Text S1. Mathematical model for calculating the rate of initiation r_i of *ttss-1* gene expression during the late log phase.

To infer the initiation rate (r_i) of *ttss-1* expression in the late logarithmic phase from our experimental data, we developed a mathematical model describing the growth of the TTSS-1⁺ (N_{TI+} : number of TTSS-1⁺ cells; μ_{TI+} : growth rate of these cells) and the TTSS-1⁻ population (N_{TI-} : number of TTSS-1⁻ cells; μ_{TI-} : growth rate of these cells) as a function of time (*t*). *ttss-1* expression is initiated in the TTSS-1⁻ subpopulation at the rate r_i :

$$\frac{dN_{T1+}}{dt} = \mu_{T1+}N_{T1+}(t) + r_i(t)N_{T1-}(t)$$
(1)

$$\frac{dN_{T1-}}{dt} = \mu_{T1-}N_{T1-}(t) - r_i(t)N_{T1-}(t)$$
(2)

During the late logarithmic phase, the relative abundance of the TTSS-1⁺ individuals increased, and the fraction α of TTSS-1⁻ individuals (N_{TI+}) decreased dynamically (Fig. 3A):

$$\alpha(t) = \frac{N_{T1-}(t)}{N_{T1-}(t) + N_{T1+}(t)}$$
(3a)

At any time, the total number of individuals $N_{total}(t)$ consists of the two subpopulations $N_{TI-}(t)$ and $N_{TI+}(t)$:

$$N_{total}(t) = N_{T1-}(t) + N_{T1+}(t)$$
(3b)

From our experiments, we know the parameters μ_{TI} and μ_{TI+} (Fig. 2), $\alpha(t)$ and $N_{total}(t) = OD_{600}(t)$ (Fig. 3A). Now, we can use these data to estimate $r_i(t)$.

Combining Eq. (3a) and Eq. (3b) yields an expression, with which we can calculate the dynamic progression of the TTSS-1⁻ subpopulation:

$$N_{T1-}(t) = \alpha(t) \cdot N_{total}(t) \tag{3c}$$

As $\alpha(t)$ and $N_{total}(t)$ were measured in the experiment shown in Fig. 3A, we can take Eq. (3c) to calculate $N_{TI}(t)$. To calculate $r_i(t)$ we have rearranged Eq. (2):

$$r_i(t) = \frac{\mu_{T1-} N_{T1-}(t) - \frac{dN_{T1-}}{dt}}{N_{T1-}(t)}$$
(4)

To obtain $r_i(t)$, we fitted an empirical function to the data for $N_{TI}(t)$ yielding $N_{TI}(t) = 1.76\text{E-O2} t(h)^{2.53}$ and differentiated this function vs (t) to obtain dN_{TI}/dt :

$$\frac{dN_{T1-}}{dt} = 2.53 \cdot 1.76 \cdot 10^{-2} \cdot t(h)^{(2.53-1)}$$

Using these values and Eq. (4) allowed us to calculate $r_i(t)$ during the late logarithmic phase (Fig. 3B).