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Abstract
Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill con-

ventional microbes in vivo. Synthetic preparations containing HOCl can also be effective

as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions

and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are

notoriously difficult to inactivate, and standard microbial disinfection protocols are often

inadequate. Recommended treatments for prion decontamination include strongly basic

(pH�~12) sodium hypochlorite bleach,�1 N sodium hydroxide, and/or prolonged

autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricul-

tural and environmental applications. We have tested the anti-prion activity of a weakly

acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either

users or many surfaces. For example, BrioHOCl can be applied directly to skin and

mucous membranes and has been aerosolized to treat entire rooms without apparent del-

eterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only

a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue

suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC)

assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity

of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic

wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions

of�103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-

adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, repre-

senting reductions of�~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC

seeding activity correlated with free chlorine concentration and higher order aggregation

or destruction of proteins generally, including prion protein. BrioHOCl treatments had simi-

lar effects on amyloids composed of human α-synuclein and a fragment of human tau.
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These results indicate that HOCl can block the self-propagating activity of prions and other

amyloids.

Author Summary

Many serious diseases have been linked to pathogenic states of various proteins. These nat-
urally occurringproteins can be corrupted to form aggregates such as prions and amyloids
that propagate in and between tissues by acting as seeds that convert the normal form of
the protein into more of the pathological form. For example, corrupted prion protein can
cause fatal transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease in
humans, chronic wasting disease in cervids and bovine spongiform encephalopathy. Other
amyloid-forming protein aggregates are pathogenic in Parkinson’s, Alzheimer’s, and other
diseases. The fact that prions and amyloids are composed predominantly of tough, tightly
packed proteins makes them unusually resistant to conventional microbial disinfection
procedures. Infectious prions can persist indefinitely in, or on, a variety of materials such
as tissues, fluids, tools, instruments, and environmental surfaces, making it important to
identify decontaminants that are effective without being dangerous or damaging. Here
we show that hypochlorous acid, a disinfectant that is produced naturally by certain cells
within the body, has strong anti-prion and anti-amyloid activity. We find that a non-irri-
tating and broadly applicable hypochlorous acid preparation can disinfect prions in tissue
homogenates and on stainless steel wires serving as surrogates for surgical instruments.

Introduction

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal and untreatable
neurodegenerative diseases. In humans, prion diseases include sporadic, variant and genetic
forms of Creutzfeldt-Jakob disease (sCJD, vCJD and gCJD) as well as a number of other disor-
ders [1–3]. Prion diseases of other species include classical bovine spongiform encephalopathy
(C-BSE) [4], scrapie in sheep, goats [5] and rodents, and chronic wasting disease (CWD) of
cervids [6, 7]. All mammalian prion diseases share an underlyingmolecular pathology that
involves the conversion of the hosts’ normal form of prion protein, PrPC, to a misfolded, aggre-
gated, infectious and pathological form, PrPSc [8, 9].

Compared to other types of pathogens, prions are unusual in that they lack a pathogen-spe-
cific nucleic acid genome, and tend to be particularly resistant to enzymatic, chemical, physical
(eg. heat) or radiological inactivation [8, 10]. As a result, prions can resist complete inactivation
under conditions that are typically used in medicine, the food industry, and agriculture to inac-
tivate other types of pathogens. Current prion decontamination recommendations include
incineration or harsh chemical treatments such as 1–2 N sodium hydroxide, 20–40% house-
hold bleach (20,000 ppm sodium hypochlorite) alone or, preferably, in combination with pro-
longed autoclaving to treat relevant materials or surfaces [10, 11]. Other effective treatments
include enzymatic treatments with SDS [12], vaporized hydrogen peroxide [13] or 4% SDS in
1% acetic acid at 65–134°C [14, 15]. Environ LpHTM also inactivates prions [16, 17] but the
active formulation of this acidic phenolic disinfectant has been removed from the market.
Most, if not all, of the above treatments are potentially hazardous to the user and/or incompati-
ble with various purposes. Thus, more safely and broadly applicable anti-prion reagents are
needed.
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In humans, iatrogenic transmission of prion disease has occurred through the use of contam-
inated instruments, transplanted tissues or tissue extracts [2, 18]. The risk alone of iatrogenic
transmission has been highly problematic when surgical procedures have been performedon
patients who were later discovered to have sCJD [18]. Because routine disinfection procedures
are not likely to be fully adequate for prions, the reuse of potentially contaminated tools or
instruments on subsequent patients presents transmission risks. Prion decontamination is also a
significant concern in autopsies and mortuary functions. In livestock, prion diseases can be
spread via contaminated feeds and/or the environment [19, 20]. In cervids, the rampant spread
of CWD threatens both captive and free-ranging populations in North America, Asia, and now
Europe. With BSE, at least, there is also apparent zoonotic risk associated with contaminated
beef and its handling in slaughter houses. Thus, prion disinfectants are needed that can be used
routinely on potentially contaminated tools, instruments, and environmental surfaces to reduce
the risks of prion transmission.

Here we have tested a synthetic preparation of hypochlorous acid (HOCl), a reactive oxygen
species that is produced naturally in vivo to inactivate pathogens. Synthetic formulations con-
taining HOCl have been shown to kill bacteria, viruses, fungi and protozoans [21–23]. HOCl is
the conjugate acid of hypochlorite, the sodium salt of which is the main component of house-
hold hypochlorite bleach. In concentrations recommended for prion inactivation, hypochlorite
bleach is corrosive and highly basic, i.e. pH�~12, whereas HOCl solutions are weakly acidic,
i.e. pH 3.7–6.3, and apparently safe for contact with skin and mucous membranes. For exam-
ple, at least some HOCl formulations are used in cosmetics and topical skin treatments for
humans and domestic animals (e.g. www.briotechinternational.com) and/or have strong anti-
microbial activity at non-cytotoxic concentrations (e.g. [24]). Furthermore, electrolytically
generated HOCl is acknowledged to be both powerful and benign enough to meet USDA stan-
dards for sanitation and safe food contact without need for rinsing (FSIS Directive 7120.1, Rev.
36, 6/29/16. US Dept. of Agriculture, pp 31–32). Many studies have described anti-microbial
activities of HOCl, but only one has raised the possibility of anti-prion activity. In that study, a
cycle of sonications and/or washes with electrolyzed basic (pH 11.9) and acidic (pH 2.7) water,
with the latter presumed to contain HCl and HOCl, inactivated prions by�1 log10 on steel
wires [25, 26]. However, the role of HOCl in the anti-prion activity of this cyclic treatment
remains unclear because, firstly, Cl2 is also a prominent oxidizing species present in aqueous
free-chlorine solutions at pH 2.7 [27]; and secondly, the pH 11.9 step may have been important
given that basic solutions can have anti-prion activity [13, 16, 28, 29].

For the present study, we evaluated the anti-prion effects of a single unsonicated treatment
with a mildly acidic, electrochemically-activated HOCl formulation (BrioHOCl) using both
mouse bioassays [30, 31] and real time quaking-induced conversion (RT-QuIC) assays [32–
36]. Animal bioassays are the gold standard tests for prion infectivity but are also costly, ani-
mal-intensive, and time-consuming—typically requiringmonths-years. RT-QuIC assays
exploit the inherent self-propagating activity of prions by measuring a sample’s ability to seed
the in vitro conversion of recombinant PrPC (rPrPC) into amyloid fibrils that enhance the
fluorescence of thioflavin T (ThT) [32, 37]. Detection of RT-QuIC seeding activity correlates
strongly with the presence of prion infections in mammalian hosts [32–49]. These assays are
not only at least as sensitive as bioassays, but are also much more rapid, high throughput and
cost-effective. Thus, our strategy was to first test effects of HOCl and other conventional anti-
prion reagents using RT-QuIC, and then confirm any observed effects on infectivity using bio-
assays. Because of concerns about iatrogenic transmission of prion diseases via contaminated
surgical instruments [18], and the tenacious binding and infectivity of prions bound to stainless
steel [50, 51], we have not only tested HOCl inactivation of prions in brain homogenates (BH),
but also prions on stainless steel wire as a surrogate for surgical instruments. The latter strategy
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has been employed previously for the evaluation of other disinfectants [12–15, 25, 26, 52]. To
investigate whether HOClmight also inactivate other types of self-propagating amyloid seeds,
we have also tested effects of BrioHOCl on amyloid seeds composed of human α-synuclein (α-
syn) and tau. Aggregated forms of α-syn and tau are prominent pathological features of various
proteinopathies including Parkinson’s and Alzheimer’s diseases respectively.

