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Abstract

Homologous recombination (HR) mediates one of the major mechanisms of trypanosome antigenic variation by placing a
different variant surface glycoprotein (VSG) gene under the control of the active expression site (ES). It is believed that the
majority of VSG switching events occur by duplicative gene conversion, but only a few DNA repair genes that are central to
HR have been assigned a role in this process. Gene conversion events that are associated with crossover are rarely seen in
VSG switching, similar to mitotic HR. In other organisms, TOPO3a (Top3 in yeasts), a type IA topoisomerase, is part of a
complex that is involved in the suppression of crossovers. We therefore asked whether a related mechanism might suppress
VSG recombination. Using a set of reliable recombination and switching assays that could score individual switching
mechanisms, we discovered that TOPO3a function is conserved in Trypanosoma brucei and that TOPO3a plays a critical role
in antigenic switching. Switching frequency increased 10–40-fold in the absence of TOPO3a and this hyper-switching
phenotype required RAD51. Moreover, the preference of 70-bp repeats for VSG recombination was mitigated, while
homology regions elsewhere in ES were highly favored, in the absence of TOPO3a. Our data suggest that TOPO3a may
remove undesirable recombination intermediates constantly arising between active and silent ESs, thereby balancing ES
integrity against VSG recombination.
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Introduction

Trypanosoma brucei proliferates in the bloodstream of its

mammalian host and periodically escapes the antibody-mediated

immune response. A single species of variant surface glycoprotein

(VSG) is expressed at a given time, from among .1,000 VSG genes

and pseudogenes [1,2], and ,10 million VSG molecules homo-

genously coat the surface of a parasite. Switching the expressed

VSG causes antigenic variation (reviewed in [3–5]).

VSG genes are found in 15 expression sites (ESs) — polycistronic

transcription units that are transcribed by RNA Polymerase I

[3,6–8] — of the Lister 427 strain [9]. These VSGs are located 40–

60 kb downstream of their ES promoters and are flanked by 70-bp

and telomere repeat sequences. Several expression-site-associated

genes (ESAGs) with mostly unknown functions, and ESAG and VSG

pseudogenes, are located between the promoter and the 70-bp

repeat region. Only one ES is transcriptionally active at any time

and the rest are silent. Many VSGs are found upstream of telomere

repeats in minichromosomes but most are thought to reside in

‘telomere-distal’ arrays. Minichromosomal and telomere-distal

VSGs lack promoters, but small numbers of 70-bp repeats are

present upstream of these VSGs.

By analyzing switched variants, two major pathways of antigenic

switching have been identified in T. brucei: in situ ES transcription

switching and recombination-mediated switching [4,5,10]. In situ

switching occurs by silencing the active ES and activating a silent ES,

without DNA rearrangement [11,12]. Recombination-mediated

switching occurs mainly by gene conversion (GC) and can involve

just the VSG or larger regions of the ES. VSG GC can occur by

recombination between the active VSG and a silent ES-associated

VSG, a minichromosomal VSG, or a telomere-distal VSG [13–18].

Gene conversion between larger regions can result in the duplication

of an entire ES, including its VSG [12]. Crossover switches, where two

VSGs are exchanged, have also been observed infrequently [19–22].

Deficiency of RAD51 or RAD51-3 (RAD51-related gene), or

BRCA2, a mediator for RAD51 filament formation, decreased

switching frequency in T. brucei [23–25]. Mre11 is essential for

DNA damage response, as a sensor of double strand breaks (DSBs)

that can be repaired by homologous recombination (HR) or non-

homologous end joining (NHEJ) [26–28]. As in yeast and

mammals, T. brucei mre11 null mutants exhibited growth defects,

hypersensitivity to a DNA damaging agent, and gross chromo-

somal rearrangements (GCR), but no detectable decrease in VSG

switching [29,30], indicating that, although antigenic variation

shares core features with classic HR, specific roles for recombi-

nation factors in antigenic variation remain to be determined.

Mitotic crossover can be detrimental, leading to unequal

exchanges. Sgs1, a RecQ family helicase in yeast, is one of the
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major factors that control spontaneous crossovers [31]. Sgs1 forms

a complex with Top3 (type IA topoisomerase) and Rmi1 (RecQ-

mediated genome instability), and plays major roles in the

suppression of genome instability by influencing mitotic and

meiotic recombination, replication fork stability, and telomere

maintenance [32–38]. At least one mechanism of crossover-

suppression appears to involve ‘dissolution’ of double Holliday

Junction (dHJ) intermediates. Sgs1-Top3-Rmi1, also known as the

RTR (RecQ-Top3-Rmi1) complex, is well conserved in humans as

the BLM (Bloom mutated)-TOPO3a-BLAP75/18 (Bloom associ-

ated protein 75kDa/18kDa, or RMI1/2). Mutations in any

member of the RTR complex increase recombination frequency

and crossover [31,32,39–43]. Defects in the BLM pathway are

associated with elevated levels of sister chromatid exchanges

(SCEs), chromosomal breaks and translocations [40,41,44–46].

Crossover has rarely been observed in VSG switching.

Suppression of crossover is intriguing because, in principle, the

outcome of duplicative VSG conversion holds no apparent

advantage over crossover events, as re-expressing a VSG, either

exchanged or duplicated, will be lethal in vivo. Given the

similarities between HR and VSG switching, we hypothesized that

certain yeast hyper-recombination mutants could be hyper-

switchers in trypanosomes. Using new recombination and VSG

switching assays, we took advantage of a potential member of T.

brucei Sgs1 pathway, TbTOPO3a (Tb11.01.1280), to get better

insights on how trypanosomes employ recombination factors to

control antigenic variation.

Results

Type 1A toposiomerase TOPO3a is conserved in
Trypanosoma brucei

Type IA topoisomerases cleave DNA by covalent attachment of

one of the DNA strands through a 59phosphodiester bond to a

tyrosine residue in their catalytic domains [47]. In many

organisms, type IA topoisomerases function in cooperation with

helicases, as a combination of Top3-Sgs1 in yeasts and TOPO3a-

BLM in humans. T. brucei expresses a 102.5-kDa TOPO3a protein

with 918 amino acids. Figure 1 shows an alignment of

TbTOPO3a with human TOPO3a and S. cerevisiae and S. pombe

Top3. The primary sequences are well aligned at the N-terminal

catalytic domain including the active site tyrosine. Both E. coli

Top1 and human TOPO3a contain Zn-binding motif(s) in their

C-terminal regions. E. coli Top3 and two yeast Top3 lack a Zn-

binding domain (reviewed in [47]). TbTOPO3a seems to have a

Zn-binding motif in the C-terminus (four cysteine residues written

in red), although this region does not align well with human

TOPO3a. The sequences of TOPO3a are very well conserved in

T. brucei, T. cruzi and Leishmania major (Supporting Figure S1). T.

brucei also has a type IA TOPO3b (http://www.genedb.org/

genedb/tryp), but its function has not been studied.

topo3a2/2 exhibits a minor growth defect in T. brucei
To explore the role of TOPO3a, we sequentially deleted both

alleles. We used deletion-cassettes containing hygromycin (HYG)

or puromycin (PUR) resistance genes fused to Herpes simplex virus

thymidine kinase (HSVTK or TK) and flanked by loxP sites,

allowing the markers to be removed by transient expression of

Cre-recombinase and reused [48]. Deletion of both alleles was

confirmed by PCR analyses (Supporting Figure S2).

