S3 Fig. Comparative analysis of the Sec7-capping domain of RalF proteins from species of *Legionella* and *Rickettsia*.

(A) Comparison of the crystal structure of Legionella pneumophila RalF (PDB 4C7P) [1] with the predicted structure of R. typhi RalF (RT0362). Modeling done with Phyre2 [2]. The delineation of the Sec7 domain (S7D, red) and Sec7-capping domain (SCD, green) is shown, with an approximation of the active site Glu (asterisk). The structural model presented in Fig. 2A does not include the terminal helix of the SCD, helix P. The alternative model presented here, wherein the 'NIR' insertion is shifted to align to 'NQK' of L. pneumophila, results in a 14 aa helix (DLKSKYDNIRNAKQ) that is still truncated relative to the 18 aa helix P of RalF_L. While a plausible model, the location of the 'NIR' insertion in our multiple sequence alignment is strongly supported (panel B). Two lines of evidence support a truncated helix P in RalF_R proteins. First, modeling of *R. bellii* RalF to RalF_L, which lacks the 'NIR' insertion, still results in a truncated helix P, QDLENYYNNPEQ, (S2 Fig.). Second, the recently solved LpRpRalF chimeric structure (L. pneumophila S7D fused to R. prowazekii SCD, PDB 4D7Q) yielded a truncated helix P consistent with our modeling for R. bellii [3]. As the extended C-terminal domain was proteolyzed and not included in the LpRpRalF structure, it is likely that all RalF_R proteins contain a truncated helix P that possibly diverges from RalF_R proteins to elaborate the extended Cterminal domain. Another distinguishing factor of most RalF_R proteins, except R. bellii, is an insertion (REDGKQP in R. typhi) located between beta strand 5 and helix O. The functional significance of this expanded loop, particularly its possible contacts made with the S7D, remains unknown. It is noteworthy that this loop is expanded in other RalF_L proteins. (B) Comparison of the SCD of Legionella and Rickettsia RalF proteins. Cladogram depicts the estimated phylogeny described in S2 Fig. The alignment shown for the SCD of RalF proteins was performed using MUSCLE (default parameters) [4]. The secondary structure of L. pneumophila RalF (PDB 4C7P) [1] is superimposed over the alignment. Conserved residues are highlighted yellow. Aromatic clusters comprising the membrane sensor region are enclosed in green boxes, with aromatic residues (Phe, Trp, Tyr) green and positively charged residues (Arg, His, Lys) blue. Following previous mutagenesis analysis of the SCD [1]: #, residues in RalF₁ (L. pneumophila) permuted to the corresponding RalF_R (R. prowazekii) and vice versa; ^, residues in RalF_L (L. pneumophila) permuted to the corresponding RalF_R (R. prowazekii) but not reciprocated. Three regions wherein the R. bellii RaIF SCD is more characteristic of RaIF_L proteins than RalF_R proteins are within red boxes. The highly conserved KATY motif, which contacts the Sec7 domain remote from the active site and is thought to function as a hinge for the conformational change that activates RalF [1], is colored black. Rickettsia RalF proteins are

distinguished with gray shading. NCBI GenBank accession numbers for all proteins are listed in **S2 Fig.** C) Emphasis on the SCD lipid sensor. The two aromatic clusters comprising the SCD lipid sensor are merged together, with highlighting as follows: five conserved residues, yellow; two residues comprised solely of positively charged residues, blue. Additionally, four residues conserved in positive charge (all Lys) for *Rickettsia* spp. are also highlighted blue and denoted with a red arrow over the alignment. One other residue strongly conserved in positively charged residues, but replaced with a Thr in all strains of *L. pneumophila* and *R. australis* str. Cutlack, is denoted above the alignment by a gray arrow. Although no positions within the lipid sensor are conserved in aromatic residues across all RalF proteins, RalF_L proteins are generally more aromatic. The lipid sensors of RalF_R proteins encompass a markedly higher ratio of positively charged lipids, particularly cardiolipin and the phosphoinositides PI(4,5)P₂ and PI(3,4,5)P₃ [5]. It is noteworthy to consider the drastic divergent biochemical profiles of *L. pneumophila* and *R. prowazekii* lipid sensors in light of the lower levels of aromatic residues and higher levels of positively charged residues for non-*pneumophila* species of *Legionella*.

