Text S1. Note on model identifiability and on likelihood-based inference.

Conditionally to initial inoculation frequencies, the random vectors $N^p(t_p), p=1,...,40$ (8 plants x 5 sampling dates) of virus sequences obtained by HTS for each plant p at its specific time sampling t_p were independent and followed Dirichlet multinomial (DM) distributions. To write down the likelihood of our experiment, we first recall that the probability mass function of a $DM(\lambda, N_{tot}, \theta)$ distribution has the form

$$
\Pr(N^p = y | \lambda, N_{tot}, \theta) = \frac{N_{tot}! \Gamma(\theta)}{\Gamma(N_{tot} + \theta)} \prod_{i=1}^{4} \frac{\Gamma(y_i + \theta \lambda_i)}{y_i ! \Gamma(\theta \lambda_i)}
$$

where $y = (y_1,...,y_4)$, $\lambda = (\lambda_1,...,\lambda_4)$, and $N_{tot} = \sum_{i=1}^{4} y_i$.

Next, let us describe the set of parameters underlying our statistical model. Since we had five sampling dates, i.e. $t_p \in \{6,10,15,24,35\} = \{\tau_s ; s = 1,...,5\}$, the set of parameters amounted to $\theta^s = \theta(\tau_s)$, and $\lambda^s = \lambda(\tau_s) = (\lambda_1^s,...,\lambda_4^s) , s = 1,...,5$. Therefore, as $\sum_{i=1}^{4} \lambda_i^s = 1, s = 1,...,5$, the full statistical model included 20 (=5+3x5) parameters. Actually, the 15 free parameters λ_i^s depended themselves on the 22 (=4+12+1+1+4) unknown parameters r_i, $\beta_{i,j}, 1 \leq i \neq j \leq 4$, K, μ (recall that $\mu_{i,j} = \mu_{i,j}(\mu)$) and initial conditions $V_{i}(\theta)$ of ODE System 1.

Consequently, statistical identification of our statistical model would require at least 7 (=22-15) supplementary constraints on the set of parameters of ODE System 1.

Since we dealt only with virus variant frequencies, the time scale (i.e. derivatives could be defined up to a constant), the carrying capacity K and the number (or size) of virus variants were immaterial at the level of our observations and therefore could be “normalized”. K was arbitrarily set to 10^6 and $\sum_{i=1}^{4} r_i = 4$. The mutation rate μ was set to 10^{-5} and, for the initial
values $V(0) = V_{tot}^{inoc} \times (\lambda_1(0),...,\lambda_4(0))$ of ODE System 1, V_{tot}^{inoc} was set 100 whereas $(\lambda_1(0),...,\lambda_4(0)) = (0.32, 0.22, 0.22, 0.24)$ corresponded to the observed frequencies of virus variants in the inoculum.

Consequently, the remaining set of 20 parameters was now formally identifiable via the following log-likelihood function (withdrawing the indices of θ, r, and β)

$$l (N^p(t_p), p = 1,..., 40 | \theta, r, \beta) = \sum_{p=1}^{40} \ln(p(N^p(t_p) | \lambda(t_p | r, \beta), N_{tot}^p(t_p), \theta(t_p)))$$

Additionally, we investigated the sensitivity of the model best supported by the data (Table 1: $m_{D_{x_{C_{L}}}}$). We first analysed the model sensitivity to μ and V_{tot}^{inoc}. Sixteen cases, combining four values ($10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}$) of μ with four values (10, 100, 1000, 10^4) of V_{tot}^{inoc} were analysed by iterating the same statistical procedure. The percentage of variations of the parameter estimates were all < 5%. We next investigated the model sensitivity to a 20% random fluctuation of the initial frequencies of the variants in the inoculum $(\lambda_1(0),...,\lambda_4(0)) = (0.32, 0.22, 0.22, 0.24)$. The percentage of variations of the parameter estimates were also < 5% except for θ^l which reached 15%.