Loss of Top3 causes a severe growth defect in budding yeast and

is lethal in fission yeast [43,49]. The absence of TOPO3a or

TOPO3b results in embryonic lethality or shortened life span in

mice [50,51]. In contrast, TOPO3a null mutants exhibited only a

minor growth defect in T. brucei (Figure 2A).

Tbtopo3a mutants are sensitive to phleomycin and
hydoxyurea

Yeast Top3 is important for the maintenance of genome

integrity. top3 mutants are sensitive to DNA-damaging agents and

show defects in the activation of the cell-cycle checkpoint kinase

Rad53 (CHK2 in mammals), in response to genotoxic stresses [52–

54]. We therefore asked whether T. brucei TOPO3a is required for

the DNA damage response, by assessing sensitivity to the DSB-

inducing agent phleomycin or the replication inhibitor hydroxyurea

(HU). Cells were treated with phleomycin for 24 hours and single

cells were distributed in 96-well plates. The color of the medium

turns from red to yellow when the culture becomes saturated.

Yellow wells were counted after 7–8 days and the percent viability

was calculated by normalizing to the untreated samples. In the null

mutants, viability was reduced by 3-fold at 0.3 mg/ml and 10-fold at

0.6 mg/ml phleomycin (Figure 2B). Viability of the HU-treated null

mutants was reduced by 3-fold in 0.04 mM HU (Figure 2C).

topo3a2/+ was comparable to the wild type in both experiments. We

conclude that TOPO3a is required for the response to DNA

damage and replication block, similar to the roles of yeast Top3.

Tbtopo3a2/2 is a ‘hyper-rec’
top3 was isolated as a hyper-recombination (‘hyper-rec’) mutant

in a genetic screen designed to identify mutations that increase

recombination frequency at SUP4-o locus in budding yeast [43].

We therefore hypothesized that Tbtopo3a could be a ‘hyper-rec’

mutant and this phenotype could be reflected in the frequency of

recombination-mediated antigenic switching.

To test whether TOPO3a deficiency increases recombination

frequency, we established a new recombination assay. Thus far,

transfection-based recombination assays have been predominantly

used, in which trypanosomes are transfected with linear DNA

containing a selection marker flanked by targeting sequences, and

the recombination frequency is calculated from the number of

Author Summary

Trypanosoma brucei, the causative agent of African
sleeping sickness, escapes the host immune response
through a mechanism known as the antigenic variation.
Each individual trypanosome expresses a single species of
surface antigenic protein at any time yet possesses an
infinite potential to express different surface antigens by
transcriptional and recombinatorial switching. Periodic
switching to a different antigen allows parasites to escape
the antibody-mediated host immune response and causes
chronic infection, eventually overwhelming the host’s
immune system and leading to death. DNA recombination
factors are critical for the protection of chromosome
integrity. One of the major antigen-switching mechanisms
exploits particular recombination pathways to achieve its
purpose. We have used a new switching assay to study a
regulator of recombination and to demonstrate that
antigenic variation is a complex mechanism balancing
chromosome integrity and antigen diversity by suppress-
ing and promoting particular recombination events.
Recombination is used in evasion or virulence mechanisms
by several pathogens. Exploring how Trypanosoma brucei
manipulates the recombination machinery to gain advan-
tage against their host will help us understand pathogen-
esis in various organisms and may reveal weaknesses that
can be exploited to control infectivity and virulence.

TOPO3a Influences VSG Recombination
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drug-resistant clones that arise. Although this method can give

reliable measurements, it requires a high rate of recombination at

the target site and is subject to variations in transfection efficiency.

To allow a more convenient, natural and reliable measure of

recombination efficiency, we established an assay (Figure 3A) in

which HYG-TK can replace one allele of what we will call TbURA3

(the bifunctional orotidine-5-phosphate decarboxylase/orotate

phosphoribosyltransferase Tb927.5.3810) on chromosome V.

The frequency of loss of either the HYG-TK or TbURA3 allele

represents the rate of gene conversion at this locus. The frequency

of HYG-TK loss can be measured with gancyclovir (GCV), a

nucleoside analog, as only the cells that had lost the TK gene can

grow in the presence of GCV. The loss of TbURA3 can be

measured with 5-FOA (5-fluoroorotic acid), as only the ura32 cells

can grow in the presence of 5-FOA.

To remove the HYG-TK and PUR-TK markers that were used

for the deletion of TOPO3a, Cre-recombinase was transiently

transfected into the topo3a2/2 cells and GCVR HYGS PURS clones

were selected (Supporting Figure S2). One allele of TbURA3 was

then replaced with HYG-TK and the targeting was confirmed by

PCR. Gene-conversion frequencies were determined by counting

total GCRR and FOAR cells, in three wild-type and five topo3a2/2

independent HYG-TK clones. As shown in Figure 3B, Tbtopo3a
gave indeed a hyper-recombination phenotype. Total gene-

conversion frequency was increased 6-fold in topo3a2/2

(5.1260.1561025) compared to the wild type (0.8760.7061025).

Tbtopo3a2/2 is a VSG ‘hyper-switcher’ and this
phenotype requires RAD51

To investigate the roles for TOPO3a in VSG switching, we

generated a VSG switching reporter strain in which we could easily

measure switching frequency and score different switching

mechanisms. As illustrated in Figure 4, the parental strain

expresses VSG 427-2 (221) in ES1, which was doubly marked

Figure 1. Alignment of T. brucei TOPO3a, human TOPO3a, S. cerevisiae and S. pombe Top3. The colored boxes indicate domains found in
SMART (Simple Modular Architecture Research Tool): yellow box, TOPRIM (topoisomerase-primase) domain; purple, TOP1Bc (bacterial DNA
topoisomerase I ATP-binding domain); red, TOP1Ac (bacterial DNA topoisomerase I DNA binding domain); green, Zf-C4 (zinc-finger domain). The
catalytic tyrosine residue (Y) is written in yellow. Four cysteine residues are written in red in a green box.
doi:10.1371/journal.ppat.1000992.g001

TOPO3a Influences VSG Recombination
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with a blasticidin-resistance gene (BSD) downstream of the

promoter and PUR-TK at the 39 end of the 70-bp repeat region,

without disrupting the co-transposed region (CTR), disruption of

which has been shown to induce rapid VSG switching [55]. The 59

boundaries for recombination-mediated VSG switching have been

mapped at regions upstream of CTRs that are located between the

Figure 2. Tbtopo3a exhibits a minor growth defect and is sensitive to phleomycin and HU. (A) topo3a2/2 shows a minor growth defect.
Wild-type, topo3a2/+ and topo3a2/2 cells were diluted to 10,000 cells/ml and cells were counted after two days of incubation. This was repeated
twice. (B) and (C) topo3a2/2 is sensitive to phleomycin and HU. Cells were treated with the indicated concentrations of phleomycin (B) or HU (C) and
single cells were distributed into 96-well plates. Percent viability was determined by normalizing to untreated samples. The same strains used in
Figure 2A were analyzed in these experiments.
doi:10.1371/journal.ppat.1000992.g002
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70-bp repeats and the VSG. Therefore, the PUR-TK gene will

either be lost or repressed in switched cells. This will allow

switchers, but not the parental cells, to grow in the presence of

GCV.

