaptation or acclimation by corals. The results show that

in the low emission scenario SSP1-2.6 incorporating clouds into the model delays the

bleaching frequency conditions by multiple decades in some regions, yet the majority

(>70%) of coral reef cells still experience dangerously frequent bleaching conditions by the

end of the century. In the moderate scenario SSP2-4.5, however, the increase in thermal

stress is sufficient to overwhelm the mitigating effect of clouds by mid-century. Thermal

adaptation or acclimation by corals could further shift the bleaching projections by up to 40

years, yet coral reefs would still experience dangerously frequent bleaching conditions by

the end of century in SPP2-4.5. The findings show that multivariate models incorporating

factors like light may improve the near-term outlook for coral reefs and help identify future cli-

mate refugia. Nonetheless, the long-term future of coral reefs remains questionable if the

world stays on a moderate or higher emissions path.

1 Introduction

Climate change is a key risk for coral reefs [1,2]. Tropical corals are composed of coral polyps

and microalgal symbionts living within the corals’ tissue which provide up to 95% of their pho-

tosynthetic products to the coral [3]. This symbiotic relationship can be disrupted by increases

in ocean temperatures of as little as 1–2˚C above those usually experienced in summer, result-

ing in the phenomenon known as coral bleaching [2,4]. Climate change has led to more

PLOS CLIMATE

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000090 February 8, 2023 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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frequent and more extreme mass coral bleaching events worldwide over the last four decades,

and widespread loss of living corals [2,5,6]. Moreover, coral reefs have been projected to face

dangerously frequent bleaching conditions by mid-century, even in a 1.5˚C warming scenario

[7,8].

The heterogeneity of coral responses to environmental stress represents a challenge for pre-

dicting mass coral bleaching events in real-time and for projecting the response of corals to cli-

mate warming [9,10]. In addition to thermal or heat stress, other stressors such as solar

radiation, turbidity, salinity, air exposure, or pollution can effect the coral-algal relationship

[11–13]. Although elevated temperature is often reported as the primary cause of mass coral

bleaching, the interaction between temperature and other environmental variables modulates

the bleaching response [14]. Light exposure in particular plays a central role for corals [15,16].

Light is critical to coral growth but excess exposure can inhibit or damage the photosynthetic

processes of the microalgal symbionts [17–19]. High irradiance, when coupled with high tem-

peratures, can disrupt the balance between light absorption and electron transport rates, pro-

moting the production of reactive oxygen species (ROS) that can trigger photoinhibition,

impair the photosynthetic apparatus of the microalgal symbionts [20] and, in turn, exacerbate

thermal stress [15,16,21]. Moreover, the reductions in zooxanthallae pigment density and

increased light absorption can cause a positive feedback which worsens the effects of elevated

temperatures [22]. To minimize the potential photodamage due to excess light, corals and

their symbionts have acclimation strategies including regulating the density of symbionts and/

or the ratio of photosynthetic pigments [23], restructuring their skeletal morphologies [24],

hosting different Symbiodinium species [25,26] or increasing antioxidant contents [27].

While light reaching the surface of the corals is modulated by properties of seawater itself,

field observations indicate that clouds can reduce the amount of incoming solar radiation and

limit the effects of thermal stress on corals [28–31]. A recent global analysis found that incor-

porating cloud cover can improve the accuracy of mass coral bleaching prediction [32]. While

models are beginning to include evolutionary [33] and ecological processes [34,35] in project-

ing the future of coral reefs, the forcing variables in those models are generally still restricted

to temperature. There has yet to be an analysis of the integrated effect of thermal stress, solar

radiation and cloudiness on future bleaching conditions.

In this study, we test for the first time whether including cloudiness in coral bleaching pro-

jections models affects the projected frequency of mass coral bleaching conditions at regional

and global scales under climate change. First, building on previous work [32], we use a histori-

cal mass bleaching dataset to develop a new bleaching prediction algorithm incorporating

thermal stress and cloudiness that are designed for use with climate model output. Second, we

contrast the projected frequency of mass coral bleaching through the year 2100 with and with-

out the role of clouds under four future scenarios, using CMIP6 output from the GFDL-ESM4

Earth System Model. To test for robustness, the analysis is repeating using an algorithm incor-

porating incoming shortwave radiation rather than cloudiness. Finally, we assessed whether

thermal adaptation or acclimation by corals and their symbionts could influence the role of

clouds in future bleaching projections. The results indicate that incorporating light, in the

form of either cloudiness or incoming shortwave radiation, can delay bleaching projections in

low-to-moderate emissions scenarios and help identify future climate refugia.