Results

Characterization of the HOCl preparation used for anti-prion testing

BrioHOCl is produced by a proprietary process involving electrochemical activation of saline
solutions. Although some electrochemically activated saline preparations may contain various
amounts of HOCl, OCl- (hypochlorite), HCl and Cl2, analysis of BrioHOCl preparations by
Raman spectroscopy has only indicated the presence of HOCl (S1 Fig). Application of Brio-
HOCl preparations with various levels of free (active, available) chlorine showed strong micro-
bicidal activity against multiple bacterial and fungal pathogens, including spores of Bacillus
subtilis and Aspergillus (S1 Table).

Inactivation of hamster scrapie prion seeding activity in brain

homogenates by HOCl

For an initial indication of potential anti-prion activity, we tested effects of BrioHOCl on the
RT-QuIC seeding activity in scrapie brain homogenate (ScBH) from clinically ill hamsters. We
first tested the tolerance of the RT-QuIC assay for a BrioHOCl preparation with ~300 ppm Cl,
0.98%NaCl, pH 4.25, and 1138 mV oxidation-reduction potential. We saw no interference
with positive control RT-QuIC reactions seededwith ScBHwhen the final concentration of the
BrioHOCl added directly to the RT-QuIC reaction was�0.1% (S2 Fig). To test the effects of
preincubation of the ScBHwith HOCl, we mixed BrioHOCl 100:1 (v/v) with 10% ScBH, incu-
bated for 1 h at room temperature, and used sufficiently diluted, treated ScBHmixtures to
seed RT-QuIC reactions. Fig 1 shows the average ThT fluorescence readings from 4 replicate
RT-QuIC reaction wells. Mock (saline)-treated ScBH samples gave strong positive responses in
all, or 3 of 4, replicate RT-QuIC reactions when seededwith ScBH dilutions of 10−4 to 10−9 (see
Materials and Methods), indicating a dynamic range for the assay of�105 (Fig 1A, red traces).
In contrast, with the BrioHOCl-treated ScBH samples (Fig 1, blue traces), no positive responses
were seen with the same range of tissue dilutions prior to our 50-h cutoff (orange dashed line)
except for single positive reactions (out of 4) at ~40 h from the 10−4 and 10−5 tissue dilutions.
According to our standard criteria, a single positive well out of 4 replicates is not regarded as
positive. Thus, these results indicated that the 100:1 BrioHOCl treatment reduced the scrapie
seeding activity by�~100,000 fold. No positive responses were obtained in negative control
reactions seededwith normal (uninfected) brain homogenate (NBH). Treatments with 20:1
BrioHOCl:10%ScBH reduced the scrapie seeding activity by ~10,000-fold (Fig 1B, blue traces).
Thus, the 100:1 treatment was more effective than the 20:1 treatment. Similar results were
obtained in a second independent experiment performedwith a different batch of BrioHOCl.

Inactivation of sCJD, vCJD, C-BSE, CWD and sheep scrapie seeding

activity by BrioHOCl

We performed similar experiments to test the effects of BrioHOCl on prion seeding activity
associated with sCJD, vCJD, C-BSE, CWD and classical sheep scrapie. Because the starting
titers of seeding activity of these prions in brain homogenates were lower than those of hamster
ScBH, the dynamic range of these RT-QuIC assays was lower. However, no seeding activity
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was detected in these types of brain homogenates with 100:1 BrioHOCl:10%BH treatments for
1h (Fig 2A–2E). These results indicated that this BrioHOCl treatment reduced the seeding
activity of each of these types of prion by at least 1,000–10,000 fold.

Effects of bleach, NaOH and Environ LpHTM on hamster scrapie seeding

activity

To compare the effects of BrioHOClwith established anti-prion reagents, we performed similar
end-point dilution RT-QuIC titrations on hamster ScBH samples tested with 40% bleach (2.4%
hypochlorite), 1 N NaOH, or 2% Environ LpHTM for 1 h. Similar to the above observationswith
BrioHOCl (Fig 1A) both the bleach and NaOH showed>100,000-fold reductions in hamster
scrapie seeding activity (Fig 3B and 3C). Surprisingly, given its reported effects on prion infec-
tivity [13, 16] and our own bioassay data below, the Environ LpHTM had no effect on prion
seeding activity as measured in the RT-QuIC (Fig 3D).

Bioassay of scrapie prion infectivity in HOCl-treated brain homogenates

Having seen that BrioHOCl solutions can strongly inactivate multiple types of prion seeding
activity as measured by RT-QuIC assays, we then tested effects on hamster scrapie infectivity

Fig 1. Inactivation of prion seeding activity in hamster ScBH by BrioHOCl. ScBH was pretreated for 1 h

in BrioHOCl at 100:1 v/v BrioHOCl to 10% BH (panel A, blue), 20:1 BrioHOCl (panel B, blue) or

corresponding saline treatments (panels A and B, red). Similar BrioHOCl and saline pretreatments of NBH

are indicated in gray. Resulting samples were then subjected to serial 10-fold dilutions and RT-QuIC analysis

was performed with hamster (90–231) rPrPC substrate using 2 μl per well of the indicated tissue dilutions as

reaction seeds. The dilutions noted refer to the final dilution of original brain mass used to seed the reaction.

The orange dashed line indicates the 50-h cutoff time at which seeding activity was quantified by end-point

dilution under these assay conditions, after which unseeded control reactions occasionally gave false-

positive reactions (see Material and Methods). Each trace represents the average ThT fluorescence of 4

technical replicate wells normalized between baseline and maximal signal and graphed as a function of time.

doi:10.1371/journal.ppat.1005914.g001
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Fig 2. Inactivation of sCJD (A), vCJD (B), BSE (C), CWD (D) & sheep scrapie (E) seeding activity in

brain homogenates by BrioHOCl. The indicated BH samples (10%) were pretreated for 1 h with 100

volumes of BrioHOCl (blue), or saline (red) as a mock treatment control. Similar HOCl and saline

pretreatments of NBH are indicated in gray. Resulting samples were then subjected to serial 10-fold dilutions

and RT-QuIC analysis was performed using 10−4 through 10−11 tissue dilutions as indicated. Hamster (90–

231) rPrPC was used as substrate for the sCJD and CWD reactions while chimeric hamster-sheep rPrPC was

Anti-prion and Anti-amyloid Seed Activity of Hypochlorous Acid
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used as substrate for the vCJD, BSE and sheep scrapie reactions. Each trace represents the average

normalized ThT fluorescence of 4 replicate wells.

doi:10.1371/journal.ppat.1005914.g002

Fig 3. Effects of bleach, NaOH and Environ LpHTM on hamster scrapie seeding activity. ScBH was

pretreated for 1 h in (A) saline (mock disinfectant) (red), (B) 40% bleach (2.4% hypochlorite) (green), (C) 1 N

