
PEARLS

Systems Biology for Biologists
Rachel A. Hillmer*

Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul,
Minnesota, United States of America

* hillm101@umn.edu

Have You Been Put Off by Systems Biology?
Do you avoid papers thick with mathematical details and unfamiliar statistical analyses? If so,
this article is for you! Systems biology, at its core, is not a set of computational and mathemati-
cal techniques; these are merely tools, incredibly useful, but secondary. The heart of systems bi-
ology is simple: explaining how a system works requires an integrated outlook. For any
phenotype—molecular, macroscopic, or ecological—a set of interrelated factors exist that con-
tribute to this phenotype. Since these factors interact, they need to be studied collectively, not
merely individually. That’s it!

What Is a System?
A system is a collection of parts and factors that work together to complete a task. Conversely,
for a given task, the system is defined by the set of all parts and factors which influence, accom-
plish, or impede that task.

Some systems are easy to identify. Think of a machine, like a car. The body of the car houses
all the parts that make up the automobile. The external boundary makes the system easy to
identify. Some systems are less easily identified. Consider all the factors that influence traffic
flow in a city. The first example is concrete, the second more abstract; both are systems.

What about Some Biological Systems?
In the systems biology literature, the most commonly discussed systems are networks of genes
or proteins. Sometimes these are very large systems: the set of all genes in an organism and the
spatiotemporal control of these genes (e.g., [1–3]). But there is no fixed scale at which systems
biology operates. Your system could be an ecosystem of plants and the soil services they pro-
vide and require; your system could be an epidemiological system with hosts, pathogens, and
vectors. Your system could be a single molecular process, like the regulation of an important
gene. Or it could be a complex system like the induction of an immune response within a cell,
tissue, or organism. If there is a biological question you wish to ask, or a process you wish to
study, there is, de facto, a set of parts which contribute to that process; these parts define the
system. Biological parts are interconnected and interdependent. Systems biology recognizes
this and provides tools and frameworks to both accurately capture these relationships and de-
duce the system behavior that emerges from these relationships.

My System Has Tens of Thousands of Molecular Parts. Aren’t Your
Claims That Systems BiologyWill Help Me Just Wild Speculation?
Happily, no. The solution: taking stock of major effects and ignoring minor ones. Good sys-
tems biology is a balance between reductionism—breaking a system apart into smaller parts
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and defining the function of these parts—and synthesis—understanding how the parts cooper-
ate to produce the behavior of the whole. We have two options: (1) discover and study small
modular subsystems [4] or (2) approximate a complex system via a tractable number of com-
ponents [5] (e.g., [6]). To do the latter, we first look for the parts which have large effects on
our process or phenotype of interest, so-called “large-effect” parts [7]. For example, if the sys-
tem is an organism-level process, these may be hormone concentrations, which by definition
regulate a large number of molecular processes, e.g., [6,8]. Or, they may be cells in the circula-
tory system, which can monitor and regulate multiple tissues, e.g., [9]. The hubs of a complex
system serve as excellent candidates for major-effect parts (Fig 1). Hubs, by definition, do either
or both of the following: (1) integrate regulatory information from many parts or system in-
puts, (2) transduce this information to regulate multiple processes or parts. If we first get a
good approximation of the basic functionality of a system, we can then add on the bells
and whistles.

To figure out the major-effect parts and/or processes of your system, there are a host of es-
tablished biological methods, including:

1. observation

2. forward genetic screens

3. genome-sequence-assisted guesses

4. gene expression analysis

5. an external system perturbation (e.g., exogenous chemical application)

How Do I Define the Rules Governing My Biological System?
Once you have a first-pass parts list assembled, you will need to combine two types of experi-
mental factors:

1. external system perturbations

2. internal system perturbations

Why are perturbations needed? As in classical genetics, we learn about systems best by break-
ing or aggravating them in defined ways, observing how those induced changes modulate the
process or phenotype of interest. External perturbations include, for example, treating a tissue
with pathogens or pathogen-derived compounds. An internal perturbation involves removing,
disabling, or modifying one or more system parts. Diverse internal system perturbations are
needed because complex, robust systems are often full of redundancies and backups. Robust
systems buffer mild perturbations. Ideally, a combinatorial set of internal perturbations that
jointly abolish a phenotype would be challenged by a representative diverse suite of external
system perturbations that stimulate the system in different precise ways [10] (e.g., [6,11]).

The system should be measured across appropriate timecourses to capture when the system
is dynamically responding to the (especially external) perturbations. Quantitative monitoring
of both the system parts and the system output is ideal. Such data empowers mathematical de-
duction of the mechanisms by which system parts control and modulate the system response.