Doubly marked wild-type and topo3a2/2 cells were maintained

in media containing blasticidin and puromycin, to exclude

switchers from the starting population. The cells were allowed to

switch in the absence of drugs for 3–4 days. Un-switched VSG

427-2-expressing cells were depleted by magnetic-activated cell

sorting (MACS) [56]. The column flow-through, highly enriched

with switchers, was serially diluted in medium containing 4 mg/ml

GCV and distributed into 96-well plates. Switching frequency was

determined as the ratio of GCV-resistant cells to the total number

of cells prepared for the MACS column experiments. We analyzed

three independent wild-type cultures and four topo3a2/2 cultures.

As shown in Figure 5A, TOPO3a deficiency caused a 10–40-fold

increase in switching frequency (2661661025) compared to wild

type (1.0160.4561025). This is the only known example of an

increase in VSG switching frequency when a repair factor is

deleted. To confirm that the column-mediated depletion of VSG

427-2-expressing cells was not biasing our results, other batches of

cells were directly diluted in GCV-containing media and

Figure 3. Tbtopo3a2/2 is a ‘hyper-rec’. (A) Schematic diagram of recombination assay. Gene conversion frequency was determined by using two
counter-selectable markers, TK and URA3. One allele of TbURA3 was replaced with HYG-TK. The frequency of HYG-TK loss can be measured with GCV.
Only the cells that had lost the TK gene can grow in the presence of GCV. Loss of TbURA3 can be measured with 5-FOA, as only the ura32 cells can
grow in its presence. (B) TOPO3a deficiency increases gene conversion frequency. Overall GC frequencies (GCVR and FOAR) were plotted. Error bars
indicate standard deviation.
doi:10.1371/journal.ppat.1000992.g003

Figure 4. Strategies to determine the frequency and mechanisms of VSG switching. Parental cells have VSG 427-2-ES1 active. ES1 was
doubly marked with BSD and PUR-TK. PUR-TK will either be lost (VSG and ES GC) or repressed (in situ and crossover) in switched cells. Therefore, only
the switchers can grow in the presence of GCV. Switchers can later be distinguished by analyzing VSG 427-2 and BSD as specified in Table 1.
doi:10.1371/journal.ppat.1000992.g004

TOPO3a Influences VSG Recombination
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distributed into 96-well plates. Switching frequency was 10–30-

fold increased in the absence of TOPO3a (data not shown).

We have determined the switching frequency in a strain without

the TK marker but with a PUR marker inserted downstream of

VSG 427-2 and obtained similar frequencies, ,161025, in wild

type. In two different but closely related cell lines, with the same

genotype except that one line has PUR-TK inserted at the 70-bp

repeat and the other just PUR, again similar switching frequencies,

,161025, were observed [56] (personal communication with

Nina Papavasiliou).

Reintroduction of wild-type TOPO3a complemented the hyper-

switching phenotype of topo3a2/2 (2/2/+ in Figure 5B),

confirming that this phenotype is associated with the TOPO3a
deficiency. The results were obtained from three complemented

clones (2/2/+) and two cultures each of wild type and topo3a
mutant.

RAD51-dependent recombination intermediates accumulate in

top3 mutants and the removal of persistent intermediates requires

the cleavage activity of Top3 [57,58]. We examined whether the

hyper-switching phenotype of topo3a2/2 is dependent on RAD51.

Both RAD51 alleles were sequentially deleted in the wild-type and

topo3a2/2 strains. We analyzed four independent cultures of

rad512/2 and two of topo3a2/2 rad512/2. RAD51 deletion

reduced the switching frequency of the wild type by 2-fold and

abolished the hyper-switching phenotype of topo3a2/2 (Figure 5C).

Collectively, we concluded that TOPO3a functions as an

important regulatory factor for recombination-mediated VSG

switching and that, in the absence of TOPO3a, recombinogenic

structures may accumulate between the active ES and VSG donors,

and could then be resolved to give rise to switched variants.

T. brucei TOPO3a suppresses VSG GC and crossover
In other organisms, Top3 defects are associated with elevated

crossover as well as hyper-recombination [32–34,45,46]. To learn

how individual switchers had undergone antigenic variation, we

analyzed total 296 cloned switchers. The rationales for the double

marking of parental cells are as follows (Figure 4). First, switchers

can be effectively counter-selected using GCV (Figure 4 and 5).

Second, transcription is initiated at silent ESs but elongation is

prematurely terminated [59]: genes that are located closer to silent

ES promoters are not completely silenced. Therefore, in-situ

switchers can be distinguished from recombination-mediated

switchers using different concentrations of blasticidin. Based on

our titration for blasticidin concentration, in-situ switchers can

grow in 5mg/ml blasticidin but not in 100 mg/ml, while ES gene

conversion (ES GC) switchers cannot grow in either concentration.

VSG gene conversion (VSG GC) and VSG-exchange (crossover)

switchers will be resistant to 100 mg/ml blasticidin, and these

alternatives can be distinguished by the absence or presence of

VSG 427-2, respectively, which can be analyzed by PCR. The

strategies to score individual switching mechanisms are summa-

rized in Table 1 and examples of PCR analyses are shown in

Figure 6A (right).

We analyzed cloned switchers isolated from six independent

cultures and were able to discriminate among the alternative

switching mechanisms. The results are summarized in Table 2 and

Figure 6A. Switchers from cultures 1 and 2 were isolated by the

column method and switchers from culture 3 by directly plating in

GCV. Switching occurred largely by gene conversion (Figure 6A).

In both wild type and topo3a mutants, 64,77% of switching

exploited VSG GC. Crossovers were rare in wild type (,3%) but,

on average, 20% of switchers exchanged their VSGs in topo3a2/2.