NaOH (black) or (D) 2% Environ LpH TM (purple) at a ratio (v/v) of 100:1 disinfectant to 10% ScBH. Similar

disinfectant pretreatments of NBH are indicated in gray. Resulting samples were then subjected to serial

10-fold dilutions and RT-QuIC analysis was performed with hamster (90–231) rPrPC substrate using the

designated tissue dilutions as seeds. Each trace represents the average normalized ThT fluorescence of 4

replicate wells.

doi:10.1371/journal.ppat.1005914.g003
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directly by performing bioassays in transgenicmice (tg7) that overexpress hamster PrP [31]. For
comparison, we also bioassayed effects of bleach, NaOH and Environ LpHTM using the same
ScBH samples that were treated and assayed by RT-QuIC as shown in Fig 3. Serial 10-fold dilu-
tions of the disinfectant- or saline-treated (100:1, 1h) ScBH samples were inoculated into groups
of 4 tg7 mice to establish infectivity titers. As expected, the saline-treated sample retained high
levels of infectivity with a calculated titer of 106.75 50% lethal doses (LD50) per mg of brain
(Table 1) similar to previous 263K scrapie titers in hamster brain (e.g. [32]). In contrast, no mice
developed scrapie in any of the groups that were inoculatedwith ScBH treated with BrioHOCl,
40% bleach, 1 N NaOH or 2% Environ LpHTM (100:1 v/v for 1 h; Table 1). To estimate the maxi-
mum infectivity titer that could have remained in the treated samples without causing disease in
any of the inoculatedmice, we assumed that a 10-fold more concentrated sample would have
caused disease in 100% of the mice. This “worst-case” assumption should be conservative,mean-
ing that the actual titers in the disinfectant-treated samples are actually lower than reflected by
the numbers indicated. This analysis showed that BrioHOCl reduced the titer by at least 105.75-
fold compared to the saline-treated controls (Table 1). Because the samples treated with the
other disinfectants had to be diluted 100-fold more than the HOCl-treated samples prior to
inoculation to avoid acute toxic effects, we were only able to show titer reductions of 103.75 fold
relative to the saline-treated control for NaOH, bleach, and Environ LpHTM.

Inactivation of steel-bound prion seeding activity by HOCl, NaOH and

bleach

We then addressed the possibility that BrioHOClmight inactivate prions that have been dried
onto solid surfaces such as stainless steel. We initially tested whether steel-bound prions can be
detected by RT-QuIC. Short 3–4 mm segments of stainless steel wire (n = 4 per dilution) were
immersed in 10−3–10−10 dilutions of ScBH for 1 h, washed with PBS, dried, and then placed
individually into RT-QuIC reaction wells. Consistent with a recent report [26], wires coated
with as little as 10−7 dilutions of ScBH gave positive reactions in at least 3 of 4 replicate
RT-QuIC reactions, whereas those coated with NBH gave no positive reactions (Fig 4A).

Table 1. Mouse bioassay of hamster scrapie brain homogenates after treatment with disinfectants.

Treatment Dilution of scrapie brain homogenate after treatmenta

10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 Titerb

Saline nt 4/4c [56] 4/4 [66] 4/4 [66.8] 4/4 [77.3] 2/4 [107.5] 1/4 [101] 0/4 6.75

HOCl 0/4d 0/4 0/4 0/4 0/4 d 0/4 nt nt � 1

NaOH nt nt 0/4 0/4 0/4 0/4 nt nt � 3

Bleach nt nt 0/4 d 0/4 0/4 d 0/4 nt nt � 3

LpH nt nt 0/4 d 0/4 0/4 0/4 0/4 d nt � 3

a Scrapie brain homogenates (10−3 dilution) were exposed to different disinfectants or saline for 1 h at a 1:100 (v:v) ratio. Solutions were then further diluted

for bioassay in tg7 mice. Each recipient mouse received 30μl of inoculum.
b The calculated titer reported is the logLD50/mg of tissue
c The numerator is the number of scrapie-positive mice, and the denominator is the number of mice inoculated. For groups with positive mice the average

scrapie incubation period is provided. Mice that did not develop disease were observed for 200 days post inoculation (dpi).

nt = Not tested (see methods for explanation)
d Indicates a mouse/mice in this group was/were euthanized between 73–186 dpi due to dermatitis, intercurrent disease or were found deceased. Brains

from these mice were screened for TSE infection by RT-QuIC for prion seeding activity and by Western blot for protease-resistant PrP. No mice in these

groups were diagnosed with scrapie.

doi:10.1371/journal.ppat.1005914.t001
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To test the effects of HOCl and other disinfectants on steel-bound prion seeding activity,
wires coated with a 10−3 dilution of ScBHwere immersed in BrioHOCl, 40% bleach, 1 N
NaOH, 2% Environ LpHTM, or saline for 1 h, rinsed, and added to RT-QuIC reactions.
Although Environ LpHTM was again no more effective than PBS, the HOCl, NaOH and bleach
treatments reduced the RT-QuIC responses to less than those seen from the mock (PBS)-
treated wires coated with a 10−7 dilution of ScBH and similar to wires coated with 10−8–10−10

dilutions (compare Fig 4A and 4B). The latter dilutions were close to, or possibly beyond, the
detection limit of the assay. These results provided evidence that the BrioHOCl,NaOH, and
bleach treatments were similarly able to reduce the steel-bound scrapie seeding activity by at
least 10,000-fold.

To determine the speed of prion seed inactivation by the BrioHOCl, bleach and NaOH,
wires (n = 4 per treatment) were coated with a 10−3 dilution ScBH, rinsed and dried. The wires
were then treated for 0.5–60 min and then rinsed briefly prior to being added to RT-QuIC reac-
tion wells (Fig 5A–5D). The time-dependenceof the effects of HOCl and NaOH were similar,
with slower RT-QuIC responses on average from the 0.5 min treatment (Fig 5B and 5C), and
further inactivation with more prolonged treatments. With both BrioHOCl, and NaOH, treat-
ments of 30–60 min were required to maximize inactivation of seeding activities that were near
the detection limit of the assay. In contrast, the bleach treatment gave near maximal inactiva-
tion within 0.5–1 min (Fig 5D).

Fig 4. Inactivation of steel-bound prion seeding activity. A. RT-QuIC reaction wells were seeded with a

3–4 mm segment of stainless steel wire pre-coated with hamster scrapie (red) or normal BH (gray) at tissue

dilutions of 10−3–10−10 as indicated. B. Wire segments pre-coated with ScBH at a 10−3 tissue dilution were

submersed for 1 h in saline (mock disinfectant; red), BrioHOCl (blue), 40% bleach (2.4% hypochlorite;

green), 1 N NaOH (black) or 2% Environ LpH (purple) as indicated prior to RT-QuIC analysis using hamster

(90–231) rPrPC substrate. Each trace represents the average normalized ThT fluorescence of 4 replicate

wells.

doi:10.1371/journal.ppat.1005914.g004
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Bioassay of inactivation of steel-bound scrapie infectivity

To determine the effects of HOCl on steel-bound scrapie infectivity, we implanted single Brio-
HOCl-treated or mock-treated stainless steel wires into the brains of tg7 mice. Concurrently,

Fig 5. Effect of disinfectant exposure time on inactivation of hamster scrapie seeding activity on

wires coated with ScBH. Stainless steel wire segments (3–4mm) pre-coated with hamster ScBH at a 10−3

tissue dilution were submersed in (A) saline (mock disinfectant), (B) BrioHOCl, (C) 1 N NaOH or (D) 40%

bleach (2.4% hypochlorite) for 0.5–60 min prior to a quick rinse and RT-QuIC analysis using hamster (90–

231) rPrPC substrate. Each trace represents the average normalized ThT fluorescence of 4 replicate wells.

doi:10.1371/journal.ppat.1005914.g005
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we also tested bleach-, NaOH- and Environ LpHTM-treated wires for scrapie infectivity. To
measure the infectivity that could be bound and transmitted by wire fomites we implanted
wires exposed to serial 10-fold dilutions of hamster ScBH (Table 2). All of the mice with wires
exposed to 10−3 to 10−6 dilutions developed clinical scrapie. Unlike the results from the solu-
tion experiments, the disease incubation period did not consistently decrease with wires
exposed to ScBHmore concentrated than 10−5. This result suggested that the wires were lim-
ited in how much prion infectivity could be tightly bound in a manner that resists short washes
in PBS. Importantly, none of the mice that received scrapie-coated wires treated with Brio-
HOCl, bleach or LpH, and only one treated with NaOH, developed prion disease.