What Is a Mathematical Model?
Amathematical model is a set of relationships, usually written as equations, that describe how
the parts of the system respond to system inputs, regulate each other, and control system output.
Why do we need math to do this? Math is just formalized logic, so in theory we could just use
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Fig 1. Combinations of system perturbations assist in discovering the mechanisms that drive complex biological system responses. Complex
systems, e,g., the immune system of an organism, are notably complicated in two ways: (1) they are tuned to respond differently to different system inputs,
and (2) the system that mediates outputs as a function of inputs is full of network redundancy, which ensures operation under nonideal circumstances. Thus,
learning the rules for how a complex system operates requires coincident, varied, and likely combinatorial external and internal perturbations to a system.
Mild perturbations are likely buffered by the system; strong perturbations are the key. Complex systems often have numerous parts; how do we decide which
parts should be perturbed? Network hubs—parts which integrate numerous signals and/or regulate many parts—are excellent candidates for an abbreviated
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descriptive sentences. But for all except the simplest relationships, exhaustively working out the
implications of these relationships is prohibitively laborious and error-prone. Moreover, lan-
guage can be imprecise, where math naturally tends towards precise expression of relationships.
Why is a model valuable? Models are hypothesis generation tools, efficient ways to scout out
novel and interesting system behavior. We use them to explore in silico varied external condi-
tions and internal systemmodifications. Accomplishing such exploration experimentally is usu-
ally far more labor intensive, costly, and perhaps even impossible. A good mathematical model
is an imperfect but useful virtual copy of a system that reproduces the salient features of the sys-
tem. This copy lets us play with the system using computational techniques, analogous to how
physical toy models help chemists think about the structure of a molecule.

Perfect system knowledge is not a prerequisite for starting to build a mathematical model.
Model building is an iterative procedure: model, predict, test experimentally, repeat all. Model-
ing, when done well, will help channel further experiments in the most fruitful directions.

Have no fear, you do not need to become an expert in math. You need only make friends
with someone who is. And your collaborator very much needs your input on the model. Math-
ematical approaches and structures need to be chosen which capture and reflect the essence of
each biological system. For this, the training and intuition of a biologist is irreplaceable.

Are There Any Systems Biology Success Stories?
Why, yes, indeed there are. Successful mathematical modeling of biology has a long history
that began long before the genomics era. Here are some highlights. Tissue models of the
human heart stand on over half a century of iterative modeling, experimentation, and model
refinement. Birthed from this long labor, the virtual heart, used in clinical settings, may be sys-
tems biology’s brightest star [12,13]. In 1952, British mathematician Alan Turing proposed
that leopard spots, zebra stripes, and spirals in nature could arise by a simple reaction-diffusion
equation imposed on a homogenous system [14]. It took decades to develop the molecular
tools to test his hypothesis, but he was right [15,16]. During the 2001 United Kingdom out-
break of foot-and-mouth disease, mathematical models were used to predict disease spread
and assisted in deciding control measures [17]. An integrated biomedical informatics program,
aneurIST, predicts rupture of incidentally discovered cerebral aneurysms using additional pa-
tient-specific medical data. During active model development, it was estimated that this model-
ing effort saved thousands to millions of euros annually in unnecessary procedures [18]. A few
excellent molecular systems biology models are described on Nicolas Le Novère’s blog [19].
For numerous additional examples, see the European Bioinformatics Institute’s (EMBL-EBI)
“Models of the Month” database, part of its BioModels database [20].

Should You Become a Systems Biologist?
Are you perfectly content to study a small system? There’s no pressure to take on a wildly am-
bitious system, understanding the function of an entire cell, or modeling the ecosystem of plan-
et Earth. For any biological question, a relevant system exists; the study of this system will
benefit from including mathematical models in your toolkit.

parts list. We then monitor system behavior, in response to external perturbations, when different combinations of hubs have been rendered inoperable. Data
from this monitoring can enable mathematical reconstruction of how major system parts are stimulated, influence each other, and modulate system output.
These mathematical models are then used to direct further experiments, which leads to model refinement. Goals of iterative model building include: furthering
our fundamental understanding of the system and predicting properties of the system relevant in applied settings. Image: conceptual diagram of a complex
system that responds to system inputs (i.e., external perturbations).

doi:10.1371/journal.ppat.1004786.g001
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You may be hesitant to consider becoming a systems biologist. Math fear is a real thing. But
who knows? There might be a collaborator waiting for you just across campus. Frommy experi-
ence as a physicist turned biologist, I can confidently say there are mathematicians, physical and
computer scientists, and engineers who have been lured by the extraordinariness of biology.
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