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Abstract

We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue
virus type 1 (DENV-1) infection in mice. To further understand its functional properties, we determined the crystal structure
of E106 Fab in complex with domain III (DIII) of DENV-1 envelope (E) protein to 2.45 Å resolution. Analysis of the complex
revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and
A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a
,20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent
affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible
on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes
DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus
antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral
arrangement of envelope proteins on the virion surface.
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Introduction

Dengue virus (DENV) infection in humans causes symptoms

ranging from a mild febrile illness to a severe and sometimes fatal

disease. Over 3.6 billion people globally are at risk for DENV

infection, with an estimated 390 million infections annually and no

currently approved vaccine or antiviral therapy [1]. DENV

belongs to the Flaviviridae family of medically important positive-

stranded RNA viruses. Within the DENV serocomplex, there is

significant diversity, including four serotypes (DENV-1, -2, -3, and

4) that differ at the amino acid level of the envelope (E) protein by

,25 to 40 percent and multiple genotypes within a serotype that

vary by up to ,3 percent [2,3].

A humoral response against DENV infection is believed to

contribute to lifelong immunity against challenge by the homol-

ogous serotype. In comparison, protection against a heterologous

DENV serotype infection is more transient (,6 months to two

years) [4,5], allowing re-infection and disease to occur with a

heterologous serotype in hyper-endemic areas of the world.

Estimates suggest that greater than 90% of severe cases occur

during secondary infection with a heterologous DENV serotype,

possibly because sub-neutralizing amounts of cross-reactive

antibody facilitate viral entry into myeloid cells expressing Fc-c
receptors, a phenomenon termed antibody-dependent enhance-

ment of infection (ADE) [6]. Antibody-mediated protection against

homologous DENV infection correlates with a neutralizing

antibody response directed predominantly against the viral E

protein [7]. The ectodomain of E is comprised of three domains:

domain I (DI), a central nine-stranded b-barrel that connects

domain II (DII), which contains the fusion peptide at its distal end,

and an immunoglobulin-fold like domain III (DIII) [6–9].

Although neutralizing antibodies have been mapped to all three

domains of the E protein, many potently inhibitory anti-DENV

mouse MAbs map to DIII [10–17], specifically to the lateral ridge
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or A-strand epitopes, and block flavivirus infection at a post-

attachment stage, likely by preventing E protein dimer-to-trimer

transitions that are required for viral fusion [11,15,18].

We recently described a highly therapeutic MAb, DENV-1-

E106 (hereafter termed E106), which neutralized infection of

strains corresponding to all five DENV-1 genotypes and protected

against lethal DENV-1 infection when administered as a single

dose even four days after virus inoculation [13]. To understand the

basis for the potency (plaque reduction neutralization titer

(PRNT50) of 0.6 ng/ml) [13] and specificity of this MAb, we

solved the crystal structure of E106 Fab in complex with DENV-1

E DIII. Our analysis revealed a small antibody-antigen interface

with contact residues corresponding to two previously character-

ized DIII epitopes. Remarkably, a ,20,000-fold disparity in

neutralization by intact IgG and Fab correlated with distinct

abilities to bind intact virions. Our results are consistent with a

model in which our most potently inhibitory and therapeutic

DENV-1 MAb requires bivalent binding through dual and

simultaneous engagement of two antigen binding sites on a single

virion to neutralize infection. E106 is therefore one of only a few

unique antibodies described to date where effective neutralization

requires a bivalent binding mechanism, and is the first such

characterized MAb directed against flaviviruses.

Results

The crystal structure of E106 in complex with DIII reveals
a small footprint

E106 is a sub-complex specific therapeutic MAb that binds to

DENV-1 and DENV-4 infected cells and neutralizes infection of

all five DENV-1 genotypes efficiently (EC50 ranging from 1 to

50 ng/ml), without neutralizing DENV-2, 3 and 4 serotypes or

WNV [13]. The 2.45 Å crystal structure of E106 Fab bound to

DIII revealed only nine contact residues, from the A-strand (K307,

K310), the end of the B-strand (K325, Y326), and the connecting

BC (E327, T329, D330) and DE (K361, E362) loops (Fig. 1A and

Table 1); these results are consistent with prior mapping data by

yeast surface display, which implicated five of these residues as

essential recognition determinants (K310, T329, D330, K361 and

E362) [13]. Yeast surface display results also implicated G328,

P332, and P364 in E106 binding, and mutation of any of these

residues would likely result in an altered presentation of the direct

contact residues. Charge reversals at either E384 or K385 in the

FG-loop also diminished E106 recognition, and this loop is

adjacent to the primary E106 epitope. Overall, the contact

residues contributed 24 van der Waal interactions, 14 hydrogen

bonds, and 10 electrostatic interactions to the interface (Table
S1). The E106 structural footprint represents a unique composite

of previously identified DIII-specific neutralizing epitopes on

flaviviruses including the lateral ridge (N-terminal region, BC, DE

and FG loops) [19,20] and A-strand epitopes [10,21]. DENV-1

DIII was engaged by 11 heavy chain residues from CDR1 (I30,

G31, Y32 and Y33), CDR2 (N52, E50, and R53), and CDR3

(R95, I196, N97 and W98) (Fig. 1B, top panel) and four light

chain residues from CDR1 (D30, D32), CDR2 (E50), and CDR3

(L94) (Table S1).