These data suggest that, in the absence of TOPO3a, recombina-

Figure 5. Tbtopo3a2/2 is a VSG ‘hyper-switcher’ and this
phenotype requires RAD51. (A) TOPO3a deficiency increased total
switching frequency by 10–40-fold. Switchers were enriched as
described previously [56] and selected in GCV-containing media. The
switching frequency was determined by counting GCVR clones. (B)
Hyper-switching phenotype is associated with TOPO3a deficiency.
Switching frequency was measured in GCV-containing media without
the column-enrichment. (C) Hyper-switching phenotype requires
RAD51. Switching frequency of wild type, topo3a2/2, rad512/2 and
topo3a2/2rad512/2 was determined as described above (Figure 5A).
Error bars indicate standard deviation. (*) The same data as presented in
Figure 5A.
doi:10.1371/journal.ppat.1000992.g005
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tion intermediates may be accumulated and these could be

repaired mostly by duplicative VSG GC and crossover.

In a previous study designed to examine in-situ switching, using

a cell line with TK marker inserted next to the active ES promoter,

frequent loss of entire active ES was observed. This could be

caused by duplicative transposition of a silent ES (ES GC) or by

deletion of the active ES coupled with transcriptional activation of

a silent ES [60]. In our experiments, ES GC and ES loss cannot be

distinguished, as switchers that lost both BSD and VSG 427-2 genes

could arise either by duplicative transposition of a silent ES or by

ES breakage coupled with an ES transcriptional switch. The ‘ES

GC or ES loss’ events were rather frequently detected in wild-type

cells (average ,30%), while they were either not detected (culture

1 and 2) or detected at a low frequency (4 our of 51 cloned

Figure 6. Analyses of switched variants. (A) TOPO3a suppresses VSG GC and crossover. 296 cloned switchers from three independent cultures of
wild type and topo3a2/2 were examined. The percentage of each mechanism (VSG GC, crossover, ‘ES GC or ES loss’, in situ, and ES GC+crossover) was
plotted. White bars are wild type and dark grey bars are topo3a mutants. PCR results from several switchers are shown in right. TETR region was used
as an internal PCR control, as all strains used in this study contain TETR. VSG-GC switchers should be BSD+, VSG 427-22, and either ESAG1+ or 2. ‘ES GC
or ES loss’ switchers should be BSD2, VSG 427-22, and ESAG12. Crossover should be BSD+, VSG 427-2+, and ESAG1+. In situ should be BSD+, VSG 427-2+,
and ESAG1+. The results are also summarized in Table 2. (B) TOPO3a specifically regulates the ES-associated VSG switching. Diagram shows relations
between the presence of ES1-specific ESAG1 and the location of recombination that occurred or resolved in VSG-GC switchers. Blue lines under ESAG1
box indicate a region amplified by PCR. Black circles are telomere repeats.
doi:10.1371/journal.ppat.1000992.g006

Table 1. Strategies to score switching mechanisms by blasticidin sensitivity and PCR.

BSD 5mg/ml BSD 100mg/ml BSD PCR VSG 427-2 PCR ES1-ESAG1 PCR VSG 427-2 Downstream PCR Switching mechanism

+ + + 2 2 VSG GC, upstream of ESAG1

+ 2 VSG GC at 70-bp repeat by BIR

+ VSG GC at 70-bp repeat by GC

+ + + + Crossover

+ 2 + + In situ

2 2 2 2 ES GC or ES loss*

*ES loss associated with multiple events potentially including in-situ switching.
doi:10.1371/journal.ppat.1000992.t001

TOPO3a Influences VSG Recombination
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switchers in culture 3) in the absence of TOPO3a (Figure 6A and

Table 2). Interestingly, RAD51 deletion significantly decreased ‘ES

GC or ES loss’ frequency (unpublished data), indicating that ‘ES

GC or ES loss’ events are mainly under the control of RAD51-

dependent recombination.

We noticed that some switched variants had growth disadvantages.

Depending on how long it took to saturate the medium, wild-type

switchers were categorized as ‘fast’, ‘medium’ or ‘slow’. ‘ES GC or ES

loss’ switchers were prevalent in clones that grew up more slowly (data

not shown). The functions of ESAGs are mostly unknown, but

expressing different ESAGs might be advantageous when entering

different hosts [61]. The slower-growth phenotype of some of these

switchers may reflect impaired function of one or more ESAGs in the

bovine serum-containing culture medium, which appears to favor

stable transcription of the VSG 427-2-containing ES1.

In-situ switchers were rare in our assay. This phenotype is

different from previous reports [24,62], for reasons we do not

understand. In our hands, in-situ switchers generally grew slower

than VSG-GC switchers, so VSG-GC switchers would quickly take

over the switched population if it was initially mixed, although this

is unlikely because our switching population was initiated at 500–

1000 cells/ml, while it was at 5,000–10,000 cell/ml in previous

assays. Before this seeding, cells were grown in the presence of

drugs that prevented switching.

T. brucei TOPO3a specifically regulates ES-associated VSG
switching

The 70-bp repeat unit has been proposed to be a recombination

hot spot, possibly as a potential target for a site-specific

endonuclease playing a similar role to that of the HO-

endonuclease in yeast. Such an endonuclease has not been

identified in trypanosomes. The 70-bp repeats could serve as

switching hot-spots because of their structural features [63], rather

than require cleavage by a specific endonuclease. Early experi-

ments suggested that the overall VSG switching-frequency was not

reduced in the absence of 70-bp repeats or by inversion of the

repeats although, when present in the correct orientation, the

repeats were used more than 10% of the time [62]. More recently,

however, it has been shown that the 70-bp repeats of the actively

transcribed ES are prone to break, which could induce

recombination-mediated switching, and that the switching fre-

quency was greatly increased when breaks were experimentally

induced at the 70-bp repeats, but not when induced elsewhere in

the ES or in the absence of 70-bp repeats [56].

We mapped the region where the recombination occurred (or

resolved) in the VSG-GC switchers from wild type and topo3a

mutants, to learn whether the 70-bp repeat unit is the hot spot of

duplicative VSG GC and whether TOPO3a can redirect this

preference. ESAG1 genes are located immediately upstream of the

70-bp repeats, and their sequence polymorphisms allowed us to

design ES1-specific-ESAG1 oligonucleotides for PCR analysis.

PCR results from several VSG-GC switchers were shown in

Figure 6A (right). The presence of ES1-specific ESAG1 in VSG-GC

switchers indicates that gene conversion occurred at 70-bp repeat

regions, and its absence indicates that recombination occurred

upstream of ESAG1 (Figure 6B). Crossover and ‘ES GC or ES loss’

switchers were used to verify that the PCR primer set was

amplifying only the ES1-specific ESAG1 gene. The ES1-specific

ESAG1 was lost in all ‘ES GC or ES loss’ switchers but was

detected in all crossover switchers examined, as expected. The

ES1-specific ESAG1 gene was amplified in ,63% of VSG-GC

switchers in wild-type cells but ,81% of VSG-GC switchers lost

the ES1-specific ESAG1 gene in topo3a2/2, indicating that, in the

absence of TOPO3a, the active ES recombined mostly with silent

ESs upstream of ESAG1, rather than within the 70-bp repeats, but

not with minichromosomal or telomere-distal VSGs. We concluded

that the 70-bp repeat region is an important but not an essential

element for recombination-mediated switching. Gene conversion

upstream of 70-bp repeats, at ESAG2, has also been reported [64].

