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Abstract

Many viruses encode proteins whose major function is to evade or disable the host T cell response. Nevertheless, most
viruses are readily detected by host T cells, and induce relatively strong T cell responses. Herein, we employ transgenic CD4+

and CD8+ T cells as sensors to evaluate in vitro and in vivo antigen presentation by coxsackievirus B3 (CVB3), and we show
that this virus almost completely inhibits antigen presentation via the MHC class I pathway, thereby evading CD8+ T cell
immunity. In contrast, the presentation of CVB3-encoded MHC class II epitopes is relatively unencumbered, and CVB3
induces in vivo CD4+ T cell responses that are, by several criteria, phenotypically normal. The cells display an effector
phenotype and mature into multi-functional CVB3-specific memory CD4+ T cells that expand dramatically following
challenge infection and rapidly differentiate into secondary effector cells capable of secreting multiple cytokines. Our
findings have implications for the efficiency of antigen cross-presentation during coxsackievirus infection.
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Introduction
Most virus infections are potent inducers of T cell activation and

expansion, and viruses employ several strategies to elude these T

cell responses. Some viruses – in particular, RNA viruses – evade

T cells by changing their amino-acid composition, while others –

exemplified by the herpesvirus family – establish a latent infection,

in which viral antigen production is terminated, rendering the

infected cell invisible to T cells. Still more viruses – for example,

the poxviruses – encode factors that inhibit or misdirect the

effector functions of T cells. Despite these immunoevasion

strategies, in the great majority of acute virus infections that have

been studied T cell responses are readily detected directly ex vivo.

This is not to say that the evasive factors encoded by these viruses

have no in vivo effect, but rather the virus’ ability to evade host T

cell responses is far from complete.

Our laboratory, and others, have investigated the diseases

caused by type B coxsackieviruses (CVB), and the underlying

pathogenic mechanisms. CVB are important human pathogens

that belong to the picornavirus family and enterovirus genus. A

considerable proportion of CVB infections trigger severe acute

and chronic diseases and cause morbidity and mortality,

particularly in infants, young children, and immunocompromised

individuals [1–3]; CVB are the most common cause of infectious

myocarditis, a serious disease that can lead to dilated cardiomy-

opathy and cardiac failure [4–6], and also frequently induce

pancreatitis and aseptic meningitis [1,7–10]. One goal of our early

studies was to map T cell epitopes in the virus, but progress was

limited because the virus infection induced remarkably weak T cell

responses [11,12]. To enhance our ability to detect and analyze

CVB-specific T cell responses, we generated a recombinant CVB3

(rCVB) that expresses well-characterized CD8+ and CD4+ T cell

epitopes derived from lymphocytic choriomeningitis virus

(LCMV). We have shown that this virus failed to induce strong

endogenous primary CD4+ and CD8+ T cell responses in vivo, but

could be recognized by LCMV-specific memory cells, and we

speculated that CVB3 might reduce presentation of viral antigens

to a level that is sufficient to trigger memory, but not naı̈ve, T cells

[12]. In this study, we have used epitope-specific transgenic CD4+

and CD8+ T cells, together with additional rCVB3, to better

evaluate CVB3-specific T cell responses, and to assess the virus’

ability to inhibit the presentation of MHC class I and class II

epitopes in vitro and in vivo. With this enhanced detection system we

show that CVB3 induces essentially no detectable in vivo primary

CD8+ T cell response. This near-complete evasion of CD8+ T cell

immunity does not result from the virus’ destroying or paralyzing

epitope-specific CD8+ T cells; nor does the virus induce a global

suppression of the animal’s ability to mount strong T cell

responses. Using the transgenic T cells as sensors of in vitro and

in vivo antigen presentation, we conclude that CVB3 profoundly

inhibits the MHC class I antigen presentation pathway, providing

a plausible explanation for the weakness of the primary CD8+ T

cell response. In contrast, MHC class II presentation is relatively

uninterrupted, and CVB3 induces both primary and memory

CD4+ T cell responses. In addition, we describe the quantity and
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quality of memory CD4+ T cells that are induced by CVB3

infection. Thus, we show that CVB3 selectively inhibits the MHC

class I pathway; our findings also have implications for the in vivo

efficiency of cross-priming during CVB3 infection.

Results

Minimal in vivo activation of endogenous CD4+ and CD8+

T cells following infection with wildtype or recombinant
CVB3

The goal of this study was to evaluate CD4+ and CD8+ T cell

responses to, and MHC class I and II antigen presentation by,

CVB3 in vivo. Because native murine T cell epitopes have not been

identified for CVB3, we constructed a series of recombinant CVB3

(Table 1) that encode well characterized CD8+ and/or CD4+ T

cell epitopes derived from lymphocytic choriomeningitis virus

(LCMV). These recombinant viruses replicate to high titers in vivo,

but they are somewhat attenuated and are cleared moderately

faster than the wildtype virus (wtCVB3) [11,12]. Thus, before

using rCVB3 to carry out analyses of epitope-specific T cell

responses and antigen presentation in vivo, we felt it important to

determine if wildtype and rCVB3 induced a similar level of overall

T cell activation. Mice were infected with wtCVB3, rCVB3.6, or

LCMV (as a positive control) and, 8 days later, T cell activation

was broadly assessed by changes in activation marker expression

and by PMA/ionomycin stimulation. Fully activated T cells are

characterized by up-regulation of CD44 and down-regulation of

CD62L, and these changes were readily evident in LCMV-

infected mice (Figure 1A–C). In contrast, and consistent with

previous work from this lab [12,13], neither wildtype nor rCVB3

induced these coordinate phenotypic changes in CD4+ or CD8+ T

cells. Some CD8+ T cells did show isolated up-regulation of CD44

(Figure 1A & B), perhaps indicative of sub-optimal activation but,

following incubation with PMA/ionomycin, the frequencies of

IFNc-producing CD4+ and CD8+ T cells from mice infected with

wtCVB3 or with rCVB3 were similar, and not significantly

different from naı̈ve control mice (Figure 1D). In contrast, a

statistically-significant increase in the percentages of IFNc+ CD4+

and CD8+ T cells was seen in LCMV-infected mice (Figure 1D).

Furthermore, no significant changes in total numbers of IFNc+

CD4+ or CD8+ T cells were observed in mice infected with

wtCVB3 or with rCVB3, whereas LCMV infection led to a

substantial increase in both (data not shown). We considered

whether CVB3 might activate other T cell subsets (e.g. Th2 or

Th17), but very few IL-4+ or IL-17A+ CD4+ or CD8+ T cells were

detectable following PMA/ionomycin stimulation of splenocytes

from naı̈ve or virus-infected mice (data not shown). The lack of

profound T cell activation, as judged by the foregoing criteria, was

surprising, especially when one considers the extremely high titers

to which CVB3 replicates in vivo (reaching ,1010 PFU/gram in

some tissues). Therefore, we carried out additional analyses,

displayed in Figure 2. T cell activation often is reflected by an

increase in CD69, and by a decrease in CD127 (IL-7 receptor a);

when these markers were measured on CD4+ and CD8+ T cells at

8 days after CVB3 infection, no statistically-significant changes

were observed. Taken together, the data in Figure 1 and Figure 2

show that both wtCVB3 and rCVB3 infections are associated with

minimal activation of either CD4+ or CD8+ T cells. Our findings

are consistent with a recent study which found that the proportions

of splenic CD4+ and CD8+ T cells do not substantially differ

between uninfected and wtCVB3-infected C57BL/6 mice [14]. In

summary, rCVB3 appears similar to wtCVB3 in the extent to

which infection causes activation of T cells; both viruses appear

capable of largely evading detection by naı̈ve T cells.

Longitudinal analyses show that virus-specific CD4+ T
cells, but not virus-specific CD8+ T cells, expand during
the course of CVB3 infection

The above experiment was somewhat limited because it used

broad criteria of T cell activation to evaluate CVB3-induced T cell

responses at a single time point post infection (p.i.). To assess the

possibility that CVB3 infection might induce delayed T cell

responses, as described in other infections [15], the kinetics of

CD4+ and CD8+ T cell responses were determined by a

longitudinal analysis. In order to enhance the sensitivity of

detection, adoptively transferred CD8+ and CD4+ TCR-trans-

genic T cells were used as in vivo indicators of CVB3-induced T cell

responses. The adoptive transfer of a large number of transgenic T

cells can influence the magnitude, kinetics, survival, differentia-

tion, and phenotype of CD8+ and CD4+ T cell responses [16–21].

