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Summary: Explaining the contri-
bution of host and pathogen fac-
tors in driving infection dynamics is
a major ambition in parasitology.
There is increasing recognition that
analyses based on single summary
measures of an infection (e.g., peak
parasitaemia) do not adequately
capture infection dynamics and
so, the appropriate use of statistical
techniques to analyse dynamics is
necessary to understand infections
and, ultimately, control parasites.
However, the complexities of with-
in-host environments mean that
tracking and analysing pathogen
dynamics within infections and
among hosts poses considerable
statistical challenges. Simple statis-
tical models make assumptions
that will rarely be satisfied in data
collected on host and parasite
parameters. In particular, model
residuals (unexplained variance in
the data) should not be correlated
in time or space. Here we demon-
strate how failure to account for
such correlations can result in
incorrect biological inference from
statistical analysis. We then show
how mixed effects models can be
used as a powerful tool to analyse
such repeated measures data in the
hope that this will encourage
better statistical practices in para-
sitology.

Mixed Effects Models as
Important Tools for
Parasitologists

Parasitologists aim to understand the

factors that determine the outcome of

infections (e.g., host and pathogen genetic

effects), and how these factors change in

response to a new intervention or other

environmental variables. However, infec-

tions are complex and dynamic: multiple

interacting factors shape parasite traits,

and within-host environments vary over

time and between different niches [1–5].

Studies examining infections as a snapshot

in time are consequently likely to miss a

large degree of complexity and subtle—yet

relevant—variation in patterns, and risk

missing confounding effects or reporting

misleading results. For example, in genet-

ically mixed infections of human malaria

parasites, different strains circulate in the

blood at different times during the infec-

tion [2], and in the lungs of patients with

cystic fibrosis, bacterial species compete,

which results in varying relative frequen-

cies over time [1]; therefore, single time

points are unlikely to be representative of

the infection as a whole. While in some

cases this problem could be overcome

using traditional statistical tests with sum-

mary statistics (e.g., the slope of the

relationship between parasite density and

time), relationships will often not be linear

and will co-vary with multiple variables.

These dynamical differences have impor-

tant consequences for disease severity and,

as within-host dynamics also determine

transmission, are essential to understand-

ing epidemiology [6]. Tracking and ana-

lysing pathogen dynamics across and

between infections is consequently an

important goal, but the statistical com-

plexities of dealing with such data offer

many traps for the unwary.

Recent years have seen the increasing

use of statistical tools, such as mixed effects

models, which allow researchers to analyse

pathogen dynamics within infections while

controlling for issues of pseudo-replication

arising from repeated measurements on

the same host (i.e., time-series data [7]). In

addition to enabling statistically rigorous

tests of biological hypotheses relating to

infection dynamics, these approaches cut

the number of animals needed in exper-

iments, reducing financial costs and ethical

concerns. Mixed effects models work by

fitting fixed effects, random effects, and

error terms into the model. Fixed effect

terms explain the variation in a response

variable (e.g., parasite density) that is due

to the treatment or predictor variable of

interest (e.g., drug versus no drug, com-

petitor versus no competitor). Random

effect terms, which are specific to a

particular group of observations (e.g., all

the measurements made on one individ-

ual or group of individuals), describe the

constant deviation from the mean of that

individual or group. Finally, error terms

describe the variation (the residuals)

remaining in the data that is not

explained by either the fixed or the

random terms [8–10]. The use of random

effect terms allows researchers to make

use of all of the available data points,

whilst removing many of the statistical

problems associated with repeatedly mea-

suring the same individual. See [7,11,12]

for discussion of additional benefits of this

approach.

The Problem of Auto-
Correlation

At the heart of most statistical tests is the

‘‘independence assumption’’, which states

that model residuals should not be corre-

lated in time or space. Studies where

individual subjects are measured on mul-

tiple occasions (repeated measures studies)

contain potential sources of non-indepen-

dence, which are not present when

individuals are only measured once. In

particular for time-series data, unmea-

sured factors can produce correlations in

the data (temporal auto-correlation) over
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days, weeks, or months (i.e., data points

adjacent to one another in a time series are

more likely to be similar than those further

apart). These correlations can be strong

and, importantly, may lead to the appear-

ance of spurious patterns in the data

(Figures 1 and 2). Failure to account for

this temporal non-independence when

carrying out an analysis will incorrectly

inflate test statistics and can dramatically

increase the likelihood of false positives

(type 1 errors [13]), where a significant

difference between treatment groups is

wrongly concluded. Indeed, simulations

based on levels of auto-correlation found

in real data show that failing to account for

it in analyses has the potential to double or

even triple the number of false positives

(Figure 2).

There are straightforward solutions to

the problems caused by temporal auto-

correlation that are routinely used in other

biological disciplines, but remain rarely

implemented in parasitology. While previ-

ous reviews have highlighted the need to

track infection dynamics (e.g., [2]) and

encouraged the use of statistical models as

a valuable tool for parasitologists [7], the

importance of meeting the assumptions of

these tests has been largely ignored. In a

literature search of papers published in the

last three years we found that, of 76 papers

using mixed effects models to analyse

infection data in seven high impact

parasitology journals, only 25% of publi-

cations explicitly checked and/or con-

trolled for temporal auto-correlation

(Figure 3). This indicates a worrying trend

and potentially a major problem with the

validity of reported findings.