Comparison of BrioHOCl preparations with different free chlorine

concentrations

To test the effect of free (active) chlorine concentration on scrapie inactivation, we treated 10%
ScBHwith 100 volumes of dilutions of BrioHOCl (in 2% saline) with increasing Cl (15–
310 ppm), and then compared the remaining scrapie seeding activity levels by RT-QuIC. We
deliberately chose milder (5 min) treatment conditions that would only partially inactivate the
prion seeding activity so that changes in inactivation efficiency could be differentiatedmore
readily by end-point dilution RT-QuIC. Fig 6 shows the primary RT-QuIC data from 10−6 dilu-
tions of treated ScBHs. Strong inhibition of seeding activity within this short exposure time
was seen only with Cl concentrations of�160 ppm. Full end-point dilution analyses [32] of the
treated ScBH preparations from 2 independent experiments confirmed that �155 ppm Cl was
needed for>50 to 100-fold reductions of the concentrations of seeding doses resulting in 50%
ThT-positive replicate reactions (SD50s) (Table 3). In the second series shown here dose-
responses were determined using a sample set in which the pH was adjusted to the same start-
ing level (3.9) with 100 mM HCl, so as to obviate any effects on the outcome attributable to the
rise in pH on dilution (up to pH ~6.3) seen with the first series.

Storage stability of BrioHOCl

Electrochemically activated HOCl preparations are metastable and may change over time dur-
ing the “relaxation period” after production. Archived production samples from lots that con-
tained ~300 ppm Cl at the time of manufacture declined to as low as 58 ppm over almost 3
years of warehouse storage at uncontrolled temperatures. Nonetheless, one of the oldest

Table 2. Bioassay of scrapie-coated wires after treatment with disinfectants.

Treatment Dilution of 263K ScBH

10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

None 4/4 b [99±18] 4/4 [90±10] 4/4 [90±4] 4/4 [144±7] 0/3 0/4 0/4 0/4

Saline 6/7 [96±14] nt nt nt nt nt nt nt

HOCl 0/7 nt nt nt nt nt nt nt

NaOH 1/8 [137] nt nt nt nt nt nt nt

Bleach 0/8 nt nt nt nt nt nt nt

LpH 0/8 nt nt nt nt nt nt nt

a Steel wires were exposed to hamster 263K ScBH, then washed, dried and either untreated (None) or treated by immersion in saline or the designated

disinfectants for 1 h. Following treatment wires were removed and allowed to dry. Each mouse was implanted intracerebrally with a single 3–4 mm wire.
b The numerator is the number of scrapie-positive mice, and the denominator is the number of mice implanted. For groups with positive mice the average

scrapie incubation period +/- SD is provided in brackets. Mice that did not develop disease were observed for 200 d.

doi:10.1371/journal.ppat.1005914.t002
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samples, with 80 ppm Cl at 34 months, still showed high efficacy vs. Bacillus spores [3.9 log
removal value (LRV) in 15 seconds; S1 Table]. Oxidation-reduction potentials remained high
throughout, some remaining unchanged over more than two years of storage; few declined
more than 10%. Samples stored unsealed showed precipitous declines in Cl ppm, losing
approximately 90% of their Cl content in six months.

Sealed aliquots from a lot prepared specifically for study of stability remained unopened
until a sample from each was titrated for active Cl. The results over the first 3 months are
shown in Fig 7. From a starting concentration of 185 ppm the Cl showed no discernible pattern
of change for about two weeks (Fig 7A and 7B), then settled into a slow and steady decline,

Fig 6. Effect of BrioHOCl free Cl concentration on scrapie seeding activity. Hamster ScBH was pretreated for 5 min

in saline (mock disinfectant) (red) or BrioHOCl formulations (blue) containing the designated ppm of free Cl at a ratio (v/v)

of 100:1 disinfectant to 10% ScBH. Resulting samples were then subjected to serial 10-fold dilutions and RT-QuIC

analysis was performed with hamster (90–231) rPrPC substrate using 10−4 through 10−7 tissue dilutions as seeds. For

simplicity, only the 10−6 dilutions are shown here. See Table 3 for summary of all results. Each trace represents the

average normalized ThT fluorescence of 4 replicate wells.

doi:10.1371/journal.ppat.1005914.g006

Table 3. RT-QuIC titration of ScBH treated with BrioHOCl with increasing available Cl.

Experiment 1 Experiment 2

Active Cl Log10SD50/mg brain pH Active Cl Log10SD50/mg brain pH

saline >7.70 7.4 saline >7.70 7.4

15.5 ppm Cl >7.20 6.3 16 ppm Cl >7.20 3.9

38.8 ppm Cl >7.20 5.9 40 ppm Cl >7.20 3.9

77.5 ppm Cl >7.20 4.3 80 ppm Cl >6.95 3.9

155 ppm Cl 5.45 3.9 160 ppm Cl 5.20 3.9

232 ppm Cl 4.20 3.9 240 ppm Cl 4.70 3.9

310 ppm Cl <3.45 3.8 320 ppm Cl <4.20 3.9

a log10SD50/mg brain calculated from end-point dilution RT-QuIC experiments conducted at 42˚C with the reaction well data collected at a 50 hour time

point.

doi:10.1371/journal.ppat.1005914.t003
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allowing for computation of a half-life of 440 days. The HOCl UV absorbance peak at 238
nm in these samples showed a downward trend corresponding to the titratable Cl ppm decline
(Fig 7C).

Effect of BrioHOCl on PrPSc and other proteins

To test for molecular effects of BrioHOClwe used SDS-PAGE gels to examine PrPSc after expo-
sure to BrioHOCl. First, we tested the effects of increasing incubation times with purified
PrPSc. A broad-spectrumprotein stain indicated that as little as 1 min exposure to 10-fold vol-
umes of BrioHOCl resulted in the reduction of detectable SDS-solubilized PrPSc monomer
(curly bracket; Fig 8A) and an increase in high molecular weight SDS-resistant species, includ-
ing protein species at the top that were excluded from the gel (arrowhead; Fig 8A). These effects
were coincident with the rapid reduction of prion seeding activity seen with treatment of
prion-infectedBH prior to RT-QuIC analysis (Fig 5). Western blot analysis showed that Brio-
HOCl reduced the amount of SDS-solubilized PrPSc monomer (curly bracket) and increased
highmolecular weight species (square bracket) detectable with a PrP antiserum directed at PrP
residues 90–104 (Fig 8B). These effects were most apparent with BrioHOCl solutions contain-
ing�160 ppm Cl.