2 Methods

2.1 Historical bleaching reports

The coral bleaching data used in this study were derived from version 2.0 [36] of a high-resolu-

tion global mass coral bleaching database [6] that includes reports through the year 2017. Each
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report includes a categorized bleaching severity from levels 0 to 3 based on the protocol of

ReefBase, where category 0 refers to no bleaching (<1% of observed living coral area is

bleached), category 1 refers to mild bleaching (1–10% bleached), category 2 refers to moderate

bleaching (11–50% bleached) and category 3 refers to severe bleaching (>50% bleached). To

align with the available historical high-resolution climate data [see sections 2.2 & 2.3], we

focused on all bleaching reports from 2001 through 2017 (n = 33,768) which reported the

month or date of observation.

2.2 Historical sea surface temperature and thermal stress

To describe historical coral thermal exposure, sea surface temperature (SST) data from 0.05˚ x

0.05˚ lat-long resolution CoralTemp V3.1 [37] was used to compute the Degree Heating

Month (DHM) value corresponding to each coral bleaching report in the database. The DHM

is a monthly-scale version of the Degree Heating Week index used in real-time bleaching pre-

diction; the monthly rather than weekly index from [32] is employed in order to develop an

algorithim that aligns with the available resolution of most archived climate model output

[38–40]. Here, DHM is computed by summing the SST anomaly in excess of the maximum

monthly mean (MMM), a maximum value from a climatology, over a 3-month rolling window

[7,40,41] using the following formula:

DHM ¼
X3

i¼1

max½ðSSTi � MMMMaxÞ; 0�

The MMMMax [42], represents the mean of the warmest monthly SST from each year dur-

ing the period 1985–2004 calculated for each grid cell. The MMMmax is a variation of the

MMM threshold that is used in recent models [33,40] because it better characterizes the

bleaching threshold in regions where the timing of the seasonal peak in SST varies from year

to year.

2.3 Historical cloudiness and incoming radiation

To represent the amount of light energy that corals receive, 1˚ x 1˚ lat-long total cloud area

(CLT) and incoming shortwave radiation at the surface data (represented by the variable

downwelling shortwave radiation or RSDS) for the 2001–2017 period were retrieved from

CERES project (CERES-EBAF Edition 4.0; [43,44]). Since corals acclimate to background light

conditions, monthly anomalies for each variable (CLTa, RSDSa) were computed by subtract-

ing monthly values from their respective 2001–2017 monthly climatologies [32]. This data can

be used to test the hypothesis that exposure to excessive light (i.e. positive RSDSa or incoming

shortwave radiation anomaly) for a given location and time of year due to anomalously low

cloud cover (i.e. negative CLTa or total cloud area anomaly) correlates with higher bleaching

severity, and vice versa. Using the RSDSa and the CLTa data provided two different methods

for characterizing incoming light in a bleaching prediction algorithm. The effect of each vari-

able was tested separately as a check on the robustness of the underlying hypothesis that incor-

porating light influences the accuracy of bleaching prediction.

2.4 Bleaching prediction model development

We used the historical bleaching observations together with the climate variables to develop

three different bleaching prediction models by performing mixed-effect models with a random

effect structure (lmerTest package in R [45]). In the first or control model, only thermal stress

(DHM) was used as a fixed effect, with geographical position set as a random intercept to
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control the spatial structure in the data. In the other two models, thermal stress (DHM) and

either cloud anomaly (CLTa) or incoming shortwave radiation anomaly (RSDSa) were used as

fixed effects, with geographical position again set as a random intercept.