A comparison of the DIII structure in complex with Fab versus

unbound DIII revealed small conformational differences, with a

root mean square displacement of 0.9 Å in the a-carbons over 98

residues. Of the DIII residues that directly interacted with the

E106 Fab, the greatest differences in a-carbon positions involved

residue T329 (1.2 Å); this was significant because a recently

identified E106 MAb neutralization escape mutant showed a T to

A amino acid change at position 329 (Fig. 1B, bottom panel)
and [22]).

The E106 structural epitope on DIII was characterized by a

high shape complementarity score (Sc = 0.73, with a perfect fit

being 1) [23], which is greater than typical antibody-antigen

interactions (Sc = 0.64–0.68) [23] but similar to anti-flavivirus

MAb-E protein interactions (Table 2). The combined surface

area buried by the DIII-E106 Fab complex was ,1,243 Å2

(Fig. 1C and Table 2) [24] which is less than most antibody-

antigen (1,400–2,300 Å2) [25,26] and anti-flavivirus MAb-E

protein interactions (Table 2). Typical of many antibody-antigen

complexes, the majority (,70%) of the DIII-E106 Fab interface

was contributed by the heavy chain (Fig. 1C), with a combined

buried surface of 877 Å2 (401 Å2 of the heavy chain and 476 Å2 of

domain III). The light chain contributed the remaining buried

surface (172 Å2 of the light chain and 194 Å2 of domain III).

All nine DIII contact residues were conserved in the five

DENV-1 genotypes (K361 is replaced by the conservative

substitution R361 in genotype 5 strains); this likely explains why

E106 neutralized infection of all five DENV-1 genotypes efficiently

(Fig. 1D and 1E), and [13]). In comparison, only one of the nine

contact residues (Y326) was conserved in DENV-2, DENV-3,

DENV-4 or WNV, a finding that is consistent with virological data

showing that DENV-1-E106 MAb neutralizes infection in a

serotype-specific manner [13]. E106 binds to DENV-4 but not to

DENV-2 or DENV-3 [13]. The number of conserved contact

residues did not correlate with DENV serotype binding specificity

(DENV-4 has four whereas DENV-2 and DENV-3 each have five,

Fig. 1E), which may instead be accounted for by other factors,

including differential maturation [27] or relative virion dynamics

[28].

E106 Fab binds DIII with micromolar monovalent affinity
To determine the significance of the small buried interface of

our E106-DIII complex, we investigated E106 binding to DIII by

surface plasmon resonance (SPR). Increasing concentrations of

purified DENV-1 DIII monomer were flowed over immobilized

Author Summary

Dengue virus (DENV) is a globally important mosquito-
transmitted human pathogen for which there is no
approved vaccine or antiviral therapy. In recent years,
the number and severity of DENV human infections have
increased due to the expanded geographic range of the
virus. Neutralizing antibodies are a key component of a
protective natural and vaccine-induced immune response
against human DENV infections. One recently described
monoclonal antibody (E106) protects mice against infec-
tion of DENV-1 when administered before or several days
after virus infection. Because of these results, we investi-
gated the mechanism of action of E106 using a combina-
tion of structural and functional approaches. E106
engaged an epitope on domain III of the viral envelope
protein that is a composite of two previously described
epitopes. Unexpectedly, and in contrast to the intact IgG,
Fab fragments of E106 were ineffective at neutralizing
virus; this was explained by their weak micromolar affinity
for virus particles. Our results suggest that neutralization
by E106, our most potently inhibitory and protective anti-
DENV MAb, requires bivalent binding of adjacent DIII
subunits on a single virion. Immunization strategies with
intact virions that skew the selection of neutralizing
antibodies to those with bivalently binding properties
could augment the potency of antiviral humoral responses
against DENV and other flaviviruses.

Bivalent Antibody Neutralization of Dengue Virus
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E106 Fab (Fig. 2A). Equilibrium analysis surprisingly revealed a

micromolar affinity (4.862.1 mM) for this interaction. A similar

result was observed when increasing concentrations of DENV-1-

DIII monomer was flowed over immobilized intact E106 MAb in

the solid phase (3.260.8 mM, Fig. 2B); this experiment eliminates

the possibility that papain cleavage and the removal of the E106

Fc region altered the monovalent binding parameters. Binding to

the ectodomain of DENV-1 E (DI-DII-DIII) also appeared

equivalently weak (1.160.1 mM). As an independent measurement

of affinity, we performed isothermal titration calorimetry under

similar experimental conditions as SPR by injecting DENV-1 DIII

into a solution of E106 Fab. Using this method with completely

unmodified proteins we again measured micromolar affinity for

the E106 Fab/DIII interaction (KD = 0.762 mM) (Fig. 2C).