The primary function of TOPO3a may be to prevent accumu-

lation of recombination intermediates constantly arising between

the active and silent ESs, to maintain the integrity of ESs.

Recombination by a one-strand invasion event could replace

VSGs by break-induced replication (BIR) [56]. Alternatively, a

second strand invasion at homologous sequences within or

downstream of the VSG could generate VSG-GC switchers.

Duplication of a telomere-distal VSG into an active ES is a

relatively rare event, at least in the modest extent to which

switching events have been characterized experimentally, but it

appears to serve as an important switching mechanism in later

stage of infection and as a mechanism to further expand the

expressed VSG repertoire [22,65,66]. The few telomere-distal VSG

arrays so far characterized contain only short stretches of 70-bp

repeats but lack telomeric repeats. To determine how VSG GC

occurred, we analyzed the sequences downstream of the 39

homology region of VSG 427-2 by PCR in all VSG-GC switchers

(Supporting Figure S3). If the second strand invaded at this 39

homology region, downstream sequences should be unchanged.

We found, however, that the ES1-specific downstream sequences

were lost in all the VSG-GC switchers obtained from wild-type and

topo3a cells, indicating that VSG-GC switchers were most likely

repaired by BIR, consistent with a recent report [56], and that

Table 2. Summary of switching mechanisms in wild-type and topo3a2/2 cells indicating the total number of switchers in each
culture and the numbers of switchers assigned to different switching mechanisms.

Genotype (Culture #) Total VSG GC** Crossover ES GC or ES loss* In situ ES GC+Crossover

WT (#1) 83 67 (30) 1 13 0 2

WT (#2) 37 21 (12) 0 16 0 0

WT (#3) 47 26 (23) 3 15 3 0

topo3a2/2 (#1) 25 23 (0) 2 0 0 0

topo3a2/2 (#2) 53 40 (14) 13 0 0 0

topo3a2/2 (#3) 51 32 (7) 14 4 1 0

*ES loss associated with multiple events potentially including in-situ switching.
**The numbers of VSG-GC switchers that recombined at the 70-bp repeats are indicated in parentheses.
doi:10.1371/journal.ppat.1000992.t002
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internal-VSG duplication is extremely rare. PCR results from a

selection of VSG-GC switchers were shown in Figure S3.

To confirm the duplicative translocation of newly expressed

VSGs to the VSG 427-2 ES and to examine whether minichromo-

somal VSGs contribute to antigenic switching, 32 VSG-GC

switchers from wild-type cells were further analyzed. Minichromo-

somes terminate with telomeres, VSGs and 70-bp repeats. Gene

conversion with minichromosomal VSGs occurs frequently [56],

but only when recombination is initiated at the 70-bp repeats.

Therefore, we cloned and sequenced newly activated VSGs from

VSG-GC switchers that utilized 70-bp repeats. From 32 switchers

that had undergone at least one type of switching, VSG GC at the

70-bp repeats, we obtained eight different newly activated VSGs

(Supporting Figure S5, left). It is possible that we have

underestimated the number of independent switching events as

these switchers may have used different sequences within or near

the 70-bp repeats, which should be counted as independent. Some

switchers might have arisen earlier than others, for examples VSG

427-32, as these were presented more often than others. Among

these eight newly expressed VSGs, four were novel VSGs, 427-32,

33, 34 and 35, full or partial sequences of which can be found in

the following website (http://tryps.rockefeller.edu). Switchers

expressing VSGs 427-3, 11, 32, 33 and 35 were examined by

rotating agarose gel electrophoresis (RAGE) and Southern blot

[56]. As shown in Supporting Figure S5 (right panel), VSG 427-2

was lost in all the switchers and all newly expressed VSGs were

duplicated and translocated to the 427-2 ES, except for 427-33, an

intermediate chromosomal (IC) VSG. The original copy of 427-33

may be lost after recombination. VSGs 427-32 and 35 came from

megabase chromosomes (MBC). We have not isolated any

minichromosomal VSGs in these switchers, indicating that

recombination between ES-associated VSGs was the major source

for VSG switching.

Discussion

Repair by recombination serves to preserve genome integrity

and can either homogenize or diversify genetic information,

occasionally causing detrimental outcomes or benefiting certain

organisms by providing adaptation systems to escape lethal

situations. African trypanosomes escape the host immune response

through a mechanism known as the antigenic variation. Here, we

report that T. brucei TOPO3a, a member of a potential T. brucei

RecQ-Top3-Rmi1 (RTR) complex, takes an important part in the

regulation of recombination-mediated antigenic variation. Our

results reveal a complex mechanism that has to balance ES

integrity and VSG diversity to maximize the survival of a

trypanosome population by suppressing crossovers on one hand

and by promoting duplicative VSG gene conversions on the other.

Mechanism of recombination-mediated antigenic
switching and roles for TOPO3a

As illustrated in Figure 7, ES structures seem to play a particular

role in VSG switching. ES-associated VSG genes are located

between the 70-bp and telomeric repeats. ESAGs and some

pseudogenes are present upstream of the 70-bp repeats in all ESs,

sometimes duplicated and sometimes missing [3,9]. Strong

sequence homologies are present throughout the ESs, with the

exception of most of the VSG coding sequence and the

immediately upstream ‘co-transposed region’ (CTR). VSG se-

quences are highly dissimilar except for ,200-bp encoding the C-

terminus and within the 39 UTR [67]. The reason why every VSG

cassette contains a unique CTR is unknown. The purpose of CTR

could be to insulate the individuality of VSG cassettes, so that the

VSG sequences can evolve separately from other regions in ESs,

which maintain their sequences to serve for VSG recombination.

When HR occurs, the CTR could block branch migration of HJ

or dHJ downstream of the 70-bp repeats.

What roles does TOPO3a play in this scheme? Our study shows

that TOPO3a deficiency increases VSG switching, especially VSG

GC and crossover, and that the hyper-switching phenotype

requires RAD51. The accumulation of toxic recombination

intermediates accounts for the slow growth phenotype of yeast

top3 mutants, which is suppressed by mutations in SGS1 or in the

RAD51-pathway [43,68,69]. Recombination intermediates accu-

mulate in cells over-expressing dominant-negative Top3-Y356F in

response to methylmethane sulfonate in a RAD51-dependent

manner [58]. The function of TOPO3a is not restricted to the 70-

bp repeats in antigenic switching, as its absence appears to cause

promiscuous recombination throughout the ESs. We therefore

propose that TOPO3a removes recombinogenic structures

constantly arising between ESs so as to maintain the albeit limited

individuality of different ESs. In the absence of TOPO3a,

recombination intermediates would accumulate during VSG

switching and unresolved intermediates would have to be repaired

either by GC associated with crossover or by placing a new

duplicated VSG into the active ES by BIR (Figure 7).