The models also include an interactive term, as follows:

Severity ¼ b0 þ b1X1 þ b2X2 þ b12X12

Where:

severity = is the predicted value of the projected severity of bleaching

β0 = is the severity intercept

β1X1 = the regression coefficient (β1) of the first independent variable (e.g., DHM)

β2X2 = the regression coefficient of the second independent variable (e.g., CLTa, the total

cloud cover anomaly)

β12 X12 = the regression coefficient (β12) of the interaction of both variables (e.g., DHM:

CLTa)

Latitude was selected to represent geographical position, because sensitivity analyses perfor-

medwith latitude, longitude, and both latitude and longitude as random intercepts produced

similarresults (Table A in S1 Text).

To assess the performance of the bleaching prediction models we computed the accuracy

(the percentage of correctly classified instances out of all instances) but also the Cohen´s

Kappa (the difference between the observed overall accuracy of the model and the overall accu-

racy that can be obtained by chance) for which higher values represent better model perfor-

mance ([46]).

2.5 Future projections

We applied the two multiple variable bleaching severity models (Section 2.4) to 1985–2100 out-

put from the Geophysical Fluid Dynamics Laboratory’s ESM4 model (GFDL-ESM4) for four of

the socio-economic pathways (SSPs) employed by the climate modelling community. Analysis

was conducted for all the 1˚ x 1˚ lat-long model cells worldwide containing coral reefs, accord-

ing to the Millennium Coral Reef Mapping Project [47]. The GFDL-ESM4 model was selected

because it has moderate climate sensitivity (1.6˚C for transient climate sensitivity and 2.6˚C for

equilibrium climate sensitivity) among ESMs and coupled ocean-atmosphere general circula-

tion models (GCMs) from the Coupled Model Intercomparison Project 6 (CMIP6; [48]).

The workflow was as follows: independent variables (DHM, CLTa, RSDSa) required by the

bleaching severity models (Section 2.4) were computed from GFDL-ESM4 output. Monthly

values for the SST, total cloud area (CLT) and incoming shortwave radiation at the surface

(RSDS) at 1˚ x 1˚ lat-long grid resolution were retrieved from the https://esgf-node.llnl.gov/

search/cmip6 node for the four SSPs described above and from a historical all-forcing simula-

tion. Historical (1985–2014) and projected (2015–2100) output data were concatenated to cre-

ate a complete-time series. As is common in climate change impacts research, we corrected for

biases in model output (Fig A in S1 Text) using the delta method [49]; raw output for SST,

CLT and RSDS were adjusted by adding the model anomalies (simulated projected values–

simulated historical climatology) to the observed climatologies for respective variables. The

adjusted SST values were then used to compute a DHM time series, using the method

described in Section 2.2, and the adjusted CLT and RSDS values were used to compute the

total cloud area anomaly (CLTa) and the incoming shortwave radiation anomaly (RSDSa)

time series, as described in Section 2.3.

For each grid cell containing coral reefs, we used the coefficients from the bleaching projec-

tion models (Section 2.4) to compute the projected bleaching severity based on the computed
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DHM, CLTa or RSDSa time series (1985–2100). Given the documented uncertainty in model

cloud projections [50], a sensitivity analysis was performed in which the bleaching severity cal-

culations were repeated using projected DHMs but observed CLTa and RSDSa from the clima-

tology rather than the projected values.

To assess the effects of incorporating cloudiness on future projections of coral bleaching

frequency and severity, the results from the bleaching severity models are compared to that of

the common DHM-only method used in past climate change projection studies. Past studies

used a threshold of DHM� 2˚C�month to indicate the likelihood of occurrence of severe

bleaching conditions [33,38–40]. Here, a threshold of DHM� 2.5˚C�month was employed,

since the DHM� 2˚C�month threshold tends to overpredict the bleaching frequency when

interacting with another variable (Fig B in S1 Text), i.e. even though cloudiness anomalies

reduce bleaching severity, it depends on its magnitude and the interaction effect with DHM

[32]. Following previous studies, we express results in terms of year that the probability of

bleaching conditions in each grid cell exceeds 0.2 (bleaching occuring more than twice per

decade) [33,39,40] and the year that bleaching conditions in each grid cell become an annual

occurrence (p = 1) van Hooindonk [38]. In those results, the year refers to the midpoint of a

10-year running analysis, e.g., for bleaching probability for the year 2020 is based on occur-

rences from the period 2015–2024.