E106 Fab binds and neutralizes DENV-1 poorly
The micromolar monovalent affinity of the highly therapeutic

E106 antibody was unanticipated in light of its picomolar

inhibitory activity (462 pM or 0.660.3 ng/mL; our most potent

neutralizing anti-flavivirus MAb isolated to date); as a comparison,

our therapeutic DIII-specific anti-WNV MAb E16 (inhibitory

activity 30 to 80 pM or 4–18 ng/mL), which has advanced to

human clinical trials [29], has a monovalent affinity of 3.4 nM

[30]. We hypothesized that while E106 MAb potently inhibited

DENV-1 infection, Fabs should lack this activity. To test this, we

compared the ability of Fab and intact IgG from E106 and E103,

a lateral ridge DIII-specific DENV-1 neutralizing antibody [13], to

inhibit infection. While monovalent E103 Fab showed a 114-fold

decrease in neutralization potency compared to the intact bivalent

IgG, the Fab of E106 Fab showed a remarkable 18,150-fold

decrease in inhibitory activity when compared to intact IgG

(Fig. 3A).

To investigate this observation further, we performed a virion-

binding assay by ELISA. DENV-1 virions (strain 16007) were

captured with humanized DIII A-strand-specific antibody

(DENV-1-E50) [31] and then detected with Fab or intact IgG of

E103, E106, or WNV E16 (negative control). Notably, the amount

of virus detected with E106 IgG was indistinguishable from E103

IgG (Fig. 3B). In comparison, E106 Fab bound virions to a

significantly lower level (P,0.0001) at all concentrations tested,

than those derived from E103 (Fig. 3B). Thus, disparate

neutralization of E106 MAb and Fab correlated with discordant

binding to DENV-1 virions and was consistent with the

biophysical measurements: monovalent binding by DENV-1-

E106 is surprisingly inefficient given the potent inhibitory activity

of intact antibody.

E106 MAb binds bivalently to DENV-1 virus particles
Based on these experiments, we hypothesized that efficient

neutralization of DENV-1 infection by E106 required bivalent

binding. Using bio-layer interferometry (BLI), we measured the

affinity and kinetics of MAb and Fab binding to intact DENV-1

virus particles [32] (Fig. 4). E106 MAb (Fig. 4A) bound DENV-1

particles with an apparent affinity (avidity), KDapp of 1362 nM. In

Figure 1. Crystal structure of E106 Fab in complex with DENV-1 E DIII. (A) The E106 Fab epitope on DENV-1 E DIII is comprised of residues in
the A-strand (K307 and K310), the end of the B-strand (K325 and Y326), and the connecting BC (E327, T329, and D330) and DE (K361 and E362) loops.
The immunoglobulin-like DIII is shown in blue (epitope regions in magenta), with the E106 heavy chain in green and light chain in cyan. (B) Heavy
chain residue W98 binds in a deep pocket contributed by the aliphatic groups of side chain DENV-1 E DIII residues K307, K325, and E327 and main
chain of Y326, in stereo (top panel). The electron density map is contoured at 1.1s. Ball and stick representation of the molecular interactions
involving T329 (the residue that escapes neutralization [13] in stereo (bottom panel). (C) Surface representation of DENV-1 E DIII (top) and E106 Fab
(bottom) highlighting residues making direct contacts in the complex (see Table S1). DENV-1 E DIII residues previously identified by yeast surface
display are displayed in magenta [13]. (D) The structural epitope on DENV-1 DIII is shown in ribbon representation. (E) Sequence of DIII of DENV-1
aligned with that of DENV-2, -3, -4 and WNV highlighting the E106 structural epitope, which is conserved in DENV-1 genotypes but not DENV
serotypes or WNV. Identical residues are represented by a dot, deleted residues by a hash. For comparison, The DIII structural epitopes of WNV E16,
DENV-2 1A1D-2, DENV cross-reactive 4E11 and 2H12 MAbs and DENV-1-E111 contact residues are labeled with green, purple, light purple, orange
and cyan asterisks respectively [10,17,20,21,33].
doi:10.1371/journal.ppat.1004072.g001
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Table 1. Data collection and refinement statisticsa.

Wavelength 0.976 Å

Resolution 20 – 2.45 Å (2.54-2.45 Å)

Number of observed reflections 166 322

Unique reflections 26 014

Redundancy 6.4 (4.8)

I/sI 19.8 (2.1)

Rmergeb 0.083 (0.546)

Completeness 99.5% (95.9%)

Spacegroup P212121

Cell dimensions a = 82.7 Å, b = 91.8 Å, c = 92.6 Å; a= b= c= 90u

Refinement statistics

Resolution 20-2.45 Å (2.55 - 2.45 Å)

No. of reflections/No. in Rfree 25912/1134

Rcryst/Rfree
c 18.9%/23.9%

No. atoms protein/solvent 4063/94

,B. protein 59.2 Å2

,B. solvent 49.3 Å2

Rmsd bond lengths 0.004 Å

Rmsd bond angles 0.822u

Ramachandran favoured 97.5%

Ramachandran allowed 2.5%

Ramachandran outliers 0%

Molprobity scored 1.07

Molprobity clash score 1.99

PDB ID 4L5F

aNumbers in parentheses refer to the highest resolution shell.
bRmerge =S|I2,I.|/S,I., where I is the intensity of each individual reflection.
cR =g(FP2Fcalc)/gFP.
dMolprobity score defined as 0.42574 * log(1+clashscore)+0.32996 * log(1+max(0,pctRotOut-1))+0.24979 * log(1+max(0,1002pctRamaFavored-2))+0.5.
doi:10.1371/journal.ppat.1004072.t001

Table 2. DENV-1 DIII-E106 Fab structural interface.