Controlling for Auto-
Correlation

There are various ways in which

violations of the auto-correlation assump-

tion can be dealt with. One approach is to

make tests more conservative by reducing

the p-value for which a significant differ-

ence is accepted [14,15]. However, a more

elegant (and less arbitrary) alternative is to

fit error structures that account for auto-

correlation as additional terms in mixed

effects models. These error structures

describe, and therefore control for, the

correlations between residuals at different

time points [9]. The simplest form is an

Figure 1. The extent of auto-correlation in experimental rodent malaria infections. Estimates of temporal auto-correlation in key parasite
and host traits observed during daily sampling of infections initiated with controlled Plasmodium chabaudi parasite doses in mice matched for strain,
age, and sex. (A) Data for days 5–15 post infection taken from [16,17]. Colours represent different wild-type parasite genotypes (green = AS, red = AJ,
yellow = ER, blue = DK, purple = CW, orange = CR). (B) Data for days 3–18 post infection taken from [18] in mice with depleted levels of CD4+ T cells
(light bars) or unmanipulated immune responses (dark bars) for genotypes AS (green) and DK (blue). These estimates demonstrate how levels of
auto-correlation can be both high (up to 87% correlation between residuals on consecutive days) and variable between traits. The implications of this
will depend on the analysis performed, but auto-correlation at such high levels has the potential to dramatically increase type 1 error rates (Figure 2).
doi:10.1371/journal.ppat.1002590.g001
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Figure 2. Failing to control for temporal auto-correlation increases type 1 error rates. Simulated data sets with known levels of temporal
auto-correlation between residuals (spanning the range observed in published data sets) were generated using R version 2.12.1 (The R Foundation
for Statistical Computing; http://www.R-project.org). Auto-correlation is highest between consecutive days and reduces as the duration between data
points increases (auto-regressive error structure). The simulated data sets were designed so that any difference in treatment groups was due to
chance: if the linear mixed effects model performs correctly it should, by definition, return a p-value of #0.05, 5% of the time. The red line represents
the proportion of false positive results (where a statistically significant difference between treatment groups is wrongly concluded) from linear mixed
effects models. The blue line shows the proportion of false positive results if an auto-regressive error structure is included in the model. Values are
averaged from a minimum of 10,000 simulated data sets and the black lines show the 95% confidence intervals around the mean.
doi:10.1371/journal.ppat.1002590.g002

Figure 3. The majority of publications in parasitology do not control for temporal auto-correlation. Bars show the result of a literature
search for papers using mixed effects models to analyse time-course data sets in seven parasitology journals from January 2009 to August 2011. Of 76
papers examined, 19 explicitly controlled for temporal auto-correlation (blue), but no controls were mentioned in 56 (red).
doi:10.1371/journal.ppat.1002590.g003
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auto-regressive error structure, which as-

sumes that the correlation decreases with

lag time, e.g., measurements on day 4 of

an infection are more similar to those on

day 5 than to those on day 20 [9,13].

Auto-regressive error structures are likely

to be common in time-course data [13],

are straightforward to understand and

implement (see Box 1), and can restore

confidence in statistical inference

(Figure 2). However, as with all analyses,

it is important to consider if this error

structure is appropriate for one’s own data

and whether more complex error struc-

tures could potentially provide a better fit

(see [9] for examples).

Advances in statistical methodology

should provide important and useful tools

for understanding infections and disease in

just the same way as do advances in

genetic, molecular, and immunological

methods. Investing in learning how to

effectively use tools, such as mixed effects

models, pays by providing robust and

novel insight into the roles of hosts and

parasites in shaping patterns of disease.

However, as with other methodological

advances, the improvements to biological

understanding they provide depend cru-

cially on them being applied and inter-

preted correctly. Temporal correlation in

time-course data can compromise statisti-

cal analyses by increasing the likelihood of

false positives, yet this problem has been

largely overlooked in parasitology. We

strongly support the implementation of

more sophisticated statistical analyses in

which the assumptions underlying models

are fulfilled to safeguard against inaccurate

or misleading results and provide a solid

foundation from which to progress under-

standing of disease.
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Box 1. How to Fit Auto-Regressive Error Structures

When analysing time course data, researchers should apply the following approach: 1) fit grouping variables as a random effect
if required, 2) add temporal auto-correlation structure to the model at the appropriate level within the random effects structure,
3) compare the above models to test whether the auto-correlation structure improves the fit, 4) retain the auto-correlation
structure if the fit is improved and exclude it if not, 5) ensure the inclusion or exclusion of an auto-correlation structure is
reported in the analysis methods or results section of manuscripts.

For example, in the R statistical software package (The R Foundation for Statistical Computing; http://www.R-project.org) a
linear mixed effects model asking whether parasite density varies during infections sampled daily in different experimental
treatments in mice would be coded as:

model:lv{lme y*treatment � day, random~*1Dmouseð Þ

where treatment and day are the fixed factors and the identity of each mouse is a random effect term. The corAR1 correlation
function (in the nlme package) will fit an autoregressive error structure and simply requires the model to be specified as:

model:2v{lme y*treatment � day, random~*1Dmouse, correlation~corAR1 form~*dayDmouseð Þð Þ

where day is the time covariate and mouse is the grouping factor within the corAR1 function (i.e., because mice are sampled
daily, the scale of auto-correlation is day nested within mouse identity). The fit of model.1 and model.2 can then be compared
(e.g., using AIC values or a likelihood ratio test). For examples of how to fit alterative error structures and more detailed
discussion of running mixed effects models, see [9,19] for R users and [20] for SAS users.
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