To examine if thermal adaptation or acclimation by corals,their algal symbionts or human

interventions [51–54] changes the effect of incorporating cloudiness on bleaching projections,

a series of simple additional sensitivity analyses were conducted. The bleaching projections

were recomputed three times, assuming a +0.5˚C, +1.0˚C and +1.5˚C adjustment in the

threshold above which thermal stress accumulates (MMMmax), following estimates of maxi-

mum likely adaptation employed in previous projection studies [33,39]. For example, if the

thermal threshold is estimated to be 29.5˚C (for a certain moment), it is expected that some

corals would bleach under these conditions, while some others would resist because their

threshold is 0.5˚C higher (30˚C) due to natural physiological acclimation, assisted evolution or

other mechanisms.

Finally, to explore the temporal and spatial change in cloudiness but also to visualize the

magnitude of the change between scenarios we compared the total cloud trend (CLTtrend), for

the period 2015–2100.

All data retrievals, processing and statistical tests were conducted using Python (version

3.7.4), R project (version 3.6.3), Climate Data Operators (CDO; version 1.9.8) and ArcGIS Pro

(version 2.6).

3 Results

The mixed-effects regression analysis showed that models including both thermal stress

(DHM) and one of the variables representing incoming light (CLTa or RSDSa) were stronger

predictors of bleaching severity than the DHM-only control model (Table 1).

For the cloud model, the negative correlation between bleaching severity and CLTa (total

cloud cover anomaly) indicates that at a given level of thermal stress, the severity of bleaching

decreases with higher cloudiness (Table 1). As expected, the results for solar radiation model

showed an opposite pattern, where both DHM and RSDSa (incoming solar radiation anomaly)

were significantly positively correlated, which means that, for a given DHM value, the bleach-

ing severity is higher with a higher incoming short-wave radiation anomaly (i.e., fewer clouds).

Since both the cloud and incoming solar radiation models confirm the hypothesis that higher

clouds (less light) modulate the response of corals to thermal stress, and the accuracy and

Kappa of two models are similar, we focus the remainder of the results on the cloud model.
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In the future projections, the cloud model showed a lower fraction of reef cells experiencing

high frequency bleaching conditions in all four scenarios when compared against the DHM-

only model (Fig 1). In both cases, the effect is greatest in the lower emissions scenarios and

before or around mid-century; it is maintained through 2100 only in SSP1-2.6 (Fig 1A–1D;

Table B in S1 Text). To test whether the results are sensitive to model projected changes in

cloudiness, all analyses were repeated using the CLTa from the observed climatological period

(2001–2014) instead of the projected values. The effect of employing observed CLTa on the

projected bleaching conditions were minimal at the global scale in all scenarios (Fig C and Fig

D in S1 Text for RSDSa).

Table 1. Mixed-effects model coefficients for the models using DHM + Cloud (CLTa) or Solar radiation (RSDSa) metrics.

Model name Variables Relation Coefficients p-value Accuracy Kappa

DHM-only (control) DHM + 7.787e-01 < 2e-16 0.520 0.269

Cloud (DHM-CLTa) DHM

CLTa

DHM:CLTa

+

-

+

7.796e-01

-3.108e-03

2.662e-03

< 2e-16

6.28e-06

0.00341

0.803 0.710

Solar radiation (DHM-RSDSa) DHM

RSDSa

DHM:RSDSa

+

+

-

7.786e-01

2.480e-03

-3.208e-04

< 2e-16

5.41e-09

0.57

0.801 0.710

https://doi.org/10.1371/journal.pclm.0000090.t001

Fig 1. Comparison of percent of global reef cells predicted to experience high-frequency bleaching under four SSP

scenarios by 2100, using the GFDL-ESM4 model with delta correction for all variables. High-frequency bleaching is

defined as a reef cell that experiences bleaching conditions at least twice in the surrounding ten years. Shades represent

the 95% confidence interval window. The “cloud” model corresponds to the model that includes thermal stress and

cloud anomaly metrics (DHM-CLTa).

https://doi.org/10.1371/journal.pclm.0000090.g001
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Incorporating cloudiness most substantially reduces the projected frequency of bleaching

conditions for mid-century in parts of the Coral Triangle, South Pacific, Northern Hawaii,