Aba – Agb complex Ag (Å2) Ab (Å2) Ag+Ab (Å2) Scc

E106 – DENV1 DIII 670 573 1 243 0.73

E16 – WNV DIII 789 810 1 599 0.76

1A1D-2 – DENV2 DIII 914 936 1 850 0.44

E53 – WNV E 596 581 1 177 0.66

E111 – DENV1 DIII 1010 1085 2095 0.68

2H12 – DENV1 DIII 652 630.5 1305.2 0.76

2H12 – DENV3 DIII 589 544 1132 0.79

2H12 – DENV4 DIII 518–548 464–488 982–1036 0.76–0.79

4E11 – DENV1 DIII 877 910 1787 0.71

4E11 – DENV2 DIII 886 876 1762 0.73

4E11 – DENV3 DIII 723–775 742–751 1474–1517 0.77

4E11 – DENV4 DIII 883 879 1762 0.74

The structural interface of DENV-1 DIII-E106 Fab (described by the surface area of antibody, Aba and antigen, Agb that is buried [24] as well as shape complementarity,
Scc in the complex [23]) is compared to previously determined anti-DENV and anti-WNV Fab complexes. PDB codes E16 – WNV E DIII, 1ZTX [20]; 1A1D-2 – DENV2 E DIII,
2R29 [21]; E53 – WNV E, 3I50 [43]; E111 – DENV1 E DIII, 4FFY [33]; 2H12 – DENV1 DIII, 4AL8 [17]; 2H12 – DENV3 DIII, 4ALA [17]; 2H12 – DENV4 DIII, 4AM0 [17]; 4E11 –
DENV1 DIII, 3UZQ [10]; 4E11 – DENV2 DIII, 3UZV [10]; 4E11 – DENV3 DIII, 3UZE [10]; 4E11 – DENV4 DIII, 3UYP [10].
doi:10.1371/journal.ppat.1004072.t002
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contrast, E106 Fab had an affinity of KD.1 mM, with a rapid

dissociation rate (t1/2,2 sec) that was at least 800-fold faster than

E106 MAb (t1/2.400 sec) (Fig. 4B). These results contrast with

more comparable binding of E103 MAb (KDapp of 0.860.1 nM)

(Fig. 4C) and E103 Fab (KD of 761 nM) to DENV-1 particles

(Fig. 4D). Importantly, the binding affinities of E106 Fab

engaging isolated DIII measured by SPR and ITC is remarkably

similar to that observed by BLI for the binding to DENV-1 virions,

suggesting that our structurally defined DIII epitope corresponds

to the entire virion surface recognized by a single Fab.

Mechanistic correlates of E106 MAb neutralization
We next investigated the time- and temperature-dependence of

E106 neutralization, as this analysis can provide information as to

the relative accessibility of epitopes [28,33]. Changes in the time or

temperature of incubation did not appreciably affect E106

neutralization (Fig. 5A and B). By performing pre- and post-

attachment neutralization assays, we found that, similar to several

other potently neutralizing DIII-specific antibodies against flavivi-

ruses [15,30,34], E106 can neutralize infection even after virus

attaches to cells (Fig. 5C). Finally, we tested the neutralization of

E106 MAb as a function of the maturation state of the virus. DENV

virions are a heterogeneous mixture of immature, partially mature

and fully mature virions, with immature virions being generally less

or non-infectious. In this assay, E106 MAb neutralization proved to

be independent of the maturation state of the virus (Fig. 5D). In

comparison, neutralization by E60, a DII fusion-loop-specific MAb,

was sensitive to virion maturation, as seen previously [27].

Modeling of E106 binding to virus
In contrast to non-enveloped viruses where a structural

understanding of bivalent antibody binding has emerged [35–

37], there currently is no such data for icosahedral enveloped

viruses including flaviviruses. To address how E106 might

recognize DENV-1 bivalently we docked our structure onto the

cryo-EM derived model of the mature DENV virion (Fig. 6) [38].

While the E106 epitope is predominantly exposed on all 180 E

protein monomers (Fig. 6A), unimpeded binding is readily

apparent only on monomers in the 3-fold and 2-fold symmetry

axes, similar to what we observed for E16 binding to WNV

[20,39]. However, minor reorientation of DIII subunits on the

inner 5-fold symmetry axis would allow for up to two E106 Fabs to

bind there at the same time as three Fabs could bind to the outer

5-fold (2-fold) related epitopes. We measured the distance

Figure 2. E106 Fab and MAb binds with low affinity to DENV-1-DIII. Analysis of DENV-1 DIII binding to (A) E106 Fab and (B) E106 MAb as
measured by SPR. The kinetically fit sensorgrams (fits in gray, raw data in black) for which a 5.863.0 mM affinity (Fab) and 4.261.2 mM (MAb) was
calculated on the left panel is similar to the equilibrium data fit 4.862.1 mM (Fab) and 3.260.8 mM (MAb) which is shown on the right panel. (C) ITC
confirms a micromolar affinity of E106 Fab for DENV-1 DIII. Results are representative of at least two independent experiments.
doi:10.1371/journal.ppat.1004072.g002