Therefore, a small number of transgenic cells (104) was used in

these, and in most subsequent, experiments; we and others have

shown that this number gives rise to a monoclonal T cell response

Author Summary

Many viruses—for example, large DNA viruses like
smallpox virus and herpesviruses—encode several pro-
teins whose major function is to combat the host’s
immune response, but these proteins usually battle in
vain; in general, the mammalian immune system is
sufficiently accomplished to penetrate this viral armor,
allowing the infected animal to mount an immune
response that can eradicate—or, at least, suppress—the
infectious agent. Here, we show that coxsackievirus, a
small RNA virus, carries a far more powerful punch than its
larger DNA cousins; it almost entirely evades detection by
host CD8+ T cells, which usually are one of the key
components of an antiviral immune response. How does
the virus achieve such success? Normally, when a virus
infects a cell, certain host proteins capture small fragments
of the virus and display them on the cell’s surface, allowing
them to be detected by the host immune system—usually,
by cells called CD8+ T cells. We show here that
coxsackievirus very effectively prevents these ‘‘flags’’ from
reaching the cell surface in a form that can trigger naı̈ve T
cells to respond; in effect, the virus renders the cell
‘‘invisible’’ to CD8+ T cells, creating a cocoon in which the
virus can multiply undisturbed by host immunity.

Table 1. Recombinant CVB3 encoding CD8+ or CD4+ (MHC
class I/II) epitopes.

Virus
name

Epitope amino acid
sequence

from
LCMV

T cell
type MHC allele

rCVB3.2a KAVYNFATC GP33–41 CD8 Db (C57BL/6)

rCVB3.3a RPQASGVYM NP118–126 CD8 Ld (BALB/c)

rCVB3.4b GLKGPDIYKGVYQFKSVEFD GP61–80 CD4 I-Ab (C57BL/6)

rCVB3.5b SGEGWPYIACRTSIVGRAWE NP309–328 CD4 I-Ab (C57BL/6)

rCVB3.6c KAVYNFATC
GLKGPDIYKGVYQFKSVEFD

GP33–41 &
GP61–80

CD8 &
CD4

Db/I-Ab (see
above)

adescribed in [11].
bdescribed in this paper.
cdescribed in [12].
doi:10.1371/journal.ppat.1000618.t001

CVB3 Inhibits MHC Class I Pathway
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that kinetically, phenotypically, and functionally resembles the

endogenous, polyclonal response [18,19,21–23].

Mice were inoculated with naı̈ve P14 and SMARTA cells (104

of each cell type); estimating a 10% ‘‘take’’, the resultant

population of naı̈ve P14 and SMARTA cells (,103 of each type)

is approximately 10-fold higher than that of endogenous epitope-

specific cells (estimated to be ,100 cells/mouse [24,25]). The

following day, the mice were infected with rCVB3.6, or LCMV as

a positive control, and the frequencies of transgenic cells were

longitudinally monitored for 2 months. In LCMV-infected mice

(Figure 3, top row), P14 cells became detectable on day 6 p.i.,

expanded to a peak on day 8, and then contracted to form a long-

lived memory population. SMARTA cells expanded and con-

tracted with similar kinetics, and memory cells were detectable for

.60 days post LCMV infection. In striking contrast, a P14

response was not detected in CVB3-infected mice at any time

point (Figure 3, bottom left). rCVB3.6 established a productive

infection in these mice, however, because high fecal titers (0.41–

1.276106 PFU/g) were measured on day 2 p.i. Furthermore,

rCVB3.6 infection induced the expansion of SMARTA cells in

these same hosts (Figure 3, bottom right), indicating that the N-

terminal component of the rCVB3.6 polyprotein, containing the

CD8+ and CD4+ T cell epitopes, was present in sufficient

abundance to trigger expansion of naı̈ve SMARTA cells. The

CVB3-specific SMARTA response was much weaker than the

response to LCMV, but showed similar kinetics, and memory

Figure 1. Minimal T cell activation following infection with wild-type or recombinant CVB3. Mice were infected with wtCVB3, rCVB3.6, or
LCMV as a positive control, and the extent of T cell activation was analyzed on day 8. (A) CD44 and CD62L expression profiles of CD8+ or CD4+

splenocytes were compared for naı̈ve and virus-infected mice. Representative histograms are gated on CD8+ or CD4+ cells, and the numbers indicate
the proportion of cells that are CD44hi or CD62Llo. The frequency of CD44hi (B) or CD62Llo (C) CD4+ or CD8+ T cells in the spleen was determined for
each group of mice. (D) The capacity of CD4+ and CD8+ T cells to produce IFNc was evaluated following simulation with PMA and ionomycin and
ICCS. The percentage of CD4+ or CD8+ T cells that produce IFNc is shown. All data are representative of 2 independent experiments, and show the
mean+SE for 3 mice per group. * p,0.05, ** p,0.01, *** p,0.001, compared to the naı̈ve (uninfected) control.
doi:10.1371/journal.ppat.1000618.g001

CVB3 Inhibits MHC Class I Pathway
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SMARTA cells were detected in rCVB3.6-immune mice for .60

days p.i.. Taken together, these data suggest that there is a marked

difference in the capacity of CVB3 to trigger virus-specific CD4+

and CD8+ T cell responses. In addition, we show here for the first

time that virus-specific memory CD4+ T cells are generated after

CVB3 infection.

The absence of detectable in vivo CD8+ T cell responses
cannot be attributed to redistribution into non-lymphoid
organs

CVB3-specific CD8+ T cells are barely detectable in the spleen

at day 8 (Figure 1), and are undetectable in the blood at any time

point p.i., even in mice that contained many P14 precursor cells

(Figure 3). It remained possible that a P14 response might be

induced, but could not be detected in the blood or the spleen

because it was redistributed to, and constrained within, peripheral

tissues such as heart and pancreas, which are major sites of CVB3

infection. However, P14 cells were barely detectable in the spleen,

heart, and pancreas of rCVB3-infected mice on day 8 p.i., whereas

a substantial P14 response was detected in LCMV-infected mice

(Figure 4A). In contrast, a SMARTA response was observed in all

tissues following infection with either rCVB3.6 or LCMV.

SMARTA cells were enriched in the heart and pancreas of

rCVB3.6-infected mice (,6.7% and ,12% of all CD4+ T cells,

respectively) as compared to the spleen (,1.7%), perhaps as a

consequence of the high CVB3 titers that are detected in these two

tissues; this selective accumulation of CVB3-specific CD4+ T cells

further underlines the paucity of the CD8+ T cell response even in

these virus-rich tissues. The magnitude of the CVB3-induced

CD4+ T cell response was substantially less than the response to

LCMV; both the frequency and total number of splenic SMARTA

cells was ,30-fold greater in LCMV-infected mice (Figure 4B &

C). Nevertheless, the ,103 input SMARTA cells had expanded in

response to rCVB3.6; there were ,105 SMARTA cells in the

spleen by day 8 (Figure 4C). The great majority of rCVB3-specific

SMARTA cells had an effector phenotype (CD44hi CD62Llo

CD127lo) (Figure 4D), which was similar to LCMV-specific

SMARTA cells, indicating that primary CD4+ T cells induced

by rCVB3.6 infection, although low in quantity, appear to be

normal in quality; additional qualitative studies are presented later

in this report (see Figure eight).

The absence of a detectable primary in vivo CD8+ T cell
response to CVB3 cannot be explained by virus-mediated
global suppression of CD8+ T cell responses

P14 cells might not respond to rCVB3.6 infection because the

virus ablates the ability of an infected animal to mount CD8+ T

cell responses. This could occur if, for example, CVB3 globally

inactivates antigen presenting cells (APCs). To address this

possibility, co-infection experiments were carried out. LCMV

was selected to drive the ‘‘indicator’’ T cell responses, and the

effects of CVB3 co-infection on these responses were measured.

To ensure that the antigen-specific T cells had been triggered by

LCMV antigen presentation, and not by CVB3, the co-infected

mice were given rCVB3.3 [11], which does not contain relevant

LCMV epitopes (see Table 1). Five groups of mice were studied,

differing in co-infection status as shown in Figure 5A. Groups I

and II were single-infection controls, and groups III–V were co-

infections that differed in the temporal relationship between

LCMV and rCVB3.3 inoculations. As expected, mice inoculated

only with LCMV (group I) mounted robust CD8+ and CD4+ T

cell responses (Figure 5B), while no primary responses were

detected in mice infected with rCVB3.3 alone (group II). LCMV-

driven T cell responses remained strong in all 3 groups of mice

that were co-infected with rCVB3.3 (groups III–V, Figure 5B).

