Function	Family	Number of genes in A.thaliana	Number of genes in <i>O.sativa</i>	Number of genes in <i>M.oryzae</i>	Number of gene in <i>S.cerevisiae</i>
Biosynthesis	IPT	7 ^{1,2,3}	8 ^{11,12}	not found	not found
	tRNA-IPT	2 ^{4,5}	2 ¹¹	1 ^b	1 ^c
	LOG	9 ⁶	11 ¹¹	1 ^b	1 ^c
	CYP735A	2 ⁷	2 ¹¹	difficult to identify	2 ^c
	AK	2 ⁸ (3 TAIR)	4 ^a	1 ^b	1 ^c
Degradation	СКХ	7 ⁹	11 ¹¹	a lot of enzymes with a putative oxidase activity were found but their role in CKs metabolism is still unclear in fungi	
Transduction signaling	HKs and related proteins	16 ¹⁰	14 ¹³	10 ^{14, 15, 16}	1 ^{18,c}
	HPts	6 ¹⁰	5 ¹³	1 ^b	1 ^{18, 19c}
	RR-A	11 ¹⁰	22 ¹³ ; 10 ¹¹	1 ^{17, b}	1 ^{18, 20,c}
	RR-B	12 ¹⁰	7 ¹³ ; 13 ¹¹	1 ^{17, b}	1 ^{20,c}

¹Kakimoto, T. (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42, 677–685; ²Kakimoto, T. (2003) Biosynthesis of cytokinins. J. Plant Res. 116, 233–239; ³Takei, K. et al. (2001) Identification of Genes Encoding Adenylate Isopentenyltransferase, a Cytokinin Biosynthesis Enzyme, in Arabidopsis thaliana. J. Biol. Chem. 276, 26405–26410; ⁴Golovko, A. et al. (2002) Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Plant Mol. Biol. 49, 161–169; ⁵Miyawaki, K. et al. (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci.; ⁶Kuroha, T. et al. (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21, 3152–3169.; ⁷Takei, K. et al. (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J. Biol. Chem. 279, 41866–41872; 8 Moffatt, B. a et al. (2000) Adenosine kinase of Arabidopsis. Kinetic properties and gene expression. Plant Physiol. 124, 1775–1785; 9Schmülling, T. et al. (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J. Plant Res. 116, 241–52; ¹⁰Hwang, I. and Sheen, J. (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–9; ¹¹Tsai, Y.-C. et al. (2012) Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol. 158, 1666–84; ¹²Sakamoto, T. et al. (2006) Ectopic expression of KNOTTED1like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol. 142, 54–62; ¹³Pareek, A. et al. (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol. 142, 380–97; ¹⁴Dean, R. a et al. (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986; ¹⁵Motoyama, T. et al. (2005) A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet. Biol. 42, 200-212; ¹⁶Zhang, H. et al. (2010) A two-component histidine kinase, MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Curr. Genet. 56, 517–528; ¹⁷Motoyama, T. et al. (2008) Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Current Genetics. 54, 185-195; ¹⁸Posas, F. et al. (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86, 865–875; ¹⁹Xu, Q. and West, a H. (1999) Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1. J. Mol. Biol. 292, 1039–1050; ²⁰Li, S. et al. (1998) The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J. 17, 6952–6962