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Antivirulence Therapy as an Alternative to
Antibiotics

Antibiotics are still critically important as a first line therapy for

the treatment of various bacterial infections in the clinic. In

addition to their use in human medicine, these compounds have

also been used for decades in animal production, for both growth

promotion and veterinary purposes [1,2]. Because of the

development and spread of antibiotic resistance, there is a growing

awareness that antibiotics should be used with more care [3], and

as a consequence, the development of alternative methods to

control pathogenic bacteria in animal production will be

important to ensure good productivity in the future.

Infection of both terrestrial and aquatic animals by bacterial

pathogens requires the production of different virulence factors,

i.e. gene products that allow the pathogenic bacteria to enter and

damage the host. Major virulence factors include gene products

involved in motility, adhesion, host tissue degradation, iron

acquisition, secretion of toxins, and protection from host defense

[4]. As virulence factors are required for infection, preventing

pathogens from producing them constitutes an interesting

alternative strategy for disease control, a strategy that has been

termed antivirulence therapy [5]. Antivirulence therapy is based

on a thorough understanding of the mechanisms by which

bacterial pathogens cause disease. In this respect, studies aimed

at understanding how bacteria cause disease have identified (and

will probably continue to do so) targets for therapeutics with

completely novel modes of action. Inhibitors of specific virulence

factors, such as secretion systems, have been reported in literature

[6]. However, considerably more research effort is being directed

towards interference with regulatory mechanisms that control the

expression of (multiple) virulence factors, such as bacterial cell-to-

cell communication (quorum sensing) and host-pathogen signalling

(Fig. 1). The following paragraphs will focus on interference with

these mechanisms as a novel strategy to control animal pathogens,

using Escherichia coli and Salmonella spp. as examples of pathogens

for terrestrial animals, and Aeromonas spp. and Vibrio spp. as

examples of aquatic pathogens.

Interfering with Bacterial Cell-to-Cell
Communication in Animal Pathogens

Quorum sensing, or bacterial cell-to-cell communication, is a

mechanism of gene regulation in which bacteria coordinate the

expression of certain genes in response to the presence of small

signal molecules. This regulatory mechanism has been shown to

control virulence gene expression in many different pathogens,

and a wide range of molecules (both of natural and synthetic

origin) able to interfere with quorum sensing systems have been

reported (for a recent review see [15]). Quorum sensing has been

documented to be required for full virulence of Aeromonas spp. and

vibrios towards different aquatic hosts, including fish and

crustaceans [16–18]; moreover, different quorum sensing-disrupt-

ing agents have been proven effective in controlling disease.

Effective compounds include cinnamaldehyde, brominated fur-

anones and brominated thiophenones [14], antagonistic acylho-

moserine lactones [7], and signal molecule-degrading enzymes

[11]. Virulence-related phenotypes (including motility and adhe-

sion) of E. coli and Salmonella spp. have also been reported to be

controlled by quorum sensing molecules [19,20], and the signal

molecule indole has been shown to affect killing of the nematode

C. elegans [21]. However, to the best of my knowledge, no reports

have been published thus far mentioning the successful use of

inhibitors of these types of bacterial cell-to-cell communication to

protect terrestrial farmed animals from disease caused by these

pathogens. The evaluation of these kind of compounds in

terrestrial animals should be rather straightforward, as many

inhibitors have been isolated and/or synthesised [15]. Although

the peptide quorum sensing systems of Gram-positive bacteria thus

far have received much less attention than acylhomoserine lactone

systems in Gram-negative bacteria, some inhibitors of these

systems have been documented as well (e.g. cyclic peptide

inhibitors of quorum sensing in staphylococci [22]), and these

kind of compounds might also prove effective in controlling animal

diseases caused by Gram-positive pathogens.

Interfering with Host-Pathogen Signalling in
Animal Pathogens

In addition to bacterial signals, E. coli and Salmonella spp. can

also sense and respond to host cues such as the catecholamine

stress hormones adrenaline and noradrenaline. These hormones

are an integral part of the acute ‘‘fight or flight’’ stress response in

animals and are conserved among vertebrates and invertebrates.

Catecholamines can facilitate the removal of iron from host iron-
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Figure 1. Simplified schematic representation of virulence regulatory systems based on detection of signal molecules in animal
pathogenic bacteria. These include (left) quorum sensing based on acylhomoserine lactones (AHL) and (right) quorum sensing in vibrios and
catecholamine stress hormone sensing. For each type of system, examples of natural ligands, receptor inhibitors, and other inhibiting agents are
shown. Dioxazaborocane is an inhibitor of AI-2 sensing in V. harveyi and LED209 is an inhibitor of catecholamine sensing in E. coli. The signal
transduction inhibitors are inhibitors of quorum sensing signal transduction in vibrios.
doi:10.1371/journal.ppat.1003603.g001
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binding proteins, thereby making it available to the bacteria and

increasing their growth under iron-limited conditions [23]. In

addition to their growth-stimulatory effect, catecholamines also

increase virulence gene expression of pathogenic bacteria. In

different pathogenic E. coli strains, the compounds have been

reported to affect the production of virulence-related phenotypes

such as motility and type III secretion [24], Shiga toxin expression

[25], and expression of pilus and fimbrial adhesins [26]. In

Salmonella spp., they have been reported to affect motility [27],

hemolysin production [28], type III secretion [10], and intestinal

colonization in chicks, pigs, and calves [29,30]. Different bacterial

adrenergic sensors have recently been described (with the best-

described one being QseC), showing different susceptibilities to

blocking with eukaryotic a- and b- adrenergic receptors,

respectively [31,32]. An inhibitor of bacterial catecholamine

sensing, LED209, has also been described [10]. It needs to be

noted that (at least in Salmonella spp.) different research groups

have reported conflicting effects of catecholamines, which may

reflect differences in host species, bacterial strains, routes of

infection, and nature of mutations [23,31,32]. Interestingly, vibrios

and Aeromonas spp. also respond to catecholamines, and QseC

homologues have been reported in these bacteria as well [33].

Advantages of this Strategy

When compared to the use of antibiotics, a major advantage of

antivirulence therapy is that there will be less interference with

non-target organisms (i.e. the commensal microbiota), as it

specifically targets virulence gene expression or virulence gene

regulation; in the latter case there might be some interference with

regulatory mechanisms in non-target organisms. Moreover,

because such a strategy will pose selective pressure only under

conditions in which the virulence genes are required, the tendency

towards resistance development and spread will probably also be

lower (though not absent) [34]. It should be noted, however, that

some of the resistance mechanisms that bacteria have acquired

during exposure to antibiotics can also render them resistant to

antivirulence agents. This was recently demonstrated in Pseudomo-

nas aeruginosa, in which clinical isolates showing an increased

expression of a multidrug efflux pump were also resistant to a

quorum sensing-disrupting brominated furanone [35]. A major

advantage of targeting the regulatory mechanisms described above

is that agents can be used that do not need to enter the cells to

exert their activity (e.g., signal molecule-degrading enzymes or

compounds that interfere with cell surface receptors). Conse-

quently, pre-existing nonspecific resistance mechanisms (e.g.

multidrug efflux pumps and decreased cell membrane permeabil-

ity) will not alter the effectiveness of such agents.

Conclusion

It is of significant interest to further develop antivirulence

therapy as a novel biocontrol strategy for animal production.

Further research is needed to document the impact of such a

strategy in different host-pathogen settings and to continue the

quest for novel antivirulence agents, i.e. inhibitors of either natural

or synthetic origin, or microorganisms able to interfere with

virulence (regulatory) mechanisms.
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