Suppression of crossover in recombination-mediated VSG

switching is an interesting result, considering that there are

probably more than 200 potential VSG donors: ,20 ESs with

extensive sequence homology and ,200 minichromosomal VSGs.

Antigenic variation probably requires balancing preservation and

variation of VSG information, but we cannot explain how

suppression of crossover would be important for maintaining this

balance. However, we think that by favoring duplicative GC over

crossover, rather than crossover over GC, trypanosomes could

slowly accumulate VSG diversity without abrupt loss of their

functionalities, because duplicative GC requires VSG DNA

synthesis, during which point mutations could be incorporated

into newly synthesized VSGs, but VSG crossover does not require

VSG DNA synthesis.

TOPO3a deficiency increased VSG GC far more than GC at

the URA3 locus (Figures 3 and 6). GC at these two loci is probably

mediated by different pathways. Recombination at URA3 locus

would prefer flanking homologies, rather than BIR. In contrast,

BIR would present a better option for VSG GC, as only one end

homology appears to be involved (supporting Figure S3) [56]. It is

possible that a second invasion could occur within the telomere

repeats, but this is impossible to determine. The higher VSG GC

rate could also be because the active ES is less stable than URA3

locus. Alternatively, TOPO3a may specifically suppress BIR-

mediated VSG switching. The role of TOPO3a in BIR has not

been extensively characterized elsewhere. Our results show a novel

function of TOPO3a in VSG switching, which could be an

excellent system to study BIR.

TbRTR complex and DSB-HR response in antigenic
variation

DNA recombination involves many factors, of which only a few

have been studied in the context of antigenic variation: RAD51,

RAD51-related genes, BRCA2, KU70/80, MRE11, and MSH2/

MLH1 [23–25,29,30,70,71]. Among these, only the deletion of

RAD51, RAD51-3, and BRCA2 decreased VSG switching, in wild-

type cells that already had a very low switching rate.

Our findings on TOPO3a in VSG switching suggest potential

roles for numerous DSB-HR response factors in antigenic

variation. Two RecQ family helicases are annotated in the T.

brucei gene database (http://www.genedb.org/genedb/tryp). Rmi1
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Figure 7. Mechanism of recombination-mediated antigenic switching and roles for TOPO3a. The diagram shows the active ES (ES1)
expressing VSG 427-2 and a silent ES containing vsg X. VSG genes are located between 70-bp repeats and telomere repeats (black circles). The
sequence of each VSG cassette, including CTR, VSG, and VSG downstream, is unique (red for VSG 427-2 and green for vsgX). The strong sequence
similarities are present throughout these ESs. Holliday Junctions (HJs) or double HJs (dHJs) can form between these ESs but cannot migrate
downstream of the 70-bp repeats. These intermediates have to be resolved before CTR or have to use telomere repeats or sequence homology
within VSG cassettes to generate switched variants. The grey boxes (in (a) and (b)) include potential players that could generate switched variants in
the absence of TOPO3a. (a) The dHJs can be efficiently processed by TOPO3a, generating non-crossover (no switching). However, in the absence of
TOPO3a, HJ can be cleaved by resolvase (brown scissors) to generate non-crossover (no switching) and crossover products (crossover switchers). (b)
Replication fork instability can accumulate recombination intermediates between sister-chromatids. In the absence of TOPO3a, these intermediates
can be cleaved by MUS81, a 39 flap endonuclease (blue triangle), and the broken leading strand can invade sister-chromatid to complete replication.
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is required to load Top3 onto the substrates and stimulate its

activity through the physical interaction [72]. We have identified a

TbRMI1 homologue. All the phenotypes that we have examined in

Tbrmi1 mutants were identical to those in topo3a mutants

(unpublished data). Therefore, we believe that RecQ, TOPO3a
and RMI1 are likely to function as a complex in antigenic

variation in T. brucei.

Synthetic-lethality screens with sgs1 in budding yeast identified

three pathways working in parallel with Sgs1 [73]; Mus81-Mms4,

Slx1-Slx4, and Slx5-Slx8. Synthetic lethality of sgs1 mus81 or sgs1

mms4 requires HR factors [74]. Mus81-Mms4 is a structure-

specific endonuclease that cleaves 39 flap, replication fork, or HJ

substrates [74–76]. Resolvase, an endonuclease, symmetrically

cleaves HJs and the products can be resolved with crossover or

non-crossover. Human and yeast resolvases have recently been

characterized [77]. MUS81 appears to be present in T. brucei but a

resolvase remains to be identified. Although we do not yet have

functional data for these proteins, we propose, based on the studies

from other organisms, that the regulation of antigenic variation is

similar to that of mitotic HR. When present, TOPO3a could

dissolve dHJs to prevent the ES instability, consequently

generating non-crossover recombinants (no switching). In the

absence of TOPO3a, resolvase (Figure 7a, grey box) or MUS81

may cleave the accumulated recombination intermediates arising

between the ESs and generate crossover switchers. Alternatively,

stalled replication forks can be cleaved by MUS81 and the broken

leading strand can invade a silent ES to generate VSG-GC

switchers (Figure 7b, grey box).

Although VSG switching has similarities with mitotic HR, it

appears that specific elements are present for its regulation. A

hyper-recombination phenotype does not always correlate with

hyper-switching phenotype. The mismatch repair (MMR) path-

way can abort recombination during strand exchange between

non-identical substrates and mmr mutants can increase recombi-

nation frequency (reviewed in [78]). Consistent with their roles in

repair and recombination, Tbmsh2 or Tbmlh1 mutants increased

recombination frequency but did not change switching frequency

[71]. Recombination is closely linked with DNA replication and

checkpoint pathways as well [32,57,58,79]. Therefore, we believe

that roles for DNA replication, checkpoint, and recombination

factors and their interactions need to be determined to fully

understand the mechanisms of antigenic variation.

Measuring VSG switching has, until now, been time-consuming

and not very reproducible. Our new switching assay circumvents

previous technical difficulties and can effectively assign specific

roles to individual proteins.

What triggers antigenic switching
It has recently been shown that a DSB introduced at the active

70-bp repeats by the I-SceI endonuclease causes a 250-fold increase

in VSG switching and that the DSBs were repaired by BIR [56].

However, it is unknown whether the VSG switching is activated by

targeted DSBs or by random chromosomal breaks, or whether

recombinogenic ssDNA is a primary cause for the initiation of VSG

switching. HR can be instigated by many different sources;

random breaks, endonuclease cleavage at specific target sites,

replication fork instability, unusual secondary DNA structure, or

transcription.