We also treated ScBHwith 10-fold volumes of BrioHOCl. Total protein staining indicated
that treatment has an immediate (�1 min) and broad effect on all proteins, resulting in the loss
of multiple individual protein bands and the accumulation of high molecular weight species
(Fig 8C) consistent with previous observations [53]. Western blot analysis with the PrP antise-
rum indicated a preferential loss of the full-length, diglycosylated PrPSc monomer band (dou-
ble arrowhead; Fig 8D). It is unclear if the loss of this band reflects a truncation of full-length

Fig 7. Chemical stability of BrioHOCl. A. Concentration of active chlorine as measured by iodometric titration (days 14–151). The data were fit

to an exponential decay (y = 159.78e(-0.00157x)). B. Active chlorine concentrations over initial 13 days. C. UV-VIS measurements of samples after

10 (dark blue), 14 (pink), and 88 (light blue) days.

doi:10.1371/journal.ppat.1005914.g007
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Fig 8. SDS-PAGE analysis of BrioHOCl treatments on purified PrPSc and ScBH. (A) Purified PrPSc was

treated with 10 volume equivalents of saline (mock), active (260 ppm Cl) or inactive (30 ppm Cl) BrioHOCl

solutions for 1, 10 or 60 min as indicated. BrioHOCl activity or inactivity was determined by its ability or

inability to reduce prion-seeding activity in the RT-QuIC in other experiments. Samples were run on

denaturing protein gels and visualized using Deep Purple total protein stain. PrP monomer (curly bracket)

and multimeric aggregates (arrowhead) are marked. (B) Purified PrPSc (at 3 mg/mL) was treated for 5

minutes in saline (mock disinfectant) or BrioHOCl formulations containing the designated ppm free Cl at a

ratio (v/v) of 100:1 disinfectant to PrPSc prior to immunoblotting using R30 antiserum against PrP residues

90–104. PrP monomer (curly bracket) and PrP aggregates (square bracket) are marked. Gels shown are

representative of three independent experiments. (C) ScBH was treated with saline (mock disinfectant), or

active or inactive BrioHOCl solutions at a ratio (v/v) of 10:1 disinfectant to 10% ScBH for the designated time

and analyzed by SDS-PAGE with Deep Purple total protein stain. Insoluble aggregates are indicated with an

arrowhead. (D) The samples from panel C were analyzed by immunoblot using R30 PrP antiserum. Full

length, diglycosylated PrP monomer (double arrowhead); Truncated, and/or less glycosylated PrP monomer

(single arrowhead) are identified.

doi:10.1371/journal.ppat.1005914.g008
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PrPSc or preferential modification to the diglycosylated PrPSc, possibly due to the increased sol-
vent accessibility of one glycan over the other. The accumulation of high molecular weight PrP
species seen with purified PrPSc in Fig 8B was not recapitulated here, but we assume that this
was due to competition with the transfer of aggregated PrP molecules to the blotting mem-
branes by the vast excess of other aggregated proteins in the HOCl-treated crude ScBH shown
in Fig 8C.

Effects of BrioHOCl treatments on α-synuclein seeds

Given that many other proteins besides PrP can form pathological amyloids or oligomers with
apparent “prion-like” seeding activity, we investigated whether HOCl solutions might also
inactivate seeds composed of other amyloid proteins. α-Synuclein is the main protein included
in the amyloid fibrils that accumulate in various synucleinopathies such as Parkinson’s disease
[54]. As was seen above with PrPSc and other proteins, BrioHOCl treatments of synthetic
recombinant α-synuclein amyloid fibrils (rα-syn fibrils), as well as α-synuclein-containing
Lewy bodies isolated from brain tissue of a Lewy body dementia patient, reduced the detection
of α-synuclein monomers and enhanced the detection of higher-order SDS-insoluble aggre-
gates (Fig 9A and 9B). However, for unknown reasons the latter effect was less apparent with
the Lewy body extracts (Fig 9B). rα-Syn fibrils showed this effect after 5-min treatments with a
BrioHOCl preparation previously shown to be active against prion seeding activity (Fig 9A). A
preparation previously shown to be inactive in inhibiting prion seeding activity was also inac-
tive against rα-syn fibrils (Fig 9A). Similar effects were seen with the treatment of Lewy body
extracts from brain tissue, however a longer treatment and higher HOCl:rα-syn fibril ratio
were needed to cause a visible effect (Fig 9B).

To investigate the effect of BrioHOCl treatment on the α-syn seeding activity rα-syn fibrils
treated with BrioHOCl or 100mMTris-HCl (Mock) (Fig 9C) were used to seed the polymeriza-
tion of soluble recombinant α-synuclein. Mock treated fibrils were capable of seedingwith
10−2–10−4 dilutions (Fig 9D). All seeding activity was abolished in BrioHOCl-treated fibrils.

Effects of BrioHOCl treatments on tau peptide seeds

We also tested effects of HOCl on synthetic amyloid seeds composed of a fragment of human
tau. Amyloid seeds were prepared from a recombinant tau fragment (“K19 Cys-free”; residues
244–372 with Cys322 mutated to serine [55]). Treatment of these seeds with a 100-fold excess
of BrioHOClmarkedly reduced detection of intact K19 Cys-free peptide by either non-specific
protein staining (Fig 10A) or immunoblotting (Fig 10B). However, unlike the above observa-
tions with other proteins, we did not detect any increases in aggregated tau peptide in the
upper parts of the gel lanes. Nevertheless, the BrioHOCl treatment markedly increased the
lag phases of seeded polymerization of soluble K19 Cys-free substrate (Fig 10C). The HOCl-
treated 10−3 dilution of the K19 Cys-free tau seed gave lag phases that were at least as long as
the 10−6 dilution of the untreated seed, while the lag phases from further dilutions of the
HOCl-treated seedwere indistinguishable from spontaneous (unseeded)polymerization. Com-
parisons of these relative lag phases indicated that BrioHOCl reduced the seeding activity by at
least 1,000-fold.

Discussion

Numerous clinical and agricultural scenarios involving potential prion contamination would
benefit from the availability of less harsh and more practical methods for inactivating prions.
Here, we have demonstrated that weakly acidic BrioHOCl has strong anti-prion activity. In the
case of hamster ScBH, we have shown a reduction in infectivity titer of�~105.75-fold by
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Fig 9. Effects of BrioHOCl on recombinant α-synuclein seeds and Lewy bodies. Recombinant α-syn (rα-syn) fibrils

generated in vitro (A) or Lewy Bodies isolated from a patient with Lewy Body Dementia (B) were treated with an active

(190 ppm Cl) or inactive (30 ppm Cl) BrioHOCl solution at a 10:1 or 100:1 disinfectant to α-syn ratio for 5 or 60 min, as

indicated, and probed for α-syn by immunoblot. Samples treated 10:1 were diluted an additional 10 fold in 1x sample buffer

prior to loading the gel to match the protein concentrations of the 100:1 treated samples on the immunoblot. The arrow

indicates monomeric α-syn protein and the bracket denotes aggregates and degradation products (A & B). Recombinant

α-syn fibrils generated in vitro were treated with either a mock solution or an active BrioHOCl solution at 100:1 disinfectant

to α-syn ratio for 60 min and probed for α-syn by immunoblot (C). These mock (red) and HOCl (blue) treated samples were

subjected to 10 fold serial dilutions and analyzed for recombinant α-syn seeding activity (D). 20 μl per well of 10−2 through

10−4 sample dilutions were used as reaction seeds as indicated. Negative control reactions were run with no seed (gray).

Other controls indicated that direct addition of 10−3 and 10−4 dilutions of BrioHOCl to the seeded polymerization reactions

without preincubation with the α-syn seed had no effect on the reaction kinetics, whereas a 10−2 dilution partially interfered

with the reaction (S3 Fig). Each trace represents the average ThT fluorescence of 4 replicate wells. Similar results were

obtained in two additional independent experiments.

doi:10.1371/journal.ppat.1005914.g009
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bioassay in mice (Table 1). This reduction is commensurate with the decrease in prion seeding
activity measured by RT-QuIC. For sCJD, vCJD, C-BSE, CWD and sheep scrapie we have
shown that BrioHOCl eliminates all detectable RT-QuIC seeding activity (Fig 2). Although we
have not also done animal bioassays of BrioHOCl-treated brain homogenates containing these
other strains, many prior studies have indicated that prion infection and RT-QuIC positivity in
ex vivo samples are strongly correlated, and that RT-QuIC is at least as sensitive analytically as
animal bioassays [32, 36, 37, 42, 43]. These results imply so far that if a disinfectant eliminates
RT-QuIC seeding activity, it will likely also eliminate prion infectivity.