Compared to mice that received only LCMV (group I), both the

proportions and the absolute numbers of LCMV-specific IFNc+

CD4+ and CD8+ T cells were similar in mice that had received

rCVB3.3 three days after, or concurrently with, LCMV (groups III

& V respectively, Figure 5C & D). Mice that received rCVB3.3

three days prior to LCMV (group IV) showed a ,3-fold increase

in the total number of splenocytes (compared to group I, data not

shown), and a statistically-significant increase in epitope-specific

CD4+ and CD8+ T cells (Figure 5D). These data indicate that the

extraordinarily weak primary CVB3-specific CD8+ T cell response

cannot be attributed to a global suppression of CD8+ T cell

responsiveness; rather, the group IV data suggest that CVB3

infection may establish a microenvironment that promotes strong

T cell responses, despite which the host remains incapable of

mounting a response to CVB3.

Figure 2. No significant change in CD69 or CD127 expression
on T cells 8 days after CVB3 infection. Mice were infected with
wtCVB3 or rCVB3.6, and the extent of T cell activation was analyzed on
day 8. (A) CD69 and CD127 expression profiles of CD4+ and CD8+

splenocytes were compared for naı̈ve and virus-infected mice. CD4+ and
CD8+ cells were gated, and representative histograms are shown. CD69/
CD127 staining is shown by solid black lines, and isotype control
staining is shown in gray. The numbers indicate the percentage of
gated T cells that are CD69hi (left columns) or CD127lo (right columns).
The frequency of CD69hi (B) or CD127lo (C) CD4+ or CD8+ T cells in the
spleen was determined for each group of mice. Data are representative
of 2 independent experiments, and show the mean + SE for 3–11 mice
per group; statistical analyses (ANOVA) revealed no significant
differences among the groups.
doi:10.1371/journal.ppat.1000618.g002

CVB3 Inhibits MHC Class I Pathway
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An in vitro antigen presentation assay shows that
rCVB3.6 drives the division of CD4+ T cells, but not of
CD8+ T cells

One attractive explanation for the difference between CVB3-

specific CD4+ and CD8+ T cell induction is that viral epitope

presentation by MHC class I is limited, failing to exceed the

threshold required to trigger naı̈ve T cell responses, while antigen

presentation by MHC class II remains intact, thereby stimulating

virus-specific CD4+ T cell responses. We first assessed this

hypothesis in vitro, using naı̈ve CFSE-labeled P14 and SMARTA

cells as sensors of CVB3 antigen presentation by infected

splenocytes. Three groups of stimulator cells were prepared: (i)

uninfected splenocytes; (ii) splenocytes infected at high moi with

rCVB3.6; and (iii) splenocytes infected at high moi with rCVB3.5,

a recombinant virus that encodes the LCMV CD4+ T cell epitope

NP309–328 (see Table 1). rCVB3.5 cannot drive antigen-specific

proliferation of P14 or SMARTA cells and, therefore, acts as

control for bystander activation. Equal numbers of CFSE-labeled

P14 and SMARTA cells were mixed and added to these three

groups of stimulator cells and, three days later, the CFSE status of

the P14 and SMARTA cells was assessed by flow cytometry. As

shown in Figure 6A, a substantial proportion of SMARTA cells

(16.8%) had divided 1–4 times in response to rCVB3.6 infection,

indicating that the encoded GP61–80 sequence had been

appropriately synthesized, processed, and presented by the

infected stimulator cells. In stark contrast, the P14 cells in the

same tissue culture wells showed no division (Figure 6B), consistent

with the hypothesis that antigen presentation by the MHC class I

pathway is compromised, preventing the stimulation of naı̈ve

CD8+ T cells by CVB-encoded antigen. We considered an

alternative explanation: perhaps the GP33–41 epitope encoded by

rCVB3.6 was appropriately presented to P14 cells, but these cells’

subsequent division was, in some unidentified way, inhibited by

rCVB3.6. To test this possibility, GP33–41 peptide was included in

some of the rCVB3.6-infected stimulator wells (see Materials and

Methods). As shown in the rightmost panels of Figure 6B, the P14

cells proliferated dramatically (the number of divisions was the

same as in uninfected peptide-primed wells, not shown). Thus,

rCVB3.6 infection does not suppress the division of GP33-specific

CD8+ T cells, at least in vitro.

Figure 3. Kinetics of CD4+ and CD8+ transgenic T cell responses in rCVB3-infected and LCMV-infected mice. 104 P14 cells and 104

SMARTA transgenic T cells from uninfected mice were combined and transferred into uninfected congenic recipients. One day post transfer, mice
were infected with rCVB3.6 or LCMV. On the indicated days p.i., the frequencies of P14 and SMARTA cells were determined by flow cytometry, and are
presented as a percentage of total PBMCs. Each symbol represents the time-course in an individual mouse. Note that the y-axes differ among the
graphs; this was done to facilitate the comparison of the kinetics of T cell responses that differ substantially in their magnitudes.
doi:10.1371/journal.ppat.1000618.g003

CVB3 Inhibits MHC Class I Pathway
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rCVB3 infection drives the in vivo division of epitope-
specific CD4+ T cells, but not of epitope-specific CD8+ T
cells

In vitro assays, although persuasive, are intrinsically artificial, and

we considered it important to use the transgenic T cells as sensors

of antigen presentation in vivo. To this end, CFSE-labeled P14 and

SMARTA cells were adoptively transferred into mice; the

proliferation of these transgenic cells provides a functional readout

of the in vivo presentation of CVB-encoded epitopes by MHC class

I and II. Individual mice that had received both P14 and

SMARTA T cells were inoculated with rCVB3.6, or with LCMV

as a positive control; rCVB3.6-inoculated mice had a high fecal

titer on day 2, which confirmed that the mice had been

successfully infected. A low frequency of P14 and SMARTA cells

was detected in uninfected mice and little if any proliferation of

P14 and SMARTA cells occurred (Figure 7A, top row). In

contrast, P14 and SMARTA cells expanded to a much higher

frequency in LCMV-infected mice by day 8, and nearly all these

cells had divided .7 times (Figure 7A, bottom row); this result

confirms that the input cells serve as indicators of antigen

presentation. In stark contrast, P14 cells did not proliferate in

rCVB3.6-infected animals (Figure 7A, middle row); almost all of

the P14 indicator cells remained CFSEhi. Furthermore, the

numbers of CFSE-labeled P14 cells recovered from naı̈ve mice

and from rCVB3.6-infected mice were almost identical (p = 0.27),

indicating that rCVB3.6 had not triggered apoptosis of the input

sensor cells (data not shown). Thus, during rCVB3.6 infection,

presentation of the encoded GP33–41 epitope is insufficient to

trigger the division of P14 cells. In contrast, SMARTA cells

showed some proliferation (Figure 7A, middle row), consistent with

our proposal above.

It was important to confirm that the distinction between CD4+

and CD8+ T cell division was not limited to one recombinant

virus, rCVB3.6; and also to demonstrate that the CVB3-induced

SMARTA response was epitope-specific, rather than a bystander

effect. Therefore a similar approach was taken using four

additional rCVB3 (Table 1). One pair of viruses (rCVB3.2 &

3.3) encode single CD8+ T cell epitopes, while the second pair

(rCVB3.4 & 3.5) encode single CD4+ T cell epitopes. Within each

pair, one virus encodes an epitope that could trigger the sensor T

cells, while the other does not (thereby acting as a control for

epitope specificity/bystander stimulation). To evaluate epitope

presentation by MHC class I, mice were inoculated with rCVB3.2

or 3.3, and then received naive CFSE-labeled P14 cells 2 days

later. Eight days post transfer (10 days p.i.), the frequency of P14

cells was almost identical in mice infected with rCVB3.2 (which

encodes GP33–41) or rCVB3.3 (which does not encode that

epitope), and these cells underwent essentially no cell division and

remained CFSEhi (Figure 7B, left columns); thus, rCVB3.2 did not

drive the epitope-specific expansion of P14 sensors. Parallel

experiments assessed epitope presentation by MHC class II, using

rCVB3.4, rCVB3.5 and CFSE-labeled SMARTA cells (Figure 7B,

Figure 4. The absence of CVB3-induced CD8+ T cell responses cannot be attributed to redistribution into non-lymphoid target
organs. Equal numbers (104) of P14 and SMARTA cells from uninfected mice were combined and transferred into uninfected recipients. Four days
post transfer, mice were infected with rCVB3.6 or LCMV and, 8 days later, mononuclear cells were isolated from the spleen, heart, and pancreas. (A)
P14 and SMARTA responses were analyzed by flow cytometry. The gates shown in the dot plots identify P14, SMARTA, or CD4+ SMARTA2 cells, and
the numbers indicate their percentage among all mononuclear cells. (B) Frequency of P14 and SMARTA cells as a percentage of relevant cells (CD8+ or
CD4+) in the spleen. (C) Total number of P14 and SMARTA cells in the spleen. Data are shown as the mean+SD of 3 or 4 mice per group. (D) The
expression of CD44, CD62L, and CD127 on SMARTA cells from the spleen, heart, and pancreas was compared in rCVB3.6-infected and LCMV-infected
mice. The dot plots shown are gated on CD4+ cells, and the numbers indicate the proportion of cells in each quadrant, as a percentage of all CD4+

cells. CD45.1+ SMARTA cells are present in the upper right and left quadrants. All data are representative of 2 independent experiments.
doi:10.1371/journal.ppat.1000618.g004

CVB3 Inhibits MHC Class I Pathway
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right columns). SMARTA cells underwent several cycles of

division in mice that were infected with rCVB3.4 (which encodes

GP61–80) and this response was epitope-specific, because it was

absent from mice infected with the negative control virus

(rCVB3.5). A positive control, using LCMV, confirmed the

responsiveness of SMARTA cells (bottom row). This striking

contrast in proliferation of CVB3-specific CD8+ versus CD4+ T

cells mirrors the data in Figure 7A. Taken together, the in vitro

(Figure 6) and in vivo (Figure 7) data strongly suggest that epitope

presentation by the MHC class I pathway is almost entirely

ablated in CVB3-infected cells, while epitope presentation by the

MHC class II pathway remains partially intact.