The Mre11 complex, which consists of Mre11, Rad50, and

Xrs2 (NBS1 in mammals), plays a central role in the DSB-HR

response [26–28]. MRE11 deficiency, however, did not change

the VSG switching frequency [29,30], promoting the idea that

ssDNA regions may generate recombinogenic structures for the

initiation of switching. Uncoupling of leading and lagging strand

DNA synthesis caused by DNA lesions can destabilize a replication

fork, leaving ssDNA gaps behind the fork, which could be

processed into recombinogenic structures. If an ssDNA gap is a

major trigger for recombination-mediated switching, switching

frequency should increase in cells suffering from replication

challenge. To address this issue, we treated cells with aphidicolin,

an inhibitor of lagging strand DNA synthesis, and HU, and

measured the switching frequency in parallel (Supporting Figure

S4). Cells were treated with the drugs at a sub-lethal dose to

exclude a possibility of chromosome break-induced switching. No

significant correlation was observed between these treatments and

switching frequency. Therefore, an ssDNA gap may not be a

major initiating factor for VSG switching. Rather, random breaks

might be responsible for switching induction, consistent to a

previous study [56]. However, it is still difficult to rule out the

possibility that an ssDNA gap triggers switching, as ssDNA gaps

might not be extensive enough to create recombinogenic

structures at the low doses of aphidicolin or HU. The best way

to test this hypothesis would be to use conditional mutants

associated with replication defects. Unfortunately, we do not yet

have such genetic tools, as nuclear DNA replication has not been

studied in T. brucei.

A high transcription level can stimulate recombination, a

mechanism known as transcription-associated recombination

(TAR) (reviewed in [80]). Transcription has been shown to

promote recombination in T. brucei [81,82]. Interestingly, it was

shown in budding yeast that transcription- and DSB-induced

recombination events were similar, indicating that transcription

affects only the initiation of recombination, not the mechanism of

recombination [83]. ssDNA regions exposed in the active ES

during transcription could be readily accessible by recombination

factors. Alternatively, transcription-replication collision causes

replication fork stalling, which could also induce switching. Studies

of mammalian cells have shown that TAR is dependent on

replication [84], and that transcription increases recombination

frequency when a replication fork converges with transcription

[85]. The active ES is more fragile than silent ESs [56]. The high

level of transcription may explain why the active ES breaks more

frequently, and this may induce VSG switching.

The 70-bp repeat has been proposed to be a potential

endonuclease target site to induce switching, but such an enzyme

has not been found. Instability of the 70-bp repeat [63] may play a

role in the initiation of switching and could lead to template

switching. However, according to our results and previous studies

[62,64], switching is not completely dependent on the 70-bp

repeats. With the available data, it would be reasonable to

conclude that random breaks may occur throughout the active ES

but more frequently at 70-bp repeats, and these could initiate

various switching events.

Gene conversion is used by several other pathogens, including

Borrelia hermsii and Anaplasma marginale, as an evasion mechanism

[10,86]. Our study suggests that exploring how trypanosomes

manipulate the HR machinery to gain advantage against their

host’s immunity, while successfully preserving their genomes, may

reveal weaknesses that can be exploited to control infectivity and

virulence.

Alternatively this can also invade a silent ES using their sequence homology and replicate to the end of the chromosome, generating VSG GC
switchers.
doi:10.1371/journal.ppat.1000992.g007
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Materials and Methods

Trypanosome strains and plasmids
Trypanosoma brucei bloodstream forms (strain Lister 427 antigenic

type MITat1.2 clone 221a (VSG 427-2)) were cultured in HMI-9

at 37uC. The cell lines constructed for this study are listed in

Supporting Table S1, and they are of ‘single marker’ (SM)

background that expresses T7 RNA polymerase and Tet repressor

(TETR) [87]. Stable clones were obtained and maintained in

HMI-9 media containing necessary antibiotics at the following

concentrations, unless otherwise stated: 2.5mg/ml, G418 (Sigma);

5mg/ml, blasticidin (Invivogen); 5mg/ml, hygromycin (Sigma);

0.1mg/ml, puromycin (Sigma); 1mg/ml, phleomycin (Invivogen).

Plasmids used for this study are listed in Supporting Table S2.

Construction of topo3a2/2 cell line and removal of
markers using Cre recombinase-loxPs (Supporting
Figure S2)

TOPO3a genes were sequentially deleted using deletion-cassettes

containing either puromycin or hygromycin-resistance gene fused

with HSVTK, Herpes simplex virus thymidine kinase (TK), PUR-TK

and HYG-TK. These fusion genes are flanked by loxP sites so that

the markers can be removed by transient expression of Cre

recombinase (pLew100-Cre). The entire open reading frame

(ORF) of TOPO3a was deleted by transfecting ‘single marker’ (SM)

cells with a deletion-cassette that was amplified with primer 35 and

36 using pHJ18 (PUR-TK) as a template. Primer 35 and 36

contains 70 nt homologies to the target sites. This topo3a ‘single

knock-out’ cells (sKO, HSTB-97) were used to PCR amplify a

cassette containing a marker (PUR-TK) along with 453 nt

upstream and 402 nt downstream sequences of TOPO3a gene.

The PCR fragment was inserted into pGEM-easy-T vector by TA

cloning to create pHJ63. pHJ64 was constructed by replacing a

PUR-TK marker with a HYG-TK from pHJ17. topo3a ‘double

knock-out’ (dKO) was generated by transfecting NotI-digested

pHJ64 into topo3a sKO, HSTB-97. Deletion of both TOPO3a
alleles was confirmed by PCR analyses.

To remove the selection markers, topo3a dKO cells were

transfected with pLew100-Cre to transiently express Cre-recom-

binase, and the cells that lost both HYG-TK and PUR-TK were

selected in 50mg/ml ganciclovir (GCV). Loss of markers was

confirmed by resistance to puromycin and hygromycin, and by

PCR analysis. The sequences of primers used here are available

upon request.

Recombination assay
pLHTL-pyrFE [48]-linearized by PvuII digestion was transfected

into wild-type (HSTB-188) and topo3a2/2 (HSTB-328 and HSTB-

330) cells, to replace one allele of TbURA3 with HYG-TK. The

integration was confirmed by PCR analysis with primers 48 and 49.

Three or five independent HYGR clones from wild-type or topo32/2

cells were analyzed. Cells were grown in the absence of hygromycin

for 2 days to allow recombination to occur. Approximately 500,000

cells were diluted in HMI-9 media containing 30 mg/ml GCV or

6 mg/ml FOA, and distributed into 96-well plates. Yellow wells

(phenol red indicating acidification due to growth) containing GCVR

or FOAR cells were counted after 7–8 days of incubation and the GC

frequency was determined. The sequences of primers used for

genotyping are available upon request.