However, we should note that the inverse is not necessarily true; that is, elimination of prion
infectivitymight not always be accompanied by loss of RT-QuIC seeding activity. For example,
Environ LpHTM is much more effective at decreasing bioassayed scrapie infectivity ([16];Tables
1 and 2) than RT-QuIC seeding activity. This is not surprising given that synthetic recombi-
nant PrP amyloids can have RT-QuIC seeding activity but no apparent infectivity in animals.
Thus, infectious PrPSc comprises only a subset of PrP particles with RT-QuIC seeding activity,
so treatments may neutralize the infectivity of PrPSc without proportionally affecting all possi-
ble types of PrP seeding activity. Accordingly, in future potential applications of RT-QuIC
assays in screening for other anti-prion treatments, it would be advisable to use infectious tis-
sue-derived prions/PrPSc as test specimens rather than non-infectious synthetic amyloid seeds.
Although hits from such screens against PrPSc are likely to be effective against infectivity, it is
possible that treatments that can neutralize infectivity without eliminating RT-QuIC seeding
activity, like Environ LpHTM, would be missed.

From a mechanistic perspective,we have shown a positive dose-response relationship
between the free Cl concentrations of BrioHOCl preparations and prion seed inactivation (Fig
6, Table 3), protein aggregation, and loss of detectable SDS-soluble protein monomers (Fig 8).
The presence of Raman spectroscopy signals for HOCl but not hypochlorite ion, aqueous

Fig 10. Inactivation of tau peptide amyloid seeds by BrioHOCl. Synthetic tau seeds were generated with recombinant K19 Cys-free

tau fragment and treated with or without a 100-fold excess of BrioHOCl. The seed preparations were subjected to SDS-PAGE with non-

specific staining for protein (Deep Purple) (A), immunoblotting probed with anti-tau antibody (B) or a seeded polymerization assay (C). In

the seeded polymerization assay, the designated dilutions of the untreated (red) or BrioHOCl-treated (blue) seed samples were tested.

To control for potential effects of BrioHOCl on the assay itself without allowing time for prior interactions the amyloid seed on its own, an

amount of BrioHOCl comparable to that in a 10−3 dilution of treated seed was added directly to reactions solutions that were either left

unseeded (black) or seeded with a 10−3 dilution of untreated seed (green). Reactions mock-seeded with 10−5 dilutions of NBH samples

that were treated or not with 20 or 100 volumes of BrioHOCl are all shown in gray. Similar effects on K19 Cys-free seeding activity were

obtained in at least five independent experiments.

doi:10.1371/journal.ppat.1005914.g010
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chlorine, or any other species that may arise during electrolysis of NaCl solutions [56] is consis-
tent with the observed effects being attributable to HOCl. However, it remains possible that
other as yet unidentified constituents or characteristics resulting from the manufacturing pro-
cess contribute to the unusual stability and inactivating activity of BrioHOCl.

Despite the high probability that our observations result primarily from the activity of
HOCl, we cannot yet pinpoint a particular anti-prion mechanism of BrioHOCl.HOCl can
covalently modify a number of different amino acid side chain moieties on proteins, including
thiols, amines, aromatic amino acids, and backbone peptide bonds. HOCl reacts most rapidly
with sulfur-containing amino acids. Oxidation of methionine leads to the formation of sulfox-
ide, while disulfide bonds and oxy-acids are the products of cysteine oxidation [57]. Chlorina-
tion of lysines and tyrosines leads to formation of chloramines, and 3-Cl-tyrosine and 3,5-Cl-
tyrosine residues, respectively. Tyrosines can also undergo dimerization via the formation of
phenoxyl radicals, leading to protein crosslinking [58, 59]. Although less reactive than many
amino acid side chains, backbone amide bonds can be chlorinated by excess HOCl leading to
polypeptide fragmentation [60]. Any of these modifications, including those leading to further
PrPSc aggregation by crosslinking,may modify or occlude seeding surfaces on PrPSc even with-
out unfolding the protein, preventing PrPSc from converting PrP monomers into more PrPSc in
vivo, or into recombinant PrP amyloid in vitro. A loss of specific infectivity with further aggre-
gation of PrPSc would be consistent with previous observations that the most infectious prion
particles are small and non-fibrillar [61].

We have shown activity of a HOCl formulation against prions in wet tissue homogenates
and dried onto stainless steel wires. The ability to inactivate prions on stainless steel imple-
ments and instruments without damaging them would reduce risks of iatrogenic transmission
in clinical settings, autopsy rooms and slaughter houses. Further work will be required to ascer-
tain whether BrioHOCl can not only inactivate prions bound to stainless steel, but also to other
types of materials such as those covering gastroscopes, broncoscopes and rhinoscopes.

Although our results indicate that BrioHOCl’s active Cl content can decline over time, its
stability on storage in sealed high density polyethylene vessels (half-life estimated to be 440
days), even under less-than-ideal warehouse storage conditions, is compatible with various
practical applications. Certainly, furtherwork is required to optimize storage vessel selection
and fluid handling. Nevertheless, the speed and efficacy of prion inactivation even with test
samples from barreled production lots>9 months old (Figs 1, 2, 4 and 5; Tables 1 and 2),
together with the persistence of high level and rapid efficacy (4–7 LRV) against some of the
most resistant microbes known (Bacillus and Aspergillus spores) (S1 Table), support the practi-
cal utility of BrioHOCl.Given the prolonged persistence of prions in the environment (e.g.
[62–64]), it is important to have practical means of neutralizing prion infectivity in natural set-
tings as well as procedure rooms, operating rooms, animal handling facilities and food process-
ing plants.

The generality of the effects of this HOCl formulation on proteins, as evidenced by the
mobility shifts of many brain homogenate proteins (Fig 8), is consistent with its effects on
PrPSc (Fig 8) and amyloid seeds of α-synuclein (Fig 9) and the tau fragment (Fig 10). This raises
the intriguing possibility that HOCl could have even broader effects on pathological protein
aggregates that are capable of seeding their own accumulation. Recent studies have indicated
experimental transmissibilities of several protein misfolding processes such as those of Alzhei-
mer disease, Parkinson disease,multiple systems atrophy [65, 66], and tauopathies (reviewed
in [9, 67]). Although to our knowledge there is no clear evidence of transmissions of these dis-
eases between humans, these studies have raised concerns that self-propagating protein amy-
loids, e.g. those composed of Aβ [68], α-synuclein, and tau, might pose risks of iatrogenic
transmission via contaminated medical instruments or transplanted tissues. If the seeding

Anti-prion and Anti-amyloid Seed Activity of Hypochlorous Acid

PLOS Pathogens | DOI:10.1371/journal.ppat.1005914 September 29, 2016 18 / 27



activity associated with these various diseases can be inactivated by appropriate HOCl exposure
as suggested by our study, then such potential transmission risks might be mitigated.