Caribbean, Red Sea and East Africa in SSP1-2.6 scenario (Fig 2A–2C). On the other hand, the

choice of prediction method has little impact on regional patterns in projected frequency of

bleaching conditions under the high emission scenario SSP5-8.5 (Fig 2E, 2F and 2H). In the

SSP5-8.5 scenario, the bleaching condition frequencies are on average lower in 2050 using the

cloud model, however bleaching conditions still occurs annually (frequency = 1) across most

of the Caribbean, Coral Triangle, Red Sea, Persian Gulf, western equatorial Pacific, Coral Sea,

southern Gulf of California, eastern tropical Pacific and eastern Brazilian reefs (Fig 2E–2G).

Simulated thermal adaptation or acclimation considerably restricts the occurrence of the

high frequency bleaching conditions in all four scenarios (Fig 3). In the low emissions scenario

SSP1-2.6, the hypothetical adjustment of +0.5˚C in addition to the cloudiness protection is suf-

ficient for <50% of coral reefs to face high-frequency bleaching conditions this century (Fig

3A). In the moderate SSP2-4.5 emission scenario, the onset of high-frequency bleaching condi-

tons for most reefs is delayed for a decade or more by and adjustment of +0.5˚C, but 100% of

Fig 2. Geographical distribution of projected frequency of bleaching conditions for the year 2050 in scenarios SSP1-

2.6 and SSP5-8.5 using the DHM-only (A,B,E,F) and the cloud model (C,D,G,H). The cloud model corresponds to the

model that includes thermal stress and clouds anomaly metrics (DHM-CLTa). This figure uses a public domain map

from the Natural Earth data website.

https://doi.org/10.1371/journal.pclm.0000090.g002
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reef cells would still experience bleaching conditions twice per decade before the end of the

century, around 2080 (Fig 3B). If an adjustment of +1˚C to +1.5˚ C occurs, the delay in the

onset of high-frequency bleaching conditions would be up to 40 years in SSP3-4.5 (Fig 3B). In

contrast, in the higher emissions scenarios, SSP3-7.0 and SSP5-8.5, high-frequency bleaching

conditions is only delayed by two to three decades even with the high adjustment assumption

(+1.5˚C), and all reefs cells still experience high-frequency bleaching conditions by the end of

the century (Fig 3C and 3D).

Fig 3. Percent of global reef cells predicted to experience high frequency bleaching conditions (more than twice in ten years, or p>0.2) assuming the

presence of thermal adaptation, acclimation or human interventions that raise the bleaching threshold. The cloud model corresponds to the model that

includes thermal stress and clouds anomaly metrics (DHM-CLTa). A) SSP1-2.6, B) SSP2-4.5, C) SSP3-4.5, D) SSP5-8.5.

https://doi.org/10.1371/journal.pclm.0000090.g003
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Finally, the total cloud trend (CLTtrend) shows the spatial patterns in simulated “total cloud

area” (CLT). It illustrates typical projected global cloud pattern changes due to internal climate

variability and their potential influence on future bleaching projections (Fig 4A–4D). Areas of

positive CLTtrend indicate regions where including clouds in the bleaching prediction algo-

rithm could most influence future bleaching projections. This pattern is similar to the SSP1-

2.6 and SSP5-8.5 scenarios and supports the present-day “cloudy refugia” index map described

in previous research [32]. However, it is also evident that the spatial pattern in the trend shifts

from being positive (SSP1-2.6) to very positive with higher values across the equatorial Pacific

(SSP5-8.5) reducing, thus, the possible protection of clouds in high emission scenarios.

4 Discussion and conclusions

Ocean warming has been clearly documented as the key driver of the observed increase in

mass coral bleaching events over the last four decades [2,5,6]. However, geographical patterns

in mass coral bleaching are increasingly being linked to multiple environmental variables

including, but not restricted, to temperature [9,55–57]. Global coral bleaching projections,

including those driving summary statements in the recent Intergovernmental Panel on Cli-

mate Change reports [58,59], have nevertheless relied on model-based estimates of bleaching-

level thermal stress [7,8,38,39,60]. Although there have been recent advances in projecting

coral ecological and evolutionary responses to climate change [33–35],the location of potential

future climate refuges [61], such large-scale projections are still largely reliant on temperature

as the independent variable. Those hindcast or smaller scale projection studies which included

multiple environmental variables have generally excluded light.