Figure 3. Fab versus MAb neutralization and binding. (A) DENV-1 neutralization by E106 MAb (filled square, red) and Fab (empty square,
salmon) (upper panel) and corresponding fold reduction (lower panel). The control E103 MAb (filled circle, blue) and corresponding Fab (empty circle,
purple) is included for comparison. (B) Qualitative ELISA binding of MAbs and Fabs to DENV-1. E106 MAb binds virions to a similar extent as E103
MAb but E106 Fab binding is significantly less than E103 Fab (P,0.0001). The negative control is E16. The results are from two ELISA experiments
performed in duplicate and without background subtraction. The limit of detection was determined by performing the assay in the absence of virus.
doi:10.1371/journal.ppat.1004072.g003

Bivalent Antibody Neutralization of Dengue Virus
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separating the docked Fab CH1 domain C-termini with the

expectation that distances greater than 50 Å would be unlikely

spanned by 16 hinge residues [36,37]. This analysis indicated the

possibility for limited bivalent bridging, with the primary

candidates being adjacent outer 5-fold epitopes (49 Å CH1

separation) (Fig. 6B and D) as well as adjacent inner and outer

Figure 4. Fab and MAb binding to DENV-1 RVPs. (A) E106 MAb binding to DENV-1 RVPs by bio-layer interferometry. E106 MAb binds with high
apparent affinity to DENV-1 RVPs (KDapp of 1362 nM) with a slow dissociation (t1/2.400 sec). Raw data is in red and fits are in gray. (B) Direct binding
of E106 Fab to DENV-1 RVPs. Results are representative of several independent experiments that showed low affinity binding (KD of .1 mM) and fast
off-rate kinetics (t1/2,2 sec). Raw data is in salmon and fits are in gray. BLI determined binding of the control E103 (C) MAb and (D) Fab to DENV-1
RVPs. E103 MAb and Fab binding to DENV-1 RVPs are comparable, with a calculated apparent KDapp of 0.860.1 nM and KD of 761 nM, respectively, as
expected for a predominantly monovalent interaction. Raw data is in blue (E103 MAb) and purple (E103 Fab) and fits are in gray. Results are
representative of at least two independent experiments.
doi:10.1371/journal.ppat.1004072.g004

Figure 5. Functional characteristics of neutralization by E106 MAb. (A–B) Time and temperature dependence of neutralization. DENV-1 RVPs
were pre-incubated with E106 MAb for one (A) or five hours (B) at three different temperatures (4uC, 37uC and 40uC) before infecting Raji-DCSIGNR
cells. Infection was carried out at 37uC and assessed 48 h later by flow cytometry. Error bars represent the standard error of the mean of duplicate
infections. Results are representative of two independent experiments. (C) Pre- or post-attachment neutralization test. BHK21-15 cells were pre-
chilled to 4uC, and 102 PFU of DENV-1 (strain 16007) was added to each well for one hour at 4uC. After extensive washing at 4uC, increasing
concentrations of E106 MAb were added for one hour at 4uC, and the PRNT determined (triangles, Post). A standard pre-incubation PRNT with all
steps performed at 4uC is shown for reference (squares, Pre). Data shown are representative from three experiments performed in duplicate. (D) E106
MAb neutralization is insensitive to the maturation state of the virus. E106 MAb neutralization of immature, standard, and mature 16007 RVP
preparations, independently validated with the fusion-loop specific E60 MAb, are shown. A representative neutralization assay of three experiments is
depicted. Error bars represent the standard error of the mean of duplicate infections. The inset depicts the EC50 values of neutralization of the
distinct RVP preparations (immature, standard and mature) by E106 MAb and the control E60 MAb.
doi:10.1371/journal.ppat.1004072.g005

Bivalent Antibody Neutralization of Dengue Virus
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5-fold epitopes (24 Å CH1 separation) (Fig. 6C and D). These

epitopes are 85 Å and 79 Å apart, respectively, within the

expected reach of a single IgG molecule (117–134640 Å) [40].

We also examined the E106 epitope on the recent cryo-EM

reconstruction of DENV-2 at 37uC [41,42]; this ‘bumpy’ virion

supports a similar model of bivalent binding to DIII on the 5-fold

and 2-fold symmetry axes.

Discussion

Epitope mapping studies have enhanced our understanding of

the mechanisms of virus neutralization and identified sites on the E

protein of flaviviruses that are targeted by neutralizing antibodies

[7]. These include the lateral ridge of DIII of WNV and JEV

[19,20], the A-strand of DIII of DENV [10,21], the CC9 loop of

DIII of DENV-1 [33], the fusion loop of DII of WNV and DENV

[43], a DI epitope of DENV-4 [11], and a complex epitope centered

at the hinge of DI and DII on WNV [44] and DENV [45,46]. Here,

we describe a composite epitope, comprised of regions of the lateral

ridge and A-strand of DIII that is targeted by the therapeutic MAb

E106. DIII residues contacted by E106 were highly conserved

among DENV-1 genotypes but variable in other DENV serotypes.

Consistent with this, E106 potently neutralized all five DENV-1

genotypes, but not other DENV serotypes nor WNV [13].

The E106 Fab-DIII complex was characterized by a small-

buried interface, which correlated with an unexpectedly weak

micromolar affinity, as determined both by SPR and isothermal

calorimetry. We found no evidence for E106 binding to residues

outside of DIII as the binding affinity to recombinant DIII appears

to be very similar to the binding of Fab to E ectodomain protein or

virions; consistent with this, neutralization escape studies only

identified residues in DIII [22]. Monovalent E106 Fab poorly

neutralized DENV-1 compared to intact E106 IgG, and this

finding correlated with poor binding of Fab to intact virus.