References

- 1. Folly-Klan M, Alix E, Stalder D, Ray P, Duarte L V., Delprato A, et al. A Novel Membrane Sensor Controls the Localization and ArfGEF Activity of Bacterial RalF. PLoS Pathog. 2013;9. doi:10.1371/journal.ppat.1003747
- 2. Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4: 363–371. doi:10.1038/nprot.2009.2
- 3. Folly-Klan M, Sancerne B, Alix E, Roy CR, Cherfils J, Campanacci V. On the use of *Legionella/Rickettsia* chimeras to investigate the structure and regulation of *Rickettsia* effector RalF. J Struct Biol. 2014; doi:10.1016/j.jsb.2014.12.001
- 4. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792–1797. doi:10.1093/nar/gkh340
- 5. Alix E, Chesnel L, Bowzard BJ, Tucker AM, Delprato A, Cherfils J, et al. The Capping Domain in RalF Regulates Effector Functions. PLoS Pathog. 2012;8. doi:10.1371/journal.ppat.1003012

Α	L. pneumophila			R. typh	i 🎁		
	C Trees	Sec7 cap		C C		C	22
		domai	n C				
		S7D					
	C. C. C. C.	* active s	site		465 135°		4
В	_	l shakesneare		K			
		L. moravica L. p. p. Philadelphia 1	GYEFHSSILGDDP' GYELTSTTLNKDS'	TFIKLDSLLQST- TFKKLDSFLHSTD	ANPKGVFPHV-SADV VNINTVFPGI-GDNV	KASVDKPSSWLNVFTGYE KTTVDQPKSWLSFFTGYE	GTLT GTLT
		L. p. Lens L. p. Paris	GYELNSTTLNKDS GYELNSTTLNKDS GYELNSTTLNKDS'	FFKKLDSFLHSTL FFKKLNSFLYSTE FFKKLDSFLHSTE	OVNINTVFPGI-GDNV DANINTVFPGI-GDNV DVNINTVFPGI-GDNV	KTTVDQPKSWLSFFTGIK KTTVDQPKSWLSFFTGIK KTTVDQPKSWLSFFTGI	GTIT (GTIT (GTIT
		L. p. Leg01/11 L. longbeachae NSW150 L. sainthelensi	GYELNSTTLNKDS' GYLLTSSTLDDDL GYLLTSSTLDNDC	TFKKLDSFLHSTE MFKKLDLLLQSSI M <mark>F</mark> KELDLLLQSPI	DVNINTVFPGI-GDNV STTEEIFPEI-ADNI SKIQKIFPEL-ADNI	KTTVDQP KSWLSFFTGY K TVTFD KPKAWLKAFIGY F NITL <mark>VKPKAWL</mark> KT FT<mark>G</mark>YF	IGTIT IGTIK I <mark>G</mark> TIK
		R. bellii RML369-C R. bellii OSU 85-389 R. felis URRWXCal2	GYEIAGISSQNDK GYEIAGISSQNDK GYEIDNISSONDO	P <mark>F</mark> KK <mark>L</mark> DDFLTAK- PFKKLDDFLTAK- PFKKLSKFLEEK-	·TDINNVFSNL-GNNV ·TDINNVFSNL-GNNV ·RNIODVFPKLONNNI	TAQHKQPKTWLNKFTGYE TAQHKQPKTWLNKFTGYE TAEFKNPKTLLNKFTGYE	: <mark>G</mark> SVS :GSVS :GSVI