Fig 4. Cloud trends (CLTtrend) for the period 2015–2100 (units: % cloudiness/yr). The dots indicate sites with significance level of p-value< 0.05. This

figure uses a public domain map from the Natural Earth data website. A) SSP1-2.6, B) SSP2-4.5, C) SSP3-4.5, D) SSP5-8.5.

https://doi.org/10.1371/journal.pclm.0000090.g004
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Here, we find that incorporating cloud cover into global projections can delay the onset of

high frequency bleaching conditions, based on the documented effect that clouds have had on

mitigating against thermal stress. For example, in the most optimistic scenario analyzed in this

study, SSP1-2.6, clouds could delay the onset of high-frequency bleaching by multiple decades,

although the majority of the world’s reefs still experience dangerously frequent bleaching con-

ditions by the end of the century (~90% of reef cells with the DHM-only model vs. ~70% with

the cloud model). However, the results from higher emissions scenarios point to a limit to the

mitigating effect of clouds, as the capacity for DHM to increase exceeds that of clouds (i.e. the

model incorporates cloud cover, which has a maximum value of 100%). Even in the moderate

scenario SSP2-4.5, more than 95% of reef cells would experience high frequency bleaching

conditions by 2050 (Fig 1).

Bleaching conditions are projected to become dangerously frequent across time and space

in the absence of adaptation, physiological acclimation, shifts in coral community structure or

human interventions like active restoration or assisted evolution [58,62]. More advanced mod-

els have found that incorporating evolutionary processes [33,40,63] or population dynamics

[34,35] improves the forecast for the world’s coral reefs. The coarse adaptation sensitivity test

applied here finds that the mitigating effect of clouds increases assuming some positive adjust-

ment of the thermal threshold for corals, but that this mitigating effect of clouds is still limited

in moderate or high emissions scenarios. For example, in the moderate emission scenario

SSP2-4.5, the cloud effect combined with a +1.5˚ C increase in the bleaching thresholds still

leads to ~75% of reef cells experiencing bleaching conditions at least once every five years by

the end of the century (Fig 3B). Although this research does not incorporate ecological or evo-

lutionary processes, the difference in the projected bleaching frequencies between simulations,

including cloud effects and both cloud effects and adaptation or acclimation, highlight the

importance of considering additional driving variables in climate change impact projections.

Moreover, results from studies like this could help to reinforce the accomplishment of the

objective of curbing greenhouse gas emissions to tackle climate change.

Consideration of additional driving variables, like incoming light and clouds, is particularly

critical for identifying potential climate change refugia. These projections agree with past work

[32] finding that the central and south Pacific, including parts of French Polynesia, and the

central equatorial Pacific, including the Republic of Kiribati’s Gilbert Islands, the Phoenix

Islands and Line Islands, are regions where coral reefs have the highest likelihood of some

cloud protection during future thermal stress. Although these regions are still at risk, and have

experienced extensive bleaching events, field evidence does confirm that cloudiness may there

have reduced coral response to past thermal stress events [28,31]. Coral bleaching is often asso-

ciated with extreme ENSO conditions, the enhanced convective activity in these parts of the

Pacific, associated with anomalously warm SSTs, also drive cumulus cloud development [64].

An additional consideration, not included in this study, is that light reaching the coral surface

can also be influence by turbidity which increases light attentuation in the water column [65].

A study based on present-day turbidity concluded that parts the Coral Triangle, Northern

Great Barrier Reef, or some Indian Ocean reefs in Kenya and Tanzania may receive protection

from thermal stress [66]. Notably, the potential refugia identified in these models incorporat-

ing light differ from those identified in studies only employing thermal stress [39,61].