Although our structural models suggest that E106 can readily bind

the isolated pre-fusion dimer and post-fusion trimer and possibly

prevent the ,70u transition of DIII that is associated with

membrane fusion [47,48], the inability of E106 Fab fragments to

neutralize virus efficiently argues against this model. Our data are

more consistent with a mechanism of neutralization that requires

bivalent binding of E106 IgG to single virions, and cross-linking of

E protein monomers in adjacent symmetry groups to prevent

requisite E protein rearrangements during infection.

The measurement of micromolar monovalent affinity was

unexpected given that E106 is our most potently neutralizing

and protective anti-DENV-1 MAb (EC50 of 0.6 ng/ml against

DENV-1 strain 16007), which is at least 10-fold more potent than

our well-characterized DIII-lateral ridge-specific therapeutic MAb

(E16) against WNV [20,30]. Indeed, E106 had the lowest EC50

value of ,500 anti-flavivirus MAbs (DENV-1, DENV-2, DENV-

3, DENV-4, and WNV) generated to date in our laboratory

[13,15,30,49]. Is there a correlation between neutralization

potency and E106 bivalent binding to single virions? The

icosahedral arrangement of the E protein on the mature DENV

virion displays 180 copies of the E protein. Our in silico modeling

predicts that in one possible arrangement, up to 48 of these sites

may be available for bivalent engagement by 24 intact E106 IgG.

Since monovalent binding was insufficient for neutralization,

bivalent binding to single virions could neutralize infection by

inhibiting an essential stage of the virus lifecycle (attachment,

entry, or fusion). Alternatively, bivalent binding across virions

could neutralize DENV infection by aggregating virus. Our post-

attachment studies suggest that E106 MAb was capable of

neutralizing infection even after virus attached to the cell surface.

Aggregation also appears less likely because the neutralization

curves did not show a characteristic triphasic dose-response curve

that was reported in inhibition studies describing antibody-virus

aggregation [50]. We favor a model in which bivalent binding of

E106 stabilizes and/or cross-links one or more E protein

monomers in different symmetry groups, analogous to monovalent

binding of WNV CR4354 MAb [44], and thus prevents radial

expansion and rearrangement that is requisite for fusion of viral

and host endosomal membranes [48,51].

E106 is one of very few MAbs that have been shown to require

bivalent binding for efficient virus neutralization [35,36,52], and

the first one directed against a flavivirus. While antibodies can be

multivalent, with the potential to bind to virus particles with high

avidity, the relatively small number of bivalent binding MAbs

described to date may be attributed to the following: (i) the limited

number of epitopes displayed on a single particle for some viruses;

Figure 6. Modeling of E106 binding to DENV. (A) The E106 epitope is highlighted in magenta on a DENV-1 model of the DENV-2 cryo-electron
microscopic reconstruction (PDB code 1P58). All atoms of the model are displayed and colored by domains (DI, red; DII, gold; DIII, blue). Magnified
view of the boxed region in (A) with E106 Fab docked onto the epitopes at the primary candidates for bivalent antibody binding namely (B) adjacent
2-fold epitopes (49 Å CH1 separation) which is permuted as an outer 5-fold ring and (C) adjacent inner and outer 5-fold epitopes (24 Å CH1
separation). E106 Fab heavy and light chain is represented by green and cyan spheres, respectively. The C-terminal CH1 residue is represented by ‘C’.
(D) Schematic of the possible arrangements of E106 MAb bivalent binding to the lateral ridge plus A-strand epitope (magenta) on a single virion. The
distances labeled in magenta and green are E106 epitope (T329) and C-terminal CH1 residue (R214) distances respectively. One Fab pair (green, heavy
chain; cyan, light chain) is shown across the 5- and 2-fold and another involves adjacent 2-fold symmetry axes (the 2-fold permutes as an outer 5-fold
ring, dashed gray line). 5-, 3- and 2-fold axes of symmetry are connected by gray dashed lines for clarity and represented by pentagons, triangles, and
ovals, respectively. Epitopes that are occluded as a result of bivalent binding are shown in gray.
doi:10.1371/journal.ppat.1004072.g006
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(ii) the position and orientation of epitopes that are beyond the

reach of a bivalent MAb, which is limited by torsional flexibility of

its hinge; (iii) the radius of curvature of virions, which may restrict

the accessibility of epitopes by MAb (iv) post-translational

modification (e.g. N-linked glycans) of virions that may hinder

bivalent MAb engagement; (v) immunization protocols that rely on

isolated recombinant envelope proteins, rather than envelope

proteins in the structurally unique form of the intact virion; and

(vi) assays that do not screen for bivalent neutralizing MAbs. E106

was generated after priming and boosting with infectious DENV-1

[13]. The repetitive E antigens in the icosahedral orientation of the

virion may have facilitated selection of low monovalent affinity yet

high avidity antibodies. While some antibodies against HIV have

been described as bivalent, they actually are bispecific, with each

arm binding distinct epitopes [53]. This is likely due to the paucity

of trimeric spikes on the surface of the virus (,14) and their

irregular spacing [54]. Although several MAbs have been

proposed to require bivalent binding for efficient virus neutrali-

zation [55,56], compelling evidence is presented only for the non-

enveloped positive strand RNA viruses, specifically, human

rhinovirus 2 [36] and 14 [35,52] and the rabbit hemorrhagic

disease calicivirus [37]. It may be that the quasi-icosahedral

arrangement of the flavivirus envelope creates a landscape that

permits limited bivalent MAb engagement.