Switching assay and analyses of switchers
To create a doubly-marked switching reporter strain (Figure 4),

pHJ23 was linearized by KpnI-NotI digestion and integrated

downstream of the ES1 promoter, to confer resistance to

blasticidin. These cells were then marked with PUR-TK at the 39

end of 70-bp repeats by transfecting a PCR-amplified PUR-TK

cassette. Ten mg/ml of puromycin, 100 times higher than normal

usage, was added to select clones targeted specifically at the active

ES. When determining switching frequency, the parental cells

were maintained in the presence of blasticidin and puromycin to

exclude switchers from the starting population. Cells were then

allowed to switch in the absence of selection for 3–4 days.

Switchers were enriched using a MACS [56]. Flow-through

enriched with switchers was collected and serially diluted in media

containing 4 mg/ml GCV, and distributed into 96-well plates. The

switching frequency was determined by counting GCVR clones.

Alternatively, switching frequency was determined without the

column enrichment step. Cells were diluted in GCV-containing

media and directly distributed into 96-well plates. Non-switchers

that carry spontaneous mutation(s) in TK gene but not in PUR

were ruled out by examining puromycin resistance. Non-switchers

that carry mutations in PUR and TK were ruled out by western

blot analysis using antibodies against VSG 427-2.

To determine switching mechanisms, cloned switchers were

analyzed for blasticidin sensitivity at 5 mg/ml and 100 mg/ml

concentrations. Genomic DNA was prepared from 296 switchers

and PCR-analyses were performed at four regions: BSD, VSG 427-

2, ESAG1, and VSG 427-2 downstream. The primer set designed

for BSD-PCR can also amplify TETR (Tet Repressor) gene, which

was used as a control for PCR analyses. The sequences of primers

used here are available upon request.

Analysis of sensitivity to genotoxic agents
Wild type (SM), topo3a2/+ (HSTB-97), and topo3a2/2 (HSTB-

226 and HSTB-227) cells were incubated with indicated

concentration of phleomycin for 24 hours. The same number of

cells was distributed into 96-well plates. All the plating was

duplicated. The wells that contain viable cells were counted after

7–8 days of incubation at 37uC and the viability was calculated by

normalizing to untreated samples. Sensitivity to HU and

aphidicolin was determined similarly. Cells were incubated with

HU or aphidicolin for 2 or 3 days. The viability was calculated by

normalizing to untreated samples.

Gene accession numbers
Database ID numbers (http://www.genedb.org and http://

tritrypdb.org) for TOPO3a discussed in this paper are

Tb11.01.1280, LmjF36.3200 and Tc00.1047053511589.120.

What we refer to as TbURA3 is the bifunctional orotidine-5-

phosphate decarboxylase/orotate phosphoribosyltransferase

Tb927.5.3810.

Supporting Information

Table S1 Strains used in this study

Found at: doi:10.1371/journal.ppat.1000992.s001 (0.05 MB

DOC)

Table S2 Plasmids used in this study

Found at: doi:10.1371/journal.ppat.1000992.s002 (0.05 MB

DOC)

Figure S1 Alignment of T. brucei, T. cruzi and L. major TOPO3a.

The colored boxes indicate domains found in SMART (Simple

Modular Architecture Research Tool) domain search: yellow box,

TOPRIM (topoisomerase-primase) domain; purple, TOP1Bc

(bacterial DNA topoisomerase I ATP-binding domain); red,

TOP1Ac (bacterial DNA topoisomerase I DNA binding domain);
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green, Zf-C4 (zinc-finger domain). The catalytic tyrosine (Y) is

written in yellow. Four cysteine residues are written in red in green

box. Gene numbers are Tb11.01.1280, LmjF36.3200 and

Tc00.1047053511589.120.

Found at: doi:10.1371/journal.ppat.1000992.s003 (0.52 MB TIF)

Figure S2 Construction of topo3a2/2 cell line and removal of

markers using Cre recombinase-loxPs. TOPO3a genes were

sequentially deleted using deletion-cassettes containing PUR-TK

and HYG-TK. These fusion genes are flanked by loxP sites so that

the markers can be removed by transient expression of Cre

recombinase (pLew100-Cre) [48].

Found at: doi:10.1371/journal.ppat.1000992.s004 (0.36 MB EPS)

Figure S3 Switching occurred by BIR in VSG-GC switchers.

Diagram shows two scenarios of how new VSG can be duplicated

and placed in the active ES. The first strand invasion should occur

upstream of CTR and this can replicate all the way to the end of

the chromosome or recombine a second time at the homology

regions present at the C-terminus or in the 39 UTR of VSG 427-2

(221) (39 homology region). To distinguish these possibilities, the

downstream region specific for VSG 427-2 (221) was analyzed in all

the switchers by PCR. 12 switchers (2 crossover and 10 VSG-GC

switchers) are shown as representatives. Black circles are telomere

repeats. Blue lines next to telomere repeats indicate a region

analyzed by PCR.

Found at: doi:10.1371/journal.ppat.1000992.s005 (0.36 MB EPS)

Figure S4 Switching frequency was not affected by aphidicolin

or HU treatments. (A) Wild-type cells were treated with the

indicated concentrations of aphidicolin and percent viability was

determined by normalizing to the untreated sample. (B) Switching

frequency of aphidicolin-treated cells was measured in parallel, by

directly plating in GCV-containing media without enrichment. (C)

Wild-type cells were treated with 0.01 mM HU, and topo3a cells

were treated with 0.01 mM HU or 1 ng/ml aphidicolin (APH) for

3 days. Percent viability was determined by normalizing to

untreated sample. (D) Switching frequency of HU or aphidicolin-

treated wild-type or mutant cells was measured in parallel by the

column-enrichment method.

Found at: doi:10.1371/journal.ppat.1000992.s006 (0.34 MB EPS)

Figure S5 Cloning newly activated VSGs. Total mRNA was

extracted from VSG-GC switchers that utilized 70-bp repeats for

VSG recombination. cDNA was amplified using a reverse-

transcriptase and oligo dT20 (Stratagene). Newly expressed VSGs

were amplified using specific oligos that anneal to the spliced

leader and to 16-mer sequences present in all VSG transcripts, and

sequenced. Eleven switchers expressing 427-3 (224), 427-11 (bR2),

427-32, 427-33 or 427-35 were further analyzed to confirm

duplicative translocation of new VSGs to the VSG 427-2 expression

site by rotating agarose gel electrophoresis (RAGE) and Southern

blotting [56], using probes specific to VSGs 427-2 (221), 427-3,

427-11, 427-32, 427-33, or 427-35. Abbreviations: MBC (mega-

base chromosome), IC (intermediate chromosome), MC (mini-

chromosome), and P (parental strain expressing VSG 427-2).

Arrowheads indicate translocation of newly activated VSGs to ES1.

Found at: doi:10.1371/journal.ppat.1000992.s007 (0.89 MB TIF)
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