SMARTA T cell responses to rCVB3.6 are an accurate
reflection of endogenous CD4+ T cell responses

The above data (Figure 3, 4, 6, 7) using P14 and SMARTA cells

revealed a profound difference between CD8+ and CD4+ T cell

responses to rCVB3 infection. To ensure that the more pronounced

responses by SMARTA cells were not an artifact of their being TCR-

transgenic, and/or a function of their artificially-high precursor

frequency in recipient mice, we next compared the responsiveness of

SMARTA cells to their endogenous counterparts. Since minimal

endogenous CD4+ T cell responses to CVB3 were observed using

broad measures of T cell activation (Figure 1), we used more sensitive

approaches to evaluate the endogenous GP61–80 response, including

ICCS and MHC class II tetramers. Mice received a mixture of P14

and SMARTA cells (104 of each) and were then infected with

rCVB3.6 or LCMV. In LCMV-infected mice (day 8 p.i.), a

substantial percentage of SMARTA cells (,49.9%) and endogenous

CD4+ T cells (,4.7%) produced IFNc and/or TNF in response to

GP61–80 peptide stimulation (Figure 8A). A substantial proportion of

SMARTA cells from CVB3-infected mice also produced IFNc and/

or TNF (,41.5%), and a proportion of SMARTA cells also produced

IL-2 in rCVB3-infected (,25%) and LCMV-infected (,35%) mice

Figure 5. CVB3 infection does not globally suppress the host CD8+ T cell response. (A) Groups of mice were infected with LCMV or
rCVB3.3, or co-infected with these viruses as shown. Spleens were harvested 8 days after rCVB3.3 infection (group II) or 8 days after LCMV infection (all
other groups), and LCMV-specific CD8+ and CD4+ T cell responses were analyzed. (B) Splenocytes were stimulated with peptide and the frequencies
of GP33-, NP396-, and GP61-specific IFNc+ T cells were determined by flow cytometry. Representative dot plots are gated on mononuclear cells, and the
numbers indicate the proportion of cells in each quadrant, as a percentage of total gated cells. (C) Percentages of epitope-specific CD8+ or CD4+ T
cells that produced IFNc; * p,0.01 compared to all other groups. (D) Total numbers of epitope-specific IFNc-producing CD8+ or CD4+ T cells;
* p,0.05, ** p,0.01 compared to all other groups. Data are shown as the mean+SE of 3 mice per group.
doi:10.1371/journal.ppat.1000618.g005
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(data not shown). The endogenous GP61–80-specific CD4+ T cell

response was difficult to detect in these mice by ICCS (Figure 8A,

lower left dotplots) and we considered the possibility that rCVB3.6

might induce dysfunctional CD4+ T cells. Therefore, we used I-Ab/

GP66–77 MHC class II tetramers to enumerate GP61–80-specific CD4+

T cells regardless of their function; background binding was

determined using a control tetramer, I-Ab/hCLIP. As expected

(Figure 8B), a large population of I-Ab/GP66–77 tetra-

mer+CD4+CD82 T cells was identified in LCMV-infected mice

(without adoptively-transferred cells). In contrast, CVB3-infected

mice contained a very small population of I-Ab/GP66–77 tetra-

mer+CD4+ T cells (,0.3% above background). An additional group

of animals that received 104 SMARTA cells prior to infection with

rCVB3.6 showed, as expected, a higher percentage of I-Ab/GP66–77

tetramer+CD4+CD82 T cells (,1% above background) compared to

rCVB3.6-infected mice that had not received SMARTA cells

(Figure 8B); these tetramer+ cells were mostly CD45.1+ (SMARTA)

cells (data not shown). Overall, MHC class II tetramer staining did

not reveal a large number of non-functional (cytokine negative)

endogenous GP61–80-specific T cells in CVB3-infected mice. Rather,

there is a good correlation between the responses detected by

tetramer and ICCS assays.

The very low frequency of rCVB3.6-induced endogenous CD4+

T cells prevented a direct comparison of the antigen-responsive-

ness of these cells to SMARTA cells. We hypothesized that, if

naı̈ve SMARTA and endogenous cells were similarly responsive to

antigen, then by reducing the precursor frequency of SMARTA

cells to endogenous CD4+ T cell precursor frequency, the ensuing

SMARTA response to CVB3 should become almost undetectable

(i.e., similar to the endogenous response). Mice received differing

numbers of naı̈ve SMARTA cells (104; 103; 102; 101; or none), and

were then infected with rCVB3.6. All mice in all 5 groups had a

high virus titer in the feces (,106–107 PFU/g) on day 2 p.i. As

expected, a sizable SMARTA response was detected on day 8 in

mice that had received 104 transgenic cells, and the response

declined as the number of input cells decreased (Figure 8C). The

frequency of SMARTA cells was dramatically diminished in mice

that had received #100 SMARTA cells (Figure 8D), and reached

the limit of detection in mice that had received 10 transgenic cells.

The total number of GP61–80-specific endogenous CD4+ T cells in

the spleen was quite similar in all groups regardless of the number

of SMARTA cells transferred (Figure 8E). The total number of

SMARTA cells was significantly (p,0.005) greater than the

number of endogenous GP61-specific CD4+ T cells in mice that

had received 104 or 103 transgenic cells, but no statistically-

significant difference in the magnitude of SMARTA and

endogenous responses was present in rCVB3.6-infected mice that

had received 100 SMARTA cells. This laboratory has previously

Figure 6. rCVB3.6 drives the in vitro proliferation of CD4+ T cells, but not of CD8+ T cells. Stimulator cells: Splenocytes from wt C57BL/6
mice were left uninfected, or were infected with rCVB3.5 or rCVB3.6 (moi = 10). Some splenocytes (uninfected or rCVB3.6-infected) were pulsed with
GP33–41 peptide. Indicator cells: P14 and SMARTA splenocytes were CFSE-labeled, then mixed to generate a 1:1 ratio of both types of transgenic T cell.
Indicator cells were added to wells containing stimulator cells and, 72 hours later, wells were harvested and analyzed by flow cytometry using FloJo.
The panels shown are gated on CD8+/Thy1.1+ cells (P14) or CD4+/CD45.1+/Va2+ cells (SMARTA). P14 cells were not gated on Va2 because this
molecule is down-regulated on activated/dividing P14 cells (as shown in the peptide-stimulated population in panel B); had we gated on Va2hi cells,
we would have failed to detect a large proportion of dividing cells. All analyses were done in triplicate, and the data shown are representative. The
numbers are the proportion of (A) SMARTA cells or (B) P14 cells that have divided at least once, expressed as a percentage of total number of
SMARTA or P14 transgenic T cells that were present in the plots.
doi:10.1371/journal.ppat.1000618.g006
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Figure 7. CVB3 infection induces the in vivo proliferation of virus-specific CD4+, but not CD8+, transgenic T cells. (A) Equal numbers
(66105) of P14 and SMARTA cells from uninfected mice were labeled with CFSE, combined, and transferred into uninfected recipients. One day post
transfer, mice were infected with rCVB3.6 or LCMV, or were not infected. Eight days later, P14 and SMARTA responses in the spleen were analyzed by
flow cytometry. The square gates in the dot plots identify P14 or SMARTA cells, and the numbers shown are the percentages of transgenic cells
among mononuclear cells. The histograms of CFSE fluorescence are gated on P14 or SMARTA cells. Data are representative of 3 mice per group. (B)
Mice were inoculated with rCVB3.2, 3.3, 3.4, or 3.5. Two days after infection, naı̈ve P14 and SMARTA cells were labeled with CFSE, and 96105

transgenic T cells (P14 or SMARTA) were injected i.v. into the infected mice. Eight days post transfer (10 days p.i.) the P14 or SMARTA cells were
identified by flow cytometry (ovals within dot plots). The histograms show the level of CFSE fluorescence by the donor cells. As a positive control, the
CFSE-labeled transgenic T cells were given to uninfected mice; the following day these mice were infected with LCMV, and 7 days later these cells
were identified (bottom row, dot plots) and their near-total loss of CFSE-fluorescence was revealed (bottom row, histograms).
doi:10.1371/journal.ppat.1000618.g007
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shown, using LCMV, that C57BL/6 mice contain ,100 GP61–80-

specific precursor CD4+ T cells [25]. Therefore, we conclude that,

when SMARTA cells and endogenous cells are at approximately

the same precursor frequency, they mount responses of similar

magnitude; thus, SMARTA cells provide an accurate reflection of

endogenous CD4+ T cell proliferation. Next, we asked if

SMARTA cells also provided an accurate estimate of T cell

quality. T cell phenotype can be partially dependent upon the

frequency of naı̈ve precursors [19,21], and we thought it relevant

to determine if the phenotype of rCVB3-induced SMARTA cells

(Figure 4D) was greatly altered by the naı̈ve precursor frequency.