	• .91-1 • .8190	R. akari Hartford R. australis Cutlack	GYEIYNISSQNDQ GYEIDNISSQNDQ GYOINNISSONDK	FKKLNKFLEEK- FKKLNKFLKET-	STIQDVFSKLONNNI RNIQDSFSKLONNNI	TAEFKNPKTLLNKFTGYE TAEFKNPKTLLNKFTGYE	SVI SVI SVI
	• .7180 • .6170 • .5160	R. prowazekii GvV257 R. prowazekii Madrid E	GYQINNISSQNDK GYQINNISSQNDK GYQINNISSQNDK	FKQLNQFLEEK- FFKQLNQFLEEK-	RNIQNIFPKLQNNNI RNIQNIFPKLQNNNI	TIEFKNPKTFLSKFTGYK TIEFKNPKTFLSKFTGYK	CGSVI CGSVI
	● < .50		** : .*	* :*. ::		. : * : **:	*.:
	- 3 - 4	N 5		0	•	P	
	(Lsh) LADEKTKGEAS <mark>IQ</mark> (Lmo) LTDDSAKASATIQ (Lpp) LTDNKTSAOATIO	I <mark>YKPGIFSKLFFGEQPK</mark> VIVQ V <mark>YKPGILSKWLFGEQPRIIIQ</mark> VYTPNIFSKWLFGEOPRVIIO	PAGTNKASID PVKQDGIE-HRASID PGOTKESID	LAAKVAAG <mark>F</mark> KTPV LAAKIAADFQSPV LAAKAAADFSSPV	SSIKATY DYEHKD <mark>L</mark> E SSIKATY NNDLVDLI KNEKATY DYEVGDLI	SA <mark>Y</mark> QHEKKLASIEQT DAYDASKSALKTEAS KAYDNOKKLITIERN	'KNYK SKAFA JLALK
	(LpC) LTDKQTSAQATIQ (LpL) LTDKQTSAQATIQ (LpP) LTDKQTSAQATIQ	V <mark>YTPNIFSKWLFGEQPRVIIQ</mark> VYTPNIFSKWLFGEQPRVIIQ	PGQTKESID PGQTKESID PGQTKESID	LAAKIAAG <mark>F</mark> SSPV LAAKAAAGFSSPV	KNFKATY DYEAGDLI KNFKATY DYEVGDLI	KA <mark>Y</mark> DNQKKLISTNKN KAYDNQKKLISPNKN KAYDNOKKLISPNKN	(TVIK IMVIK ITLEK
	(LpG) LTDKQTSAQATIQ (L1N) FTTESGRELANIQ	VYTPNILSKWLFGEQPKVIIQ IYKPSLVSKWLFGAQPKVIIQ	PGQTKESID PIDQDENPKEAIE	LAAKVAAGFSSPV LAAKIAVLFESPV	KNFKATY DYEVGDLI NSFKATY DYELSELI	KAYDNQKKLISTNKN SAYDQQHKELVRKPF	ITLFK IPQF
	(RbR) VKAGNAEVEIQ (RbO) VKAGNAEVEIQ	V <mark>YKPNILSKWFLGEGIKVIIQ</mark> V <mark>YKPNILSKWFLGEKSKL</mark> VIQ	PITHDENPREAID PKGGSEQSLK PKGGSEQSLK	LAARIAVHEESPU LAAQIAASFETKU LAAQIAAS <mark>F</mark> ETKU	NNEKATY DYELNELI TSIKATY DYLKQDLE TSI <mark>KATY</mark> DYLKQD <mark>L</mark> E	NAYDDOHKELTOKSF NY <mark>Y</mark> NNPEQELRKANS NY <mark>Y</mark> NNPEQELRKANI	JVVDL SVVDL
	(RfU) VKDEKG-GKAEIQ (RaH) VKDEKG-GKATIQ (RaC) VKDEKG-GKAAIQ	V <mark>YKP</mark> SVFSRWFSGEKSKIIIQ V <mark>YKP</mark> SVFSRWFLGEKSKIIIQ V <mark>Y</mark> TPSVFSRWFLGEKSKIIIQ	PLSEEGKQPSEQSLK PLSEEGKQPSEQSLT PLSEEGKQPSEQSLK	LAAQITANFETKV LASQITASFETKV LAAQITASFDTKV	TSIKATY DYLKEDLK TSV <mark>KATY</mark> DYLKEDLK TSIKATY DYLKED <mark>L</mark> K	SWYENIRNPKKELERASS SRYENISNPKQELERASS SR <mark>Y</mark> ENIINPKQELERASS	JIAEL JIAEL JIAEL