This analysis provides the first assessment on how the interaction of thermal stress and

solar radiation could influence the response of coral reefs at regional and global scales to cli-

mate change. Although output from only one ESM was employed to test the hypothesis that

including cloudiness would alter future bleaching projections, the similarity between the

results using observed vs. model projected cloudiness suggests that the simulated influence of

clouds on bleaching projections would be broadly similar with other models. In reality, at the
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local level, the effect of clouds on bleaching likelihood will depend on factors like cloud height,

cloud composition, and light attenuation in the water column, which vary at finer spatial reso-

lution than models can simulate. The negative feedback whereby high SST can enhance con-

vection and low-level cloudiness, which then reduces downward short-wave radiation, may

protect some low latitude reefs, as has been observed in Kiribati [28]. Further analyses incorpo-

rating cloud types, temperatures, height, and radiative properties for different regions would

unveil fine-tuned responses of corals due to thermal stress and cloudiness. Performing an anal-

ysis using fine-scale variability of cloud type and other properties could be done as a case study

in a location with high resolution bleaching severity data (e.g., the Mesoamerican Barrier Reef

System or the Great Barrier Reef). Notwithstanding, while a limitation of this research is that

cloud properties (like mentioned above) were not considered our findings broadly show that

clouds may spare some coral reefs from dangerously frequent bleaching conditions in the near

term. Even with the mitigating effect of clouds, this study finds that coral reefs remain under

existential threat in the long-term without sharp reductions in greenhouse gas emissions.
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2. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, et al. Global

warming and recurrent mass bleaching of corals. Nature [Internet]. 2017; 543(7645):373–7. Available

from: https://doi.org/10.1038/nature21707 PMID: 28300113

PLOS CLIMATE Cloudiness delays projected impact of climate change on coral reefs

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000090 February 8, 2023 11 / 15

http://journals.plos.org/climate/article/asset?unique&id=info:doi/10.1371/journal.pclm.0000090.s001
https://doi.org/10.1016/j.tree.2018.09.006
https://doi.org/10.1016/j.tree.2018.09.006
http://www.ncbi.nlm.nih.gov/pubmed/30385077
https://doi.org/10.1038/nature21707
http://www.ncbi.nlm.nih.gov/pubmed/28300113
https://doi.org/10.1371/journal.pclm.0000090


3. Yellowlees D, Rees TAV, Leggat W. Metabolic interactions between algal symbionts and invertebrate

hosts. Plant Cell Environ [Internet]. 2008; 31(5):679–94. Available from: https://doi.org/10.1111/j.1365-

3040.2008.01802.x PMID: 18315536

4. Glynn PW, D’Croz L. Experimental evidence for high temperature stress as the cause of El Niño-coinci-

dent coral mortality. Coral Reefs [Internet]. 1990; 8(4):181–91. Available from: http://dx.doi.org/10.

1007/bf00265009.

5. Heron SF, Maynard JA, van Hooidonk R, Eakin CM. Warming trends and bleaching stress of the world’s

coral reefs 1985–2012. Sci Rep [Internet]. 2016; 6(1). Available from: https://doi.org/10.1038/

srep38402 PMID: 27922080

6. Donner SD, Rickbeil GJM, Heron SF. A new, high-resolution global mass coral bleaching database.

PLoS One [Internet]. 2017; 12(4):e0175490. Available from: https://doi.org/10.1371/journal.pone.

0175490 PMID: 28445534

7. Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner SD, et al. Limiting global warming to

2˚C is unlikely to save most coral reefs. Nat Clim Chang [Internet]. 2013; 3(2):165–70. Available from:

http://dx.doi.org/10.1038/nclimate1674.

8. Schleussner C-F, Lissner TK, Fischer EM, Wohland J, Perrette M, Golly A, et al. Differential climate

impacts for policy-relevant limits to global warming: the case of 1.5˚C and 2˚C. Earth Syst Dyn [Internet].

2016; 7(2):327–51. Available from: http://dx.doi.org/10.5194/esd-7-327-2016.

9. McClanahan TR, Darling ES, Maina JM, Muthiga NA, D’agata S, Jupiter SD, et al. Temperature pat-

terns and mechanisms influencing coral bleaching during the 2016 El Niño. Nat Clim Chang [Internet].

2019; 9(11):845–51. Available from: http://dx.doi.org/10.1038/s41558-019-0576-8.

10. Sully S, Burkepile DE, Donovan MK, Hodgson G, van Woesik R. A global analysis of coral bleaching

over the past two decades. Nat Commun [Internet]. 2019; 10(1):1264. Available from: https://doi.org/10.

1038/s41467-019-09238-2 PMID: 30894534
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