Finally, as noted above, HOCl is produced naturally in vivo by a variety of “professional”
phagocytes such as neutrophils, microglia and macrophages as part of innate immune mecha-
nisms to inactivate microbial pathogens and trigger a variety of beneficial pathophysiological
responses to injury. The fact that we have now shown that HOCl also has anti-prion activity in
vitro raises the possibility that the same might be true in vivo. Many proteins can formmis-
folded oligomers and amyloid fibrils that can seed their own growth and accumulate in tissues
to cause pathological changes. Protein quality control systems such as the unfolded protein
response, chaperones, ubiquitination, proteasomes and autophagy can usually prevent the
accumulation of misfolded proteins within cells [69]. However, it is less clear how organisms
ordinarily cope with amyloid-like aggregates that escape these systems and accumulate inside
or outside cells. Perhaps such aggregates can be recognized, and exposed to HOCl or other
more stable products of the reactive oxygen burst such as N-chlorotaurine [70]. Such HOCl
exposuremight inactivate the self-propagating activity of protein aggregates and/or aid in their
clearance. Further studies will be required to evaluate whether such a mechanism is a signifi-
cant component of proteostasis in vivo.

Materials and Methods

Anti-Prion reagents

Pure Bright GermicidalUltra Bleach1 was used as the source for Na hypochlorite (6%). Envi-
ron LpHTM was obtained originally from Steris Inc. and had been stored for�6 years prior to
use. It should be noted that this specific Environ LpHTM formulation differs from product sold
with the same name in Europe [17]. BrioHOClwas produced from a saturated NaCl solution
and filtered water in an electrochemical cell by a proprietary process of Briotech Inc., Woodin-
ville,WA. We confirmed that HOCl is a primary active component of BrioHOCl, and that
other potential electrochemical reaction products such as OCl- (hypochlorite) or molecular
chlorine (Cl2) were undetectable, by Raman spectroscopy (S1 Fig).

Disinfectant treatments of BH suspensions

10% (w/v) brain homogenates (BH), defined as 10−1 tissue dilutions, were prepared as
describedpreviously [32] from brain tissue obtained from a scrapie-infected hamster, a BSE-
infected cow (a gift from Dr. Kentaro Masujin, National Institute for Animal Health, Tsukuba,
Japan), a scrapie-infected sheep (a gift from Dr. David Schneider, Animal Disease Research
Unit, USDA-ARS, Pullman,WA), a human vCJD decedent (Drs. Kaetan Ladhani and Jillian
Cooper at the CJD Resource Centre, NIBSC, Herts, UK), and a CWD-infectedmule deer (Drs.
Michael Miller, ColoradoDepartment of Wildlife; ElizabethWilliams and Jean Jewell, Univer-
sity of Wyoming; and Terry Kreeger, Wyoming Game and Fish Department). In each case,
10% BH (w/v) was incubated at room temperature for the designated time in saline (0.9%
NaCl), BrioHOCl, 1M NaOH, 40% household bleach (2.4% Na hypochlorite) or 2% Environ
LpHTM at a ratio of 100:1, or 20:1 (v/v, disinfectant:BH) as specified. Following incubation,
serial 10-fold dilutions were prepared in Sample Diluent (PBS, 0.1% SDS and Gibco N2 media
supplement) and seeding activity was quantified by end-point dilution RT-QuIC analysis fol-
lowed by Spearman-Kärber analysis to estimate the seeding dose giving positive reactions in
50% of the technical replicates [32]. In other experiments, a milder deactivation condition was
used in which 10% (w/v) BH was incubated for only 5 min in saline or the designated disinfec-
tants and then immediately diluted into Sample Diluent to greatly reduce continued effects of
the disinfectants.
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Disinfection treatments of scrapie-coated wires

Batches of sterile stainless steel suture wire (Havel, size 000), cut into 3–4mm lengths, were
soaked in BH from normal (uninfected) or scrapie-infected animals at tissue dilutions of 10−3–
10−10 for 1 h at room temperature, washed 3 times with a brief vortex in 1ml PBS, and left to
dry in a sterile petri dish. Additional batches of wires coated with 10−3 scrapie-infected BH
(ScBH) were further treated by submerging in disinfectants (BrioHOCl, 1M NaOH, 40%
household bleach (2.4% hypochlorite), 2% Environ LpHTM or saline (mock disinfectant)).

RT-QuIC analyses

All RT-QuIC seeding assays were conducted using conditions similar to those describedprevi-
ously (eg. [32]) with variations describedbelow. Hamster (90–231) recombinant prion protein
(rPrPC) (Accession number K02234) or chimeric hamster-sheep rPrPC (Ha-S; Syrian hamster
residues 23 to 137 followed by sheep residues 141 to 234 of the R154Q171 polymorph [accession
nos. K02234 and AY907689] [71]) were used as substrates in RT-QuIC experiments as indi-
cated. Purification of hamster (90–231) and Ha-S rPrPC was conducted as previously described
[72].

To measure prion seeding activity in brain tissue dilutions, 2 μl of each dilution was added
to 98 μl RT-QuIC reaction solution to give final concentrations of 0.1 mg/ml rPrPC, 10 mM
phosphate buffer (pH 7.4), 10 μM thioflavin T (ThT), 300 mMNaCl, 1 mM EDTA and 0.002%
SDS. This final concentration of SDS in the reaction volume resulted from dilution of seed
sample containing 0.1% SDS. Four technical replicate reaction wells at each dilution were set
up in a 96-well plate. For analysis of wires, single wires were transferred into wells containing
100 μl of the RT-QuIC reaction solution with the 0.002% SDS final concentration added
directly. The plates were then shaken in a temperature-controlled fluorescence plate reader
(BMG FLUOstar) at 42°C unless indicated otherwisewith cycles of 1 min double orbital shak-
ing at 700 rpm and 1 min of rest [32]. ThT fluorescencewas measured at 45-min intervals.

To measure α-syn seeding activity recombinant α-syn purchased from rPeptide (Catalog #
S 1001 1) was used as a substrate. α-Syn fibrils were generated in 20 mM Tris-HCl, 100 mM
NaCl, pH 7.4 through constant shaking at 1000 rpm while incubating at 37°C for 5 d in a
Eppendorf Thermomixer R. 20 μL of these fibrils, or fibrils treated with HOCl as described,
were used to seed a reactionmix containing final concentrations of 104 mMTris, 20 mM
NaCl, 10 μM ThT, and 30 μM α-syn, at pH 7.5. Seeded reactions were incubated at 37°C with
the shake-rest cycles and reading parameters the same as for RT-QuIC.

For tau-based RT-QuIC reactions, the cysteine-freeK19 tau fragment was expressed and
purified as previously described [55, 73] with modifications. Synthetic tau seed was generated
and seeding assays with fluorescence detectionwere performed in HEPES-buffered saline solu-
tions containing low molecular weight heparin by following the protocol described [55] with
modifications such as periodic shaking in a 96-well plate rather than sonication in tubes.

All RT-QuIC experiments were set up such that the plate readers would give a ThT fluores-
cence negative control baseline of around 50,000 rfu (relative fluorescence units). These readers
have a fluorescence saturation signal of 260,000 rfu. Following collection the experimental data
was normalized such that the baseline signal of the lowest negative control was set at 0% and
the saturation signal of 260,000 rfu was set at 100%. The individual traces graphed are the aver-
ages of the 4 wells for each dilution tested. For Spearman-Kärber analyses of end-point dilution
RT-QuIC experiments [32, 74], individual reaction wells were judged to be positive at 50 h
when the signal exceeded 50% of the saturation signal. The seeding dose (± S.E.) giving ThT
positivity in 50% of technical replicate wells (SD50) was calculated as describedusing the S.E.
“smoothing” procedure to account for small group size [68].
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Mice

Homozygous, tg7 mice on a C57BL/10 background were bred at RML and used for all bioassay
experiments. Creation of the original tg7 mice has been describedpreviously [31]. The tg7
mice used in these bioassays over-express hamster PrP (approximately 5-fold) under the con-
trol of the endogenousmouse PrP promoter and do not express any mouse PrP.