Bivalent engagement of the virion by antibodies could be an

important concept for DENV vaccine development. Immunity

against DENV may not be achieved optimally using a subunit

vaccine approach, as isolated E protein monomers may not induce

antibodies that require bivalent binding for strong binding and

neutralization. Analogously, some human MAbs against WNV bind

a complex epitope at two independent positions on adjacent E

protein monomers in different symmetry groups, which is only

present on an intact WNV particle [44]. Human MAbs isolated

from DENV-infected individuals are believed to recognize similar

quaternary epitopes in E that are present only in the context of the

intact DENV virion [45,46]. Given that E106 MAb was our most

potent and therapeutic anti-DENV-1 MAb, strategies that enhance

the likelihood of generating and identifying neutralizing antibodies

that function through bivalent binding mechanisms may improve

the potency of inhibitory humoral responses against DENV and

other flaviviruses. Regardless, an understanding of the structural

and mechanistic basis for the neutralization activity of E106 MAb

provides new insights into the humoral response against flaviviruses.

Materials and Methods

E106 Fab-DIII crystal structure determination
DENV-1 DIII (residues 293 to 399 of the E protein of strain

16007) was expressed in bacteria and re-folded oxidatively from

isolated inclusion bodies as described previously [13]. Fab

fragments of E106 were prepared using immobilized papain resin

according to the manufacturer’s instructions (Pierce). MAb (5 to

10 mg) was digested for 18 hours at 37uC, and passed over a

protein A agarose resin to remove Fc fragments and undigested

MAb and purified on a S-75 size exclusion chromatography

column equilibrated in 20 mM HEPES pH 7.4 and 150 mM

NaCl. Antibody–antigen complexes were formed by mixing

papain-generated, gel filtered E106 Fab fragments with DIII at

a ratio of 1.2:1 and crystallized by the hanging drop vapor

diffusion method at a total protein concentration of 14 mg/mL in

a solution of 22% PEG 6,000, and 0.1 M MES pH 5.0 (final

pH 5.7). Crystals (in 1 mL crystallization drops) were cryopro-

tected by the addition of 0.2 mL aliquots of cryobuffer (in 23.5%

PEG 6,000, 0.1 M MES pH 5.0, final pH 5.7, and 20% glycerol),

then transferred to a fresh drop of cryobuffer and rapidly cooled in

liquid nitrogen. X-ray diffraction data were collected at ALS

beamline 4.2.2 (Lawrence Berkeley Laboratories) at a wavelength

of 0.976 Å at 100 K with a CCD detector, and indexed and scaled

in HKL2000 [57]. The crystals diffracted to 2.45 Å resolution and

belonged to the space group P212121 with unit cell dimensions of

a = 82.7 Å, b = 91.8 Å, c = 92.6 Å, with one E106 Fab-DIII

complex per asymmetric unit. Crystallographic phasing was

obtained by molecular replacement using the program Phaser

[58] and the coordinates of DENV-1 DIII (Protein Data Bank

(PDB) 3EGP) and the Fab fragment of CTM01 IgG (PDB 1AD9).

Iterative model building and refinement was performed using

Coot [59] and Refmac [60] and later Phenix [61]. The final

structure was refined to Rcryst = 18.9% and Rfree = 23.9%. The

final model includes DENV-1 DIII amino acid residues 297 to

394, E106 heavy chain residues 1 to 214 (Chothia numbering),

and light chain residues 1 to 213. The atomic coordinates and

structure factors of E106 Fab bound to DENV-1 DIII (CSGID

target number IDP00272) have been deposited in the Protein Data

Bank (www.rcsb.org) under PDB accession number 4L5F.

Structural figures were prepared using CCP4MG [62] and Pymol

[63] (surface representation using 1.4 Å solvent probe) and where

shown, spheres represent van der Waal radii, vdw * 1.1.

Surface plasmon resonance and isothermal titration
calorimetry

Monovalent antibody affinity analysis was performed using SPR

(BIAcore T100, GE Company) and ITC (VP-ITC instrument,

Microcal) at 10uC in 50 mM HEPES, pH 7.5 and 100 mM NaCl.

For SPR, E106 MAb or Fab was immobilized at low concentrations

(,500 Response Units) to a CM5 chip (GE healthcare) using amine-

coupling chemistry. Bacterially-expressed DIII (residues 293–399)

of DENV-1 (strain 16007) was injected at a flow rate of 65 ml/min at

concentrations ranging from 0.2 mM to 500 mM for three minutes

to saturate binding and then allowed to dissociate for seven minutes.

The half-life of the monovalent interaction was short and did not

require additional regeneration of the chip surface in preparation

for the next DIII injection. The observed binding curves were

double referenced to a non-reactive antibody (WNV E16) as well as

buffer in the absence of DIII. Curves were analyzed by a steady-

state fit for a 1:1 interaction, and a nonlinear least squares fit was

used to evaluate the fit of the curve to the observed data.