The majority of SMARTA cells were CD44hiCD62LloCD127lo at

day 8, and the proportions were very similar among mice with

differing naı̈ve SMARTA precursor frequencies (Figure 8F).

Figure 8. SMARTA T cell responses to rCVB3.6 provide an accurate reflection of the responses of endogenous epitope-specific CD4+

T cells. (A) The capacity of transgenic and endogenous CD4+ T cells to produce IFNc and TNF was evaluated. Dot plots are gated on SMARTA cells
(top row) or on endogenous CD4+ T cells (bottom row); the numbers indicate the proportion of cytokine-producing cells in each quadrant, as a
percentage of total gated cells. (B) The frequency of splenic GP61-specific CD4+ T cells was enumerated using I-Ab/GP66–77 MHC class II tetramers. I-Ab/
hCLIP tetramers were included as a negative control. (C) Differing numbers of naı̈ve SMARTA cells [104; 103; 102; 101; or none (media only)] were
transferred into uninfected mice, and 4 days after transfer, the mice were infected with rCVB3.6. Eight days p.i., the SMARTA response in the spleen
was analyzed by flow cytometry. The oval gates in the dot plots identify SMARTA cells, and the numbers shown are the percentage of SMARTA cells
among all mononuclear cells. (D) Frequency of SMARTA cells as a percentage of CD4+ splenocytes. (E) Total numbers of SMARTA cells (measured by
surface staining for CD4 and CD45.1) and GP61–80-specific endogenous cells (measured by IFNc ICCS) in the spleen. Data are shown as the mean+SD
of 3 mice per group, * p,0.005. (F) The expression of CD44, CD62L, and CD127 on SMARTA cells was compared among rCVB3.6-infected mice that
had received 104, 103, or 102 transgenic cells. Dot plots are gated on CD4+ cells, and the numbers indicate the proportion of cells in each quadrant, as
a percentage of CD4+ cells. Data are representative of two independent experiments.
doi:10.1371/journal.ppat.1000618.g008
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Furthermore, the proportions of SMARTA cells that produced

IFN-c, IL-2, or TNF on day 8 were similar when 103 or 104

SMARTA cells were transferred before CVB3 infection, and

neither SMARTA cells nor endogenous GP61–80-specific CD4+ T

cells produced IL-4 or IL-17A (data not shown). Together, these

data indicate that our ability to detect a strong rCVB3-specific

SMARTA cell response is not due to an intrinsic difference in the

ability of endogenous GP61–80-specific and SMARTA cells to

respond to rCVB3.6; rather, when 103–104 SMARTA cells are

transferred, the resulting elevation in precursor frequency renders

any responses more easily detected.

rCVB3.6 infection generates functional CD4+ memory T
cells, but not CD8+ memory cells

Finally, we investigated the quality and quantity of rCVB3-

induced memory T cells. This was done for two reasons. First, as

an additional means by which to evaluate the priming of P14 cells

during the primary rCVB3.6 infection. Although we did not detect

significant primary rCVB3-specific P14 responses, it remained

possible that some P14 cells had been successfully activated, in

numbers too low to allow detection, and the progeny of those cells

might become memory cells that could expand to detectable levels

following strong antigen stimulation (in this case, potential

memory cells were stimulated by infecting the mice with LCMV).

Second, given the apparent deficiencies in antigen presentation

during CVB3 infection, it was important to determine if any

resulting memory T cells were functionally normal. However, it

was possible that naı̈ve (i.e., antigen inexperienced) P14 and

SMARTA cells might persist in rCVB3.6-infected mice after the

virus was cleared. Thus, when challenging rCVB3.6-immune mice

with LCMV, it was important to determine whether any responses

were due to the activation of rCVB3.6-induced memory cells (true

recall responses), or to primary responses mounted by residual

naı̈ve transgenic T cells. We addressed this issue in two ways. First,

we included a negative control group of mice that had been

infected with rCVB3.3. This virus cannot cause epitope-specific

stimulation of P14 or SMARTA cells, and so any responses to

LCMV challenge must represent primary responses of residual

naı̈ve transgenic cells. Second, we evaluated the LCMV-stimulated

responses at days 4 and 7 after secondary infection, reasoning that

a response detectable at day 4 most probably has been mounted by

memory cells that are present at increased frequency, while a

response at day 7 could be attributed either to naı̈ve cells or

memory cells (or both).

Mice received equal numbers of naı̈ve P14 and SMARTA cells,

then received a primary infection: LCMV (positive control group);

rCVB3.3 (negative control group); or rCVB3.6. Two months later

the mice were challenged with LCMV (or were left unchallenged)

and T cell responses were analyzed on days 4 and 7. As expected,

LCMV-immune mice contained abundant P14 cells in the blood

prior to secondary challenge (Figure 9A, black bar), and these cells

increased in frequency at days 4 and 7 (grey and hatched bars). In

contrast, prior to LCMV infection no P14 cells were detected in

the blood of mice that had been infected with rCVB3.3 or 3.6, and

P14 cells remained almost undetectable in the blood at 4 days after

LCMV infection of the rCVB3-immune mice, suggesting that

rCVB3.6 had not induced memory cells in sufficient quantity to

provide a detectable accelerated response to LCMV challenge. By

7 days after LCMV infection, strong P14 responses were present in

all mice (hatched bars), but the magnitude of the response in

rCVB3.3-immune mice was very similar to that observed in

rCVB3.6-immune mice, suggesting that the majority of respond-

ing cells in rCVB3.6-immune animals were primary effector cells,

generated from residual naı̈ve P14 cells. Prior to LCMV challenge,

low numbers of SMARTA cells were detected in LCMV-immune

and rCVB3.6-immune mice, but not in rCVB3.3-immune

animals, suggesting that rCVB3.6 had induced memory

SMARTA cells (Figure 9B). This conclusion was supported by

analyses at 4 days post-LCMV; SMARTA cell numbers increased

40-fold in rCVB3.6-immune mice, but remained undetectable in

rCVB3.3-immune mice. At day 7, SMARTA cells further

increased in rCVB3.6 mice, and constituted ,50% of all CD4+

T cells in the blood. However, a strong SMARTA response also

was present in the rCVB3.3 group, which must represent a

primary response mounted by naı̈ve cells. Consequently, we

conclude that the day 7 SMARTA response in rCVB3.6 mice

probably comprises a mixture of primary responders and a true

recall response. Analyses of P14 and SMARTA cells in the spleen

(Figure 9C, left side) largely confirmed the above conclusions. P14

cells were undetectable in rCVB3-immune mice before LCMV

infection, and even at 4 days post-LCMV, very few P14 cells were

present; there was no statistically-significant difference between the

numbers of P14 cells that were present in rCVB3.3-immune and

rCVB3.6-immune animals (p.0.16). In addition, the presence of

SMARTA cells prior to LCMV infection in rCVB3.6 mice, but

not in rCVB3.3 mice, was clearly demonstrable, as was their more

rapid expansion after LCMV infection (Figure 9C, right side).

Taken together, the data in Figure 9A–C suggest that rCVB3.6

induces memory CD4+ T cells that undergo expansion upon

secondary encounter with their cognate antigen; but the virus does

not induce a substantial number of memory CD8+ T cells.