Mouse bioassay of tissue suspensions

Following the 100:1 Disinfectant treatments of BH suspensions described above a 10−3 dilu-
tion of ScBH was further diluted in serial 10-fold increments into PBS for inoculation into
mice. The following dilutions of treated ScBH were tested: Saline treatment group, 10−4

through 10−10; BrioHOCl, 10−3 through 10−8; NaOH, 10−5 through 10−8; bleach, 10−5 through
10−8; Environ LpHTM, 10−5 through 10−9. The dilutions selected for bioassay were based on
expected levels of infectivity or, in some situations, the disinfectants were further diluted
prior to inoculation to prevent acute toxicity (i.e., for NaOH, bleach and Environ LpHTM).
Each dilution was inoculated intracerebrally into groups of 4 tg7 mice. For the inoculation,
mice were anesthetized with isoflurane and inoculated in the left brain hemisphere with 30 μl
of dilutions of disinfectant- or saline-treated ScBH. Following inoculationmice were moni-
tored for onset of scrapie. Mice were euthanized when they displayed advanced stages of scra-
pie including poor grooming, kyphosis, ataxia, wasting, delayed response to stimuli, and
somnolence. Following euthanasia brains were removed and flash frozen for biochemical
analysis. Infectivity titers were calculated for each experimental group using the Spearman-
Kärber formula [32].

Mouse bioassay of steel-bound scrapie infectivity

For wire implantation, experimental groups were 3–8 mice (Table 2). Tg7 mice were anesthe-
tized with isoflurane gas and the dorsal surface of the mouse skull was shaved, ophthalmic
ointment was applied to protect each eye, and the dorsal surface of the skull was scrubbed
with chlorhexidine surgical scrub. Each mouse was then positioned in a stereotactic device
and isoflurane anesthesia was provided via nose cone. Using aseptic technique a midline inci-
sion was made on the skin of the skull to expose the bregma landmark. The drill was posi-
tioned at a location 1 mm anterior to bregma and 1.7 mm to the left, lateral side of midline
(above the striatum). A small hole was drilled at this location and a 3–4 mm pre-treated stain-
less steel wire was inserted. Bone wax was used to seal the defect in the skull once the wire was
is in place. The incision was closed with 5–0 PDS suture in a cruciate pattern. Mice were
placed in heated cages following surgery until fully recovered. Each mouse received 0.2 mg/kg
buprenorphine (Buprenex) subcutaneously immediately post-surgery. Following implanta-
tion tg7 mice were monitored for onset of scrapie. Mice that developed disease were eutha-
nized. At the time of euthanasia, all the wires were confirmed to be in place and showed no
signs of deterioration.

Active chlorine and other BrioHOCl characteristics

Hach reagent kits for Total (active, free) Chlorine (Hach Company, Loveland, CO) were used
for determination of the active Cl content of the BrioHOCl formulation, after validation by
comparison of manual iodometric and digital titration results on 33 samples (6 replicates
each). Thereafter the digital Hach device was used (4 replicates per sample) to measure active
Cl in all samples used for inactivation experiments with PrPSc, and for antimicrobial efficacy
testing. Titratable free Cl concentrations were also measured in archived samples at Briotech
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(oldest 34 months), and, to establish the Cl trends, in a serially sampled lot of BrioHOCl. The
latter were stored in sealed ~100 mL aliquots in HDPE bottles at 21°C, and prepared specifi-
cally for this purpose. All other HOCl samples used throughout this study were derived from
routine production electrolysis runs at the manufacturing plant. Product from each lot was
stored in different vessel types (100 mL up to 4 L bottles, and 220 L barrels, all HDPE) in
uncontrolled temperature warehouse environments (3.5°C to 35°C). Small vessels were sealed
with aluminum caps, and drums lids were tightly sealed to avoid exposure to air (known to be
deleterious), but no optimization of storage conditions was attempted for materials used
herein. The pH, oxidation-reduction potential (ORP, in mV) and conductivity were recorded
for all samples using a Hach Multi Parameter meter (Model HQ40d). ORP targeted at produc-
tion was +1140 mV, at pH 3.9. Starting active Cl concentrations were varied in production lots
during electrolysis, depending on intended applications. Generally these values ranged between
175 and 350 ppm active Cl, with backgroundNaCl concentrations of either 0.9 or 1.8%. Solu-
tions with both NaCl backgrounds were tested in RT-QulC assays.

UV/Vis spectrophotometry

Test solutions were loaded into 1 mL quartz cuvettes, and spectra obtained using a BioMate 3S
UV-Visible Spectrophotometer. The instrument was blanked using Nanopure water, and test
solutions consisted of undiluted BrioHOCl at selected time points in the sequential sampling of
product stored at room temperature. Absorbance was measured from 190–400 nm.

Raman spectroscopy

Spectra were obtained using a Renishaw InVia Ramanmicroscope. Spectra were observed
using an excitation wavelength of 785 nm with undiluted BrioHOCl in a 1 mL quartz cuvette.
The acquisition time for each scan was 20 s, and 100 acquisitions were accumulated. A deion-
ized water blank was scanned in the same manner, and subtracted from the test sample data
using Igor software (WaveMetrics).

Protein gel analysis

PrPSc, purified as previously described [75], hamster ScBH at a dilution of 10−1, α-synuclein, or
Lewy bodies isolated from the brains of a Lewy body dementia patient, as described [76], were
pretreated with saline or BrioHOCl solutions as indicated in the figure legends. Following
treatment, samples were diluted with equal volumes of 2X sample buffer (125 mM Tris-HCl
pH 6.8, 5% glycerol, 6 mM EDTA, 10% SDS, 0.04% bromophenol blue, 48% urea, 8% 2-mer-
captoethanol) and boiled for 5 min. Equal volumes of samples were run on 10% Bis-Tris
NuPAGE gels (Invitrogen) and used for subsequent Deep Purple protein stain per manufactur-
er’s instructions (GE Healthcare) or the protein transferred to an Immobilon P membrane
(Millipore) using the iBlot Gel Transfer System (Life Technologies). PrP was detected using
rabbit PrP antisera R30 (1:10,000; residues 90–104) [77, 78] and alkaline-phosphatase conju-
gated secondary antibody (1:5000; Jackson ImmunoResearch). α-Synuclein was detected using
mouse Anti-α-Synuclein Clone 42 antibody (1:1000; BD Transduction Laboratories) and alka-
line-phosphatase conjugated secondary antibody (1:2000; Jackson ImmunoResearch). Tau was
detected using a tau antibody (anti-tau ab64193, Abcam) as the primary antibody.

Ethics statement

All mice were housed at the RockyMountain Laboratory (RML) in an AAALAC-accredited
facility in compliance with guidelines provided by the Guide for the Care and Use of
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Laboratory Animals (Institute for LaboratoryAnimal Research Council). Experimentation fol-
lowed RML Animal Care and Use Committee approved protocol #2015–070 in compliance
with guidelines provided by the Guide for the Care and Use of Laboratory Animals (Institute
for Laboratory Animal Research Council).
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S2 Fig. RT-QuIC seeding activity tolerance for BrioHOCl.RT-QuIC analysis was performed
with Hamster (90–231) recombinant prion protein substrate at 42°C using 2μl per well of nor-
mal brain homogenate (gray) or hamster scrapie brain homogenate at a tissue dilution of 5x10-8

as reaction seed in the presence of 0 (red) or 0.001, 0.01, 0.1, 1 & 10% BrioHOCl (blue) is indi-
cated. In each case BrioHOCl concentrations were added directly to the reaction volume in the
wells. Each trace represents the average ThT fluorescence of four technical replicate wells nor-
malized between baseline and maximal signal and graphed here as a function of time.
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S3 Fig. Tolerance of α-synucleinRT-QuIC assay for BrioHOCl.Direct addition of BrioHOCl
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direct addition of the equivalent to a 10-2 dilution (1.8%HOCl, blue line) partially interfered
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