Alternatively, 500 response units (RU) of DIII were immobilized

onto a CM5 chip and E106 Fab fragments were injected to

saturation. Affinity measurements of E106 for the DENV-1 E

ectodomain (DI-DII-DIII) were performed such that insect-derived

DENV-1 E glycoprotein (ProSpec-Tany TechnoGene Ltd.) was in

the stationary phase and E106 Fab fragments were in the mobile

phase, in order to conserve limited protein and avoid avidity affects.

Additional regeneration was not necessary because of the short half-

life for the interaction. WNV E ectodomain was used as a negative

control for E106 binding. Analysis was performed as with the DIII

described above. ITC experiments were performed such that 4 to

8 mL of DENV-1-DIII protein (90 to 110 mM) was injected into

1.4 mL of E106 Fab protein (6 to 7 mM) over a total of 36 injections.

The titration data were integrated and normalized in Origin

(Microcal) to determine the reaction stoichiometry, n, and

equilibrium constant Ka ( = K21
d).

Neutralization assays and capture ELISA
Plaque reduction neutralization tests (PRNT) and pre- and post-

attachment neutralization assays were performed with DENV-1

strain 16007 on Vero cells as previously described [13,64]. Binding

of intact MAbs or Fabs (E103, E106, and a negative control WNV
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E16) to DENV-1 virions (strain 16007) was detected by capture

ELISA [13,64]. Briefly, humanized DENV-1 E50 MAb (subcom-

plex DIII A-strand specific antibody) was coated at 2 mg/ml on

MaxiSorp (Nunc) polystyrene 96-well microtiter plates in a sodium

carbonate (pH 9.3) buffer. Plates were washed three times in wash

buffer (PBS with 0.02% Tween 20) and blocked for one hour at

37uC with blocking buffer (DMEM with 10% FBS). DENV-1

virions (2.56105 PFU) diluted in DMEM with 10% heat-inactivat-

ed FBS were captured on plates for two hours at 37uC. Wells were

washed thrice with blocking buffer and DENV-1 MAb or Fab was

then added at 100 mg/ml and 4-fold serial dilutions to duplicate

wells and incubated for two hours at 37uC. Plates were washed five

times and then sequentially incubated with goat anti-mouse (whole

molecule) IgG-HRP (Sigma, St Louis, MO) and tetramethylbenzi-

dine substrate (Dako). The reaction was stopped with the addition of

2 N H2SO4 to the medium, and emission (450 nm) was read using

an iMark microplate reader (Bio-Rad).

Time and temperature-dependent neutralization of
DENV-1

A plasmid expressing the C-prM-E genes of DENV-1 (strain

16007) was co-transfected into HEK-293T cells with a plasmid

encoding a WNV replicon expressing GFP. Transfected cells were

incubated at 30uC and RVP harvested at 72 and 96 hours post-

transfection, filtered through a 0.2 mM filter, and stored aliquoted

at 280uC. DENV-1 RVP were incubated with serial dilutions of

MAb under conditions of antibody excess at 4uC, 37uC, or 40uC
for one or five hours. Subsequently, MAb-RVP mixtures were

added to Raji-DCSIGNR cells and incubated at 37uC for

48 hours. Infected cells were assayed for GFP expression using a

BD FACSCalibur flow cytometer as described [28].

The kinetics of DENV-1 RVP binding to DENV-1 MAbs and
Fabs

All bio-layer interferometry studies were performed in PBS buffer

supplemented with 1 to 2 mg/ml BSA (PBS-B) at 25uC using an

Octet Red biosensor system (ForteBio). DENV-1 reporter virus

particles (RVPs) (Western Pacific 74 strain) were produced as

previously described [65]. To purify virus particles, RVP produc-

tion supernatant was harvested, clarified through a 0.22 mm filter

(Corning), and PEG precipitated using 7.5% PEG 8000 (Sigma).

The virus particles were further purified through two 20% sucrose

cushions before resuspension in HBS. Samples were stored at 2

80uC and gently thawed prior to use. RVPs were loaded onto

streptavidin (SA) biosensor tips using a human monoclonal antibody

against DENV-1 (1H7.2, the anti-prM antibody, a gift from James

Crowe), which was captured using a biotinylated goat anti-human

polyclonal antibody (GAH Fc, Southern Biotech). Briefly, GAH Fc

was diluted to 5 mg/ml in PBS-B and bound to SA sensor tips for

five minutes. Following a brief rinse in PBS-B, 1H7.2 (5 mg/ml in

PBS-B) was captured for five minutes. After another brief rinse,

DENV-1 RVPs diluted to 10 mg/ml (or 50 mg/ml (E106 Fab)) were

loaded for 45 minutes followed by a five-minute stabilization.

Antibody association was measured for up to 10 minutes followed

by dissociation for 20 minutes (E106) or 45 minutes (E103) in

buffer. Non-specific binding was assessed using sensor tips without

RVPs as well as using sensor tips loaded with retroviral pseudotypes

(Lipoparticles) containing only endogenous cell surface receptors (no

viral envelope protein). Data analysis was performed using Octet

Data Analysis v6.4 (ForteBio). Binding kinetics were analyzed using

a standard 1:1 binding model.

Supporting Information
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