Finally, we characterized rCVB3.6-specific memory CD4+ T

cells, evaluating several of the phenotypic and functional

characteristics of memory T cells, and their changes as the cells

differentiate into secondary effectors [26,27]. A similar proportion

of SMARTA memory cells induced by LCMV or by rCVB3.6

were CD127hi (,63%), and both populations became predomi-

nantly CD127lo in response to LCMV challenge, although the

rCVB3 memory cells showed a more rapid conversion (Figure 9D,

left panel). Prior to LCMV challenge, a significantly greater

percentage of CVB3-specific SMARTA memory cells were

CD62Lhi compared to LCMV-specific SMARTA cells

(Figure 9D, right panel); we speculate that a lower level of

MHC class II antigen presentation, and/or a weaker (or more

brief) period of stimulation during rCVB3 infection, permitted

more rapid CD62L expression by CVB3-induced memory CD4+

T cells. Following LCMV challenge, the progeny of these cells

showed much-reduced expression of CD62L, and by day 7 nearly

all of these cells had become CD62Llo. Thus, the majority of

CVB3-induced memory CD4+ T cells become CD62LloCD127lo

after LCMV challenge. In addition, cytokine expression profiles

were used to distinguish CVB3-induced memory and secondary

effector T cells, and to assess their functional capabilities. Previous

studies have shown that the cytokine profile of virus-specific

memory CD8+ T cells becomes more effector-like as these cells

differentiate into secondary effector cells following re-exposure to

cognate antigen [26]. Without LCMV infection, a large fraction

(,55%, Figure 9E) of the IFNc+ memory SMARTA cells in

rCVB3.6-immune mice co-expressed TNF in response to peptide

stimulation, and this fraction was dramatically lower at 4 days after

LCMV challenge, consistent with the cells’ developing a secondary

effector phenotype. The proportions of resting memory SMAR-

TAs that co-produced IFNc and IL-2 were similar whether the

cells had been induced by rCVB3.6 or by LCMV (46% and 56%

respectively, Figure 9F, left panel, black bars). After LCMV

challenge, most of the rCVB3-induced memory SMARTA cells

lost the capacity to produce IL-2, whereas the majority of LCMV-

induced SMARTA cells retained the capacity to co-produce IL-2.
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Prior to LCMV challenge, the frequency of rCVB3-induced

endogenous GP61-specific memory CD4+ T cells was too low to

perform a similar analysis, but at days 4 and 7 the proportion of

GP61-responsive endogenous cells that was double-positive was

similar to that observed for the SMARTA population (Figure 9E

and F). Taken together, these data show that high quality, multi-

cytokine producing virus-specific memory CD4+ T cells are

generated following CVB3 infection, which differentiate into

functional secondary effector T cells upon challenge infection.

Discussion

Our understanding of the adaptive immune response to CVB

remains extraordinarily limited [28]. Early studies detected

cytotoxic activity in CVB3-infected mice [29–31], and showed

that T cells could proliferate in vitro when stimulated with CVB3

VP1 sequences [32], but the lack of known T cell epitopes in

CVB3, and the weakness of virus-specific T cell responses has

made it difficult to analyze their specificity and kinetics [3]. We

have previously reported [12] that rCVB3.6 fails to induce strong

endogenous primary T cell responses, and the relative weakness of

CVB3-specific CD8+ T cell responses also has been demonstrated

in human studies, in which the ex vivo frequency of CVB3-specific

CD8+ T cells was so low that their detection required ,2 weeks of

in vitro antigen stimulation [33]. In this manuscript we have

attempted to identify the reason for these weak responses, and

have used transgenic T cells to assess antigen presentation by

CVB3 in vivo. In addition, our approach has allowed us to

separately evaluate the virus’ effects on the MHC class I and class

II antigen presentation pathways.

We report herein that CVB3, despite replicating to remarkably

high titers in vivo (up to 1010 PFU/gram in some tissues), does not

induce marked activation of CD4+ or CD8+ T cells. The absence

of CD8+ T cell responses is especially dramatic: rCVB3.6 fails to

induce a detectable primary CD8+ T cell response even when the

frequency of epitope-specific precursors is artificially increased by

,10-fold (Figure 1–Figure 4). Furthermore, CFSE-labeled P14

cells fail to divide in response to rCVB3.6-infected splenocytes

(Figure 6) and are similarly unresponsive when transferred to mice

infected with this recombinant virus, or with rCVB3.2, which also

Figure 9. rCVB3.6 induces memory CD4+ T cells that expand in number and differentiate into secondary effectors following a
challenge infection. Equal numbers (16104) of P14 and SMARTA cells from uninfected mice were combined and transferred into uninfected
recipients. One to five days later, these mice were infected with rCVB3.3, rCVB3.6, or LCMV. Sixty to sixty-five days after the primary infection, the mice
were challenged with LCMV (or left unchallenged), and P14 and SMARTA responses were analyzed on day 4 and 7 post challenge. Frequency of (A)
P14 and (B) SMARTA cells as a percentage of CD8+ or CD4+ cells, respectively, in the blood of unchallenged and LCMV-challenged mice. Data are
shown as the mean+SE of 6–16 mice per group, pooled from 4 independent experiments. (C) P14 and SMARTA responses in the spleens of these
mice; the numbers in the dotplots indicate the percentage of transgenic cells among all mononuclear cells. (D) Changes in CD127 and CD62L
expression on SMARTA cells following LCMV challenge of mice previously infected with rCVB3.6 (squares) or LCMV (circles). The percentage of
SMARTA cells that were CD127hi or CD62Lhi are shown as the mean 6 SE of 2–4 mice per time point, pooled from 2 independent experiments;
* p,0.05, ** p,0.005, *** p,0.001. The capacity of the transgenic and endogenous GP61-specific CD4+ T cells to produce IFNc and TNF (E), or IFNc
and IL-2 (F) was evaluated. Data are shown as the mean + SE of 2–4 mice per group, combined from 2 independent experiments.
doi:10.1371/journal.ppat.1000618.g009
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encodes the GP33 epitope (Figure 7). The absence of a detectable

rCVB3-specific primary CD8+ T cell response at 8 days post-

infection was not due to a delayed CD8+ T cell expansion

(Figure 3), nor was it due to redistribution into virus-infected

peripheral tissues (Figure 4). We considered the possibility that

CVB3 might actively suppress the T cell response by, for example,

globally disrupting antigen-presenting cells. CVB3 replication is

restricted in DCs in vitro and in vivo and infectious virus is not

produced [14], but a non-productive infection might still impair

DC function. Moreover, several picornaviruses may limit the

ability of dendritic cells (DCs) to prime robust virus-specific T cell

responses, by disrupting protein trafficking [34–38] and thereby

inhibiting expression of cytokine receptors [39,40], costimulatory

molecules [41], and MHC class I [38,42]. However, three separate

observations herein show that CVB3 causes neither a global

inhibition of DC function, nor a suppression of T cell

responsiveness. First, infected mice mount primary CD4+ T cell

responses to rCVB3.6 (Figure 3, Figure 4), suggesting that DCs

can present antigen together with the required costimulatory

signals. Second, CVB3 infection does not diminish the CD8+ T cell

response induced by co-infection with LCMV, and may even have

increased it (Figure 5). Third, GP33–41 peptide drove the division of

P14 cells in wells infected with rCVB3.6, excluding an inhibitory

effect of the virus on T cell proliferation (Figure 6). Regulatory T

cells might suppress strong virus-specific CD8+ T cell responses,

but this appears unlikely because there is no significant change in

CD4+CD25+FoxP3+ T cell frequency following infection [14,43],

and primary LCMV-specific CD8+ T cells response were

unabated in CVB3-infected animals (Figure 5).

We conclude that the most likely explanation for the absence of

a detectable primary CD8+ T cell response to rCVB3.6 is a block

in presentation of the encoded CD8+ epitope via the MHC class I

pathway. This is demonstrated by the failure of CFSE-labeled P14

cells to divide over a 3-day period in tissue culture (Figure 6) and,

perhaps most dramatically, by their unresponsiveness after being

incubated for 8 days in an rCVB3.6-infected mouse (Figure 7). For

two reasons we can exclude the obvious concern that the GP33–41

component of the dual-epitope sequence is in some way flawed,

and is intrinsically incapable of being processed and presented.

First, the translation initiation codon and the GP33–41 epitope lie

upstream of the GP61–80 sequence and, therefore, SMARTA cell

responses to rCVB3.6 constitute proof that the CD8+ epitope

sequence must be synthesized. Second, when subcloned from

rCVB3.6 into a plasmid DNA vaccine, the dual-epitope sequence

induced a strong epitope-specific CD8+ T cell response [12].