	(RtW) IQDEQC-GKAEIQ (RpG) IKDEKS-GAAEIQ (RpM) IKDEKS-GAAEIQ	V <mark>YKPSIFSRWFLGEKSK</mark> IIIQ V <mark>YKPSIFSRWFLGEKSK</mark> IIIQ V <mark>YKPSIFSRWFLGEKSK</mark> IIIQ	PLREDGKQPSEQSLE PLREEGRQPSEQSLK PLREEGROPSEQSLK	LAAQITASFETEV LAAQITASFETKV LAAQITASFETKV	TSIKATY DYLKED <mark>L</mark> K TSIKATY DYLKEDLK TSIKATY DYLKED <mark>L</mark> K	SK <mark>Y</mark> DNIRNAKQELERIST SQYDNIRNPKKELEKASA SOYDNIRNPKKELEKASA	'IAEG AIAEG AIAEG
	(RpC) IKDEKS-GAAE <mark>IO</mark> • • • * •	V <mark>YKPSIF<mark>SRWFL</mark>GEKSK</mark> III <mark>O</mark> :*.**. * * ***	PLREEGRQPSEQSLK * :	L <mark>A</mark> AQITAS <mark>F</mark> ETK <mark>V</mark> **:: :. *.: *	TSI <mark>KATY</mark> DYLKED <mark>L</mark> K ****:::*	SQ <mark>Y</mark> DNIRNPKKELEKASA • *: •	IAEG
С		+ $+$ $+$ $+$	¥	Aromatic	Positivo		
	L. shakespeare	# # AKPKPWLAFLTGKPGIFSKI	#^ JFFGEQPK	5; 18.5% 4: 14.8%	5; 18.5% 4: 14.8%		
	L. p. p. Philadelphia 1 L. p. Corby	DQPKSWLSFFTGTPNIFSKW DQPKSWLSFFTGTPNIFSKW	ILFGEQPR ILFGEQPR	6; 22.2% 6; 22.2%	3; 11.1% 3; 11.1% 3; 11.1%		
	L. p. Paris L. p. Leg01/11	DOPRSWLSFFTGTPNILSKY DOPRSWLSFFTGTPNILSKY DOPRSWLSFFTGTPNILSKY	ILFGEQPK ILFGEQPK ILFGEQPK	5; 18.5% 5; 18.5%	3; 11.1% 3; 11.1% 3; 11.1%		
	L. longbeachae NSW150 L. sainthelensi R. bellii RML369-C	DKPKAWLKAFIGKPSLVSKW VKPKAWLKTFTGKPSLISKW KQPKTWLNKFTGKPNILSKW	ILFGAQPK ILFGEQTK IFL <mark>G</mark> EKSK	4; 14.8% 4; 14.8% 4; 14.8%	6; 22.2% 6; 22.2% 7; 25.9%		
	<i>R. bellii</i> OSU 85-389 <i>R. felis</i> URRWXCal2 <i>R. akari</i> Hartford	KQPKTWLNKFTGKPNILSK KNPKTLLNKFTGKPSVFSR KNPKTLLNKFTGKPSVFSR	IFL <mark>GEKSK</mark> IFS <mark>GEKSK</mark> IFL <mark>GEKSK</mark>	4; 14.8% 4; 14.8% 4; 14.8%	7; 25.9% 7; 25.9% 7; 25.9%		
	R. australis Cutlack R. typhi Wilmington R. prowazekii GvV257	KNPKTLLNKFTGTPSVFSR KNAKTFLNKFTGKPSIFSR KNPKTFLSKFTGKPSIFSP	IFL <mark>GEKSK</mark> IFL <mark>GEKSK</mark> IFLGEKSK	4; 14.8% 5; 18.5% 5: 18.5%	6; 22.2% 7; 25.9% 7: 25.9%		
	R. prowazekii Madrid E R. prowazekii Chernikova	KNPKTFLSKFTGKPSIFSRV KNPKTFLSKFTGKPSIFSRV * * * * * * * *	IFLGEKSK IFLGEKSK * *	5; 18.5% 5; 18.5%	7; 25.9% 7; 25.9%		
			-				