Therefore, this CD8+ T cell epitope sequence, when expressed

independently of CVB3 proteins, can be processed and presented

at a level that is sufficient to trigger responses by naı̈ve CD8+ T

cells, but this process is abrogated in the rCVB3.6-infected cell. A

molecular explanation is available. We, and others, have shown

that the CVB3 proteins 2B, 2C, and 3A cooperate to interfere with

protein trafficking within an infected cell [34–38], and that their

actions lead to a dramatic and rapid down-regulation of surface

MHC class I in vitro [38,42]. Consequently, we propose that these

trafficking defects are responsible for the extraordinarily weak

primary CD8+ T cell response to CVB3 infection. We cannot

exclude the possibility that CVB3 exerts additional inhibitory

effects on the MHC class I pathway; for example, the virus may

alter antigen processing, or other steps in the pathway. It is

important to note, however, that this trafficking blockade,

although profound, is incomplete, because we have shown that

GP33-specific CD8+ memory T cells proliferate in vivo in response

to rCVB3.6 infection [12]. What might explain this difference

between naı̈ve and memory CD8+ T cells? Memory cells are better

able to respond to low levels of antigen [44], and we have

suggested that presentation of the rCVB3.6-encoded epitopes may

lie below a threshold level that is required to trigger naı̈ve T cells,

but above the threshold required by memory cells [12]. Other

explanations are possible. For example, naı̈ve T cell precursors are

triggered only by antigen presented by professional APCs, while

memory T cells also can recognize antigen presented on a variety

on ‘‘non-professional’’ cell types. It is possible that CVB3 inhibits

MHC class I presentation to a greater extent in APCs than in non-

professional cells, allowing the latter population to selectively

stimulate responses by memory T cells. However this explanation

appears unlikely, because the rapid and profound interruption in

protein trafficking that has been previously reported occurs in

CVB3-infected fibroblasts [34,37,38,45].

Elegant analyses from several laboratories have provided strong

evidence to support the concept that primary CD8+ T cell

responses to virus infection can be induced via an alternate

pathway of MHC class I antigen presentation. In this process,

termed cross presentation/cross priming, exogenous antigen is

taken up by specialized APCs, and is introduced into the MHC

class I pathway and presented to naı̈ve T cells. Cross presentation/

cross priming appears to be an important contributor to the

induction of antiviral CD8+ T cell responses to several viruses,

including poxviruses and herpesviruses [46–49], but three findings

in this report suggest that this alternate pathway does not operate

efficiently during CVB infection. First, the absence of detectable

primary CD8+ T cell responses to CVB3 (Figures 3 & 4); second,

the failure of P14 cells to divide in rCVB3.6-infected tissue culture

wells in which CVB-encoded antigen is being presented, as shown

by the division of SMARTA cells (Figure 6); and, third, the failure

of P14 cells to divide in vivo in rCVB3.6-infected mice (Figure 7). If

cross-priming were efficient in CVB3-infected animals in vivo, one

would expect that a potential epitope in, for example, the viral

VP4 protein might be taken up from the extracellular milieu and

cross-presented by MHC class I, inducing detectable CD8+ T cell

responses (i.e., cross priming). It is unlikely that the failure of cross

priming can be attributed to a lack of available extracellular

antigen, because our data show that rCVB3.6-encoded antigen

was sufficiently abundant to induce CD4+ T cell responses. It is

possible that the recipient APCs also ingested the viral 2B, 2BC

and 3A proteins in the appropriate stoichiometry, thereby

preventing successful cross presentation. However, this is improb-

able, for at least two reasons. First, it is difficult to imagine that all

APCs would be so affected. Second, if all APCs did take up these

inhibitory proteins in a form that led to trafficking defects, one

would expect that trafficking of MHC class II also would be

affected within those cells; our identification of CD4+ T cell

responses argues against this possibility. Therefore, we speculate

that, for unknown reasons, cross presentation is ineffective in

CVB3-infected mice. At present, we cannot provide a molecular

explanation for the apparent failure of cross-priming in CVB3-

infected mice; these studies are ongoing.

In contrast to CD8+ T cells, naı̈ve SMARTA CD4+ T cells

divide extensively, indicating that MHC class II-restricted viral

epitopes are presented at a level sufficient to trigger CVB3-specific

CD4+ T cells. Why, though, are CD4+ T cell responses not

stronger? Epitopes presented by MHC class II are most often

derived from uptake of exogenous proteins, but recent work has

shown that class II-restricted epitopes may be derived from

endogenous proteins [50–53]. We speculate that the ‘‘classical’’

exogenous route of class II presentation remains intact, while the

endogenous MHC class II pathways – like the MHC class I

pathway – are interrupted by CVB3 infection, thereby diminishing

the capacity of encoded epitopes to induce CD4+ T cell responses.
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Nevertheless, CD4+ T cell responses appear to play a role in

regulating the outcome of CVB infection, and recent intriguing

work has suggested that CVB3-induced CD4+ T cells can confer

some degree of protection following their transfer into a naı̈ve host

[54]. The data presented herein are, to our knowledge, the first

detailed analysis of epitope-specific CD4+ T responses to CVB3.

Previous studies in mice have reported CD4+ T cell responses to

coxsackievirus B4, but the epitope-specific T cells were analyzed

only after several days of in vitro restimulation [55,56]. We show

here that CVB3-specific CD4+ T cells display an effector

phenotype and a Th1 cytokine profile, and are enriched among

CD4+ T cells in peripheral sites of virus infection that are major

targets of CVB3 pathogenesis. CVB3 infection drives the

differentiation and generation of virus-specific memory CD4+ T

cells; upon encountering another virus encoding their cognate

antigen, these cells expand in number (.400-fold), differentiate

into secondary effectors, and produce multiple antiviral and pro-

survival cytokines. The differentiation and survival of memory

CD4+ T cells may depend on the strength of antigen stimulation

received in the primary response [23]. If competition for antigen

stimulation is increased by elevating the precursor frequency of

naı̈ve CD4+ transgenic T cells or by limiting antigen presentation,

memory CD4+ T cell formation is diminished [57]. Our findings

indicate that the level of MHC class II antigen presentation during

CVB3 infection is sufficient to drive virus-specific memory CD4+

T cell differentiation. However, class II antigen presentation may

be more limited during CVB3 infection than in LCMV infection,

because only half of SMARTA cells in CVB3-infected hosts

divided .7 times by day 8 p.i., whereas all of the SMARTA cells

in LCMV-infected mice fully diluted their CFSE (Figure 7).

Following challenge infection, memory SMARTA cells present in

CVB3 immune mice underwent a greater degree of expansion and

effector differentiation compared to their counterparts in LCMV

immune mice; by day 4, CVB3-induced memory SMARTA cells

rapidly and uniformly adopted an effector phenotype (Figure 9D),

and a considerable percentage of IFNc+ SMARTA cells lost the

capacity to co-produce TNF or IL-2 (Figure 9E & F). In contrast,

LCMV-specific memory SMARTA cells became CD127lo more

gradually and retained their multi-potential cytokine profile. The

more robust secondary SMARTA response in rCVB3.6-immune

mice, and the more rapid differentiation of these cells, are most

likely attributable to a greater antigen load following LCMV

challenge, compared to LCMV-immune mice. This will occur

because rCVB3.6-immune mice, unlike their LCMV-immune

counterparts, have no detectable GP33-specific memory CD8+ T

cells, and so cannot rapidly control LCMV infection and reduce

the antigenic stimulus available to virus-specific CD4+ T cells.

Another laboratory has recently reported a similar observation,

and the authors concluded that the recall response of CD4+

memory T cells is, in part, regulated by the duration of the

secondary stimulus [58]. The emergence of strong CD8+ T cell

responses in CVB3-immune mice on day 7 post LCMV challenge

coincides temporally with an increase in the proportion of CVB3-

specific CD4+ T cells that co-produce IFNc and TNF (Figure 9E

& F). Perhaps this CD8+ T cell response helps to reduce antigen

load, thereby decreasing the frequency of T cell stimulation and

permitting SMARTA cells to recover their ability to produce

multiple cytokines.

In conclusion, our evaluation of viral antigen presentation with

virus-specific CD8+ and CD4+ transgenic T cells reveals a

profound difference in the effect of virus infection on antigen

presentation by MHC class I when compared to MHC class II,

with a consequent difference in the generation of virus-specific

CD8+ and CD4+ T cell responses. Future efforts to design a CVB3

vaccine should strive to generate high avidity memory CD8+ T

cells that appear to be more capable than naı̈ve cells of responding

to the low level of MHC class I antigen presentation that occurs in

CVB3-infected cells [12].

Materials and Methods

Mice
C57BL/6J mice were purchased from The Scripps Research

Institute (TSRI) breeding facility. P14/Thy1.1 or P14/CD45.1

TCR transgenic mice specific for the H-2Db restricted LCMV

epitope GP33–41 [59], and SMARTA/CD45.1 TCR transgenic

mice specific for the I-Ab restricted LCMV epitope GP61–80 [60],

were bred and maintained by our laboratory as described [25,61].

All experimental procedures with mice were approved by TSRI

Animal Care and Use Committee.

Viruses and infections
The wtCVB3 used in these studies is a plaque purified isolate

(designated H3) of the myocarditic Woodruff variant of CVB3

[62]. Plasmid pH 3, encoding a full-length infectious clone of this

virus [63], was provided by Dr. Kirk Knowlton (University of

California, San Diego). Five rCVB3, encoding well-characterized

T cell epitopes, are used in the experiments described herein. In all

cases, the epitopes were inserted immediately downstream of the

N-terminus of the CVB3 polyprotein, using the cloning approach-

es that we have described [11,12]. All plasmid constructs were

confirmed by DNA sequencing. Furthermore, the in vivo stability of

the dual-epitope insert in rCVB3.6 RNA has been assessed by

reverse transcription-PCR, cloning and sequencing at several time

points after infection of mice; the dual-epitope sequence remains

stable in the recombinant virus for at least 7 days post-infection

[12]. The five viruses, and information about the epitope(s)

encoded by each, are shown in Table 1. Naı̈ve adult male C57BL/

6 mice were inoculated i.p. with 16103 PFU of wtCVB3, 107–108

PFU of rCVB, or 26105 PFU of LCMV Armstrong. In some

experiments, mice previously infected with CVB3 were inoculated

i.p. with 26106 PFU of LCMV Armstrong.

Adoptive transfers
The frequency of CD8+ transgenic T cells (TCR Va2+Vb8.1/

8.2+) in the spleen of male P14/Thy1.1 or P14/CD45.1 mice and

the frequency of CD4+ transgenic T cells (TCR Va2+Vb8.3+) in

the spleen of male SMARTA/CD45.1 mice was determined by

flow cytometry. For the majority of experiments, equal numbers of

both transgenic cell populations were combined, and a low

number (104) of P14 and SMARTA cells [in 0.5 ml DMEM)

(Invitrogen, Carlsbad, CA)] was injected i.v. into uninfected adult

male C57BL/6J mice. In experiments that analyzed SMARTA T

cell responses from different starting precursor frequencies,

differing numbers of SMARTA cells (101–104) were transferred.

In other experiments that examined transgenic T cell division, P14

and SMARTA transgenic cells were labeled with 5 mM CFSE and

a larger number of cells (6–96105) were transferred into recipient

mice. Mice were inoculated with rCVB3, or with LCMV as a

positive control, at the time points indicated in the text.

Plaque assays
To confirm CVB3 infection, the virus titer in the feces was

determined on day 2 p.i.. Samples were weighed, disrupted in

0.5 ml DMEM, briefly centrifuged to pellet debris, and the

supernatant was used for virus titration. Plaque assays were

performed on sub-confluent HeLa cell monolayers as described

[64], and the virus titers (PFU/g) were calculated for each sample.
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Lymphocyte isolation
A single cell suspension of splenocytes was prepared by

disruption of the spleen through a 70 mm nylon cell strainer (BD

Biosciences, San Jose, CA), and red blood cells were lysed with

0.83% NH4Cl. In some experiments, mice were anesthetized and

perfused with cold PBS, and lymphocytes/mononuclear cells were

isolated from the heart and pancreas and purified on a Percoll

gradient as described [12]. Lymphocytes isolated from the heart or

pancreas were fewer in number, and therefore cells from within

each group of mice were pooled prior to flow cytometric analysis.

Blood was collected in K2EDTA-treated Vacutainer Plus tubes

(BD Biosciences) and treated with ACK buffer (0.15 M NH4Cl,

1 mM KHCO3, and 0.1 mM Na2EDTA, pH 7.0) to lyse red

blood cells.

In vitro antigen presentation assay
Spleens from uninfected adult male C57BL/6 mice were

harvested, finely minced, and digested with collagenase type I

(100 U/ml, Worthington Biochemical Corporation, Lakewood,

NJ) for 30 min at 37uC, and then filtered through a cell strainer.

Splenocytes were resuspended at 106106 cells/ml in complete

RPMI [containing 10% FBS, L-glutamine, 2-mercaptoethanol

(50 mM), and penicillin/streptomycin], and incubated with rCVB3

(MOI 10:1) and/or pulsed with GP33–41 peptide (1 mg/ml) for 1 hr

at 37uC. Uninfected splenocytes 6 GP33–41 peptide were prepared

in the same manner. Cells were then washed extensively, counted,

and 2.56106 of these stimulator cells were added per well in a 24-

well plate. CFSE-labeled transgenic T cells were used as sensors of

antigen presentation by these rCVB3-infected stimulator cells. To

prepare these indicator cells, splenocytes from uninfected adult

male P14/Thy1.1 or SMARTA/CD45.1 TCR transgenic mice

were isolated as described above (see Lymphocyte isolation) and

the frequencies of CD8+ and CD4+ transgenic T cells within the

spleens were determined by flow cytometry. The P14 and

SMARTA splenocytes were labeled with 3 mM CFSE, and were

mixed in a ratio that resulted in an equal number of transgenic

P14 and SMARTA T cells. Aliquots of this mix were added to the

stimulator cells; each well received 36105 transgenic T cells of

each type (P14 and SMARTA). Triplicate cultures were set up for

each condition. 72 hours later the in vitro cultures were harvested

and transgenic T cell proliferation was determined by flow

cytometry.

Intracellular cytokine staining (ICCS)
Prior to intracellular cytokine staining, 1–26106 splenocytes

were incubated for 5 hrs in 96-well plates in 0.2 ml/well RPMI

containing 10% FBS, 50 mM 2-mercaptoethanol, penicillin/

streptomycin, GolgiPlug or GolgiStop (BD Biosciences), and

synthetic peptides (1 mg/ml GP33–41, 1 or 10 mM GP61–80). After

stimulation, the cells were incubated with Fc receptor antibody (Fc

Block, BD Biosciences) in PBS containing 2% FBS and 0.1%

sodium azide (FACS buffer) for 10 min on ice. Cells were then

stained for surface CD4 or CD8, and intracellular IFNc, TNF, IL-

2, IL-4, and/or IL-17A with the Cytofix/Cytoperm kit (BD

Biosciences). The total number of (peptide-specific) cytokine-

producing T cells was determined by subtracting unstimulated

cytokine+ T cells from stimulated cytokine+ T cells.

Evaluating T cell activation using phorbol myristate
acetate/ionomycin

1–26106 splenocytes were incubated for 5 hrs with PMA,

(50 ng/ml) and ionomycin (500 ng/ml) (both Sigma, St. Louis,

MO). Because PMA/ionomycin stimulation causes downregula-

tion of surface CD4 and CD8 [65], intracellular staining was used,

as described above, to detect not only IFNc, but also CD4 and

CD8. The total number of cytokine-producing T cells was

determined by subtracting unstimulated cytokine+ T cells from

stimulated cytokine+ T cells.

MHC class II tetramer staining
MHC class II tetramers were provided by the NIH Tetramer

Core Facility (Emory University, Atlanta, GA). 1–26106 spleno-

cytes were incubated for 1.5 or 3 hrs at 37uC in 96-well plates in

0.2 ml/well RPMI containing 2% FBS and allophyocyanin-

conjugated I-Ab/GP66–77 tetramers or I-Ab/hCLIP control

tetramers (6 or 18 mg/ml) [23]. Afterwards, the cells were washed

and stained for surface CD4, CD8, CD44, and/or CD45.1.

Flow cytometry materials and analyses
The following materials and analytical methods apply to the

ICCS, PMA/ionomycin, and tetramer analyses that have been

described above. Fluorochrome-conjugated CD8 (clone 53-6.7),

CD4 (clone RM4-5), CD44 (clone IM7), CD45.1 (clone A20),

CD62L (clone MEL-14), CD127 (clone A7R34), CD69 (clone

H1.2F3), Thy1.1 (CD90.1, clone HIS51), IFN-c (clone XMG1.2),

TNF (clone MP6-XT22), IL-2 (clone JES6-5H4), IL-4 (clone

11B11), and IL-17A (clone eBio17B7) antibodies, and Armenian

hamster IgG (eBio299Arm) and rat IgG2a isotype controls, were

purchased from eBioscience (San Diego, CA). Va2 (clone B20.1),

Vb8.1/8.2 (clone MR5-2), Vb8.3 (clone 1B3.3), CD8 (clone 53-

6.7), CD4 (clone RM4-5) antibodies and Mouse BD Fc Block were

purchased from BD Biosciences. After staining had been

completed, samples were fixed in PBS containing 1% parafor-

maldehyde and were acquired on a FACS Calibur (BD

Biosciences). Data were analyzed with FlowJo software (Tree

Star, Ashland, OR).

Statistical analyses
Statistical significance was determined by an unpaired two-

tailed t-test assuming equal variance (Microsoft Excel), or by one

way ANOVA with Tukey’s post hoc tests (GraphPad Prism). A p

value,0.05 was considered